Contents

1 Maximum Likelihood Estimation (MLE, 最光法) — Review			Likelihood Estimation (MLE, 最光法) — Review	5	
2 Bayesia		esian Es	sian Estimation (ベイズ推定)		
	2.1	Introdu	action	31	
	2.2	Inferen	nce	36	
		2.2.1	Point Estimate	36	
		2.2.2	Interval Estimate	37	
		2.2.3	Marginal Likelihood (周辺尤度)	38	
	2.3	Examp	ole: Linear Regression	38	
	2.4 On Prior Distribution		42		
		2.4.1	Non-informative Prior	42	
		2.4.2	Jeffreys' Prior	43	

2.5	Evalua	tion of Expectation		
	2.5.1	Evaluation of Expectation: Numerical Integration		
	2.5.2	Evaluation of Expectation: Monte Carlo Integration 49		
	2.5.3	Evaluation of Expectation: Random Number Generation 53		
2.6	Sampli	ampling Method I: Random Number Generation		
	2.6.1	Uniform Distribution: $U(0,1)$		
	2.6.2	Transforming $U(0, 1)$: Continuous Type 63		
2.7	Sampli	ampling Method II: Random Number Generation		
	2.7.1	Rejection Sampling (棄却法)		
	2.7.2	Importance Resampling (重点的リサンプリング) 84		
	2.7.3	Metropolis-Hastings Algorithm (メトロポリスーハスティングス・		
		アルゴリズム)		
	2.7.4	Gibbs Sampling		

References 105

1 Maximum Likelihood Estimation (MLE, 最光法) — Review

- 1. We have random variables X_1, X_2, \dots, X_n , which are assumed to be mutually independently and identically distributed.
- 2. The distribution function of $\{X_i\}_{i=1}^n$ is $f(x;\theta)$, where $x=(x_1,x_2,\cdots,x_n)$ and $\theta=(\mu,\Sigma)$.

Note that *X* is a vector of random variables and *x* is a vector of their realizations (i.e., observed data).

Likelihood function $L(\cdot)$ is defined as $L(\theta; x) = f(x; \theta)$.

Note that $f(x;\theta) = \prod_{i=1}^n f(x_i;\theta)$ when X_1, X_2, \dots, X_n are mutually independently and

identically distributed.

The maximum likelihood estimator (MLE) of θ is θ such that:

$$\max_{\theta} L(\theta; X). \qquad \Longleftrightarrow \qquad \max_{\theta} \log L(\theta; X).$$

MLE satisfies the following two conditions:

(a)
$$\frac{\partial \log L(\theta; X)}{\partial \theta} = 0.$$

(b)
$$\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}$$
 is a negative definite matrix.

3. **Fisher's information matrix** (フィッシャーの情報行列) is defined as:

$$I(\theta) = -E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right),\,$$

where we have the following equality:

$$-\mathrm{E}\Big(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\Big) = \mathrm{E}\Big(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\Big) = \mathrm{V}\Big(\frac{\partial \log L(\theta; X)}{\partial \theta}\Big)$$

Proof of the above equality:

$$\int L(\theta; x) \mathrm{d}x = 1$$

Take a derivative with respect to θ .

$$\int \frac{\partial L(\theta; x)}{\partial \theta} \mathrm{d}x = 0$$

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative $\frac{\partial L(\theta; x)}{\partial \theta}$ exists.)

Rewriting the above equation, we obtain:

$$\int \frac{\partial \log L(\theta; x)}{\partial \theta} L(\theta; x) dx = 0,$$

i.e.,

$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0.$$

Again, differentiating the above with respect to θ , we obtain:

$$\int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial L(\theta; x)}{\partial ' \theta} dx$$

$$= \int \frac{\partial^2 \log L(\theta; x)}{\partial \theta \partial \theta'} L(\theta; x) dx + \int \frac{\partial \log L(\theta; x)}{\partial \theta} \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx$$

$$= E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) + E\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = 0.$$

Therefore, we can derive the following equality:

$$-\mathrm{E}\left(\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right) = \mathrm{E}\left(\frac{\partial \log L(\theta;X)}{\partial \theta} \frac{\partial \log L(\theta;X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right),$$

where the second equality utilizes $E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$.

4. Cramer-Rao Lower Bound (クラメール・ラオの下限): $(I(\theta))^{-1}$

Suppose that an unbiased estimator of θ is given by s(X).

Then, we have the following:

$$V(s(X)) \ge (I(\theta))^{-1}$$

Proof:

The expectation of s(X) is:

$$E(s(X)) = \int s(x)L(\theta; x)dx.$$

Differentiating the above with respect to θ ,

$$\frac{\partial E(s(X))}{\partial \theta'} = \int s(x) \frac{\partial L(\theta; x)}{\partial \theta'} dx = \int s(x) \frac{\partial \log L(\theta; x)}{\partial \theta'} L(\theta; x) dx$$
$$= Cov \left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta} \right)$$

For simplicity, let s(X) and θ be scalars.

Then,

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} = \left(\mathrm{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)\right)^{2} = \rho^{2} \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$

$$\leq \mathrm{V}\left(s(X)\right) \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),$$

where ρ denotes the correlation coefficient between s(X) and $\frac{\partial \log L(\theta; X)}{\partial \theta}$, i.e.,

$$\rho = \frac{\operatorname{Cov}\left(s(X), \frac{\partial \log L(\theta; X)}{\partial \theta}\right)}{\sqrt{\operatorname{V}\left(s(X)\right)} \sqrt{\operatorname{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}}.$$

Note that $|\rho| \leq 1$.

Therefore, we have the following inequality:

$$\left(\frac{\partial \mathrm{E}(s(X))}{\partial \theta}\right)^{2} \leq \mathrm{V}(s(X)) \, \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right),\,$$

i.e.,

$$V(s(X)) \ge \frac{\left(\frac{\partial E(s(X))}{\partial \theta}\right)^2}{V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right)}$$

Especially, when $E(s(X)) = \theta$,

$$V(s(X)) \ge \frac{1}{-E\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta^2}\right)} = (I(\theta))^{-1}.$$

Even in the case where s(X) is a vector, the following inequality holds.

$$V(s(X)) \ge (I(\theta))^{-1}$$

where $I(\theta)$ is defined as:

$$\begin{split} I(\theta) &= -\mathrm{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) \\ &= \mathrm{E}\left(\frac{\partial \log L(\theta; X)}{\partial \theta} \frac{\partial \log L(\theta; X)}{\partial \theta'}\right) = \mathrm{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right). \end{split}$$

The variance of any unbiased estimator of θ is larger than or equal to $(I(\theta))^{-1}$.

5. Asymptotic Normality of MLE:

Let $\tilde{\theta}$ be MLE of θ .

As n goes to infinity, we have the following result:

$$\sqrt{n}(\tilde{\theta}-\theta) \longrightarrow N\left(0,\lim_{n\to\infty}\left(\frac{I(\theta)}{n}\right)^{-1}\right),$$

where it is assumed that $\lim_{n\to\infty} \left(\frac{I(\theta)}{n}\right)$ converges.

That is, when *n* is large, $\tilde{\theta}$ is approximately distributed as follows:

$$\tilde{\theta} \sim N(\theta, (I(\theta))^{-1}).$$

Suppose that $s(X) = \tilde{\theta}$.

When *n* is large, V(s(X)) is approximately equal to $(I(\theta))^{-1}$.

Practically, we utilize the following approximated distribution:

$$\tilde{\theta} \sim N(\theta, (I(\tilde{\theta}))^{-1}).$$

Then, we can obtain the significance test and the confidence interval for θ

6. **Central Limit Theorem:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for $i = 1, 2, \dots, n$.

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1).$$

Note that $E(\overline{X}) = \mu$ and $V(\overline{X}) = \sigma^2/n$.

That is,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance $\Sigma < \infty$, the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) = \Sigma$.

7. **Central Limit Theorem II:** Let X_1, X_2, \dots, X_n be mutually independently distributed random variables with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma_i^2$ for $i = 1, 2, \dots, n$.

Assume:

$$\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sigma_i^2 < \infty.$$

Define $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

Then, the central limit theorem is given by:

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1),$$

i.e.,

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \sigma^2$.

In the case where X_i is a vector of random variable with mean μ and variance Σ_i , the central limit theorem is given by:

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma),$$

where
$$\Sigma = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \Sigma_i < \infty$$
.

Note that $E(\overline{X}) = \mu$ and $nV(\overline{X}) \longrightarrow \Sigma$.

[Review of Asymptotic Theories]

• Convergence in Probability (確率収束) $X_n \longrightarrow a$, i.e., X converges in probability to a, where a is a fixed number.

• Convergence in Distribution (分布収束) $X_n \longrightarrow X$, i.e., X converges in distribution to X. The distribution of X_n converges to the distribution of X as n goes to infinity.

Some Formulas

 X_n and Y_n : Convergence in Probability

 Z_n : Convergence in Distribution

- If $X_n \longrightarrow a$, then $f(X_n) \longrightarrow f(a)$.
- If $X_n \longrightarrow a$ and $Y_n \longrightarrow b$, then $f(X_n Y_n) \longrightarrow f(ab)$.
- If $X_n \longrightarrow a$ and $Z_n \longrightarrow Z$, then $X_n Z_n \longrightarrow aZ$, i.e., aZ is distributed with mean E(aZ) = aE(Z) and variance $V(aZ) = a^2V(Z)$.

[End of Review]

8. Weak Law of Large Numbers (大数の弱法則) — Review:

Suppose that X_1, X_2, \dots, X_n are distributed.

As $n \to \infty, \overline{X} \to \lim_{n \to \infty} E(\overline{X})$ under $\lim_{n \to \infty} nV(\overline{X}) < \infty$, which is called the **weak law** of large numbers.

- → Convergence in probability
- → Proved by Chebyshev's inequality
 - (i) Suppose that X_1, X_2, \dots, X_n are assumed to be mutually independently and identically distributed with $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$.

Consider
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

Then,
$$\overline{X} \longrightarrow \mu$$
 as $n \longrightarrow \infty$.

Note that
$$E(\overline{X}) = \mu$$
 and $nV(\overline{X}) = \sigma^2$.

(ii) Suppose that X_1, X_2, \dots, X_n are assumed to be mutually independently distributed with $E(X_i) = \mu_i$ and $V(X_i) = \sigma_i^2$.

Assume that

(a)
$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \mu_i \longrightarrow \mu$$
, i.e., $\lim_{n \to \infty} E(\overline{X}) = \mu$, and

(b)
$$nV(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2 \longrightarrow \sigma^2 < \infty$$
, ie., $\lim_{n \to \infty} nV(\overline{X}) = \sigma^2 < \infty$.

Then, $\overline{X} \longrightarrow \mu$ as $n \longrightarrow \infty$,

Note that
$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \mu_i$$
 and $nV(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2$.

(iii) Suppose that X_1, X_2, \dots, X_n are assumed to be serially correlated with $E(X_i) = \mu_i$ and $Cov(X_i, X_j) = \sigma_{ij}$.

Assume that

(a)
$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \mu_i \longrightarrow \mu$$
, i.e., $\lim_{n \to \infty} E(\overline{X}) = \mu$, and

(b)
$$nV(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \longrightarrow \sigma^2 < \infty$$
, ie., $\lim_{n \to \infty} nV(\overline{X}) = \sigma^2 < \infty$.

Then, $\overline{X} \longrightarrow \mu$ as $n \longrightarrow \infty$,

Note that
$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \mu_i$$
 and $nV(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij}$.

9. Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:

A vector of randam variavle X: $E(X) = \mu$ and $V(X) \equiv E((X - \mu)(X - \mu)') = \Sigma$ Then, $E(AX) = A\mu$ and $V(AX) = A\Sigma A'$.

Proof:

$$E(AX) = AE(X) = A\mu$$

$$V(AX) = E((AX - A\mu)(AX - A\mu)') = E(A(X - \mu)(A(X - \mu))')$$

$$= E(A(X - \mu)(X - \mu)'A') = AE((X - \mu)(X - \mu)')A' = AV(X)A' = A\Sigma A'$$

10. Asymptotic Normality of MLE — Proof:

The density (or probability) function of X_i is given by $f(x_i; \theta)$.

The likelihood function is: $L(\theta; x) \equiv f(x; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$,

where $x = (x_1, x_2, \dots, x_n)$.

MLE of θ results in the following maximization problem:

$$\max_{\theta} \log L(\theta; x).$$

A solution of the above problem is given by MLE of θ , denoted by $\tilde{\theta}$.

That is, $\tilde{\theta}$ is given by the θ which satisfies the following equation:

$$\frac{\partial \log L(\theta; x)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(x_i; \theta)}{\partial \theta} = 0.$$

Replacing x_i by the underlying random variable X_i , $\frac{\partial \log f(X_i; \theta)}{\partial \theta}$ is taken as the *i*th random variable, i.e., X_i in the **Central Limit Theorem II**.

Consider applying Central Limit Theorem II as follows:

$$\frac{\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}-\mathrm{E}\Big(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\Big)}{\sqrt{\mathrm{V}\Big(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\Big)}}=\frac{\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}-\mathrm{E}\Big(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\Big)}{\sqrt{\mathrm{V}\Big(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\Big)}}.$$

Note that

$$\sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} = \frac{\partial \log L(\theta; X)}{\partial \theta}$$

In this case, we need the following expectation and variance:

$$E\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = E\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right) = 0,$$

and

$$V\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = V\left(\frac{1}{n}\frac{\partial \log L(\theta;X)}{\partial \theta}\right) = \frac{1}{n^{2}}I(\theta).$$

Note that
$$E\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = 0$$
 and $V\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) = I(\theta)$.

Thus, the asymptotic distribution of

$$\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta}$$

is given by:

$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} - E\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} \right) \right)$$

$$= \sqrt{n} \left(\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} - E\left(\frac{1}{n} \frac{\partial \log L(\theta; X)}{\partial \theta} \right) \right)$$

$$= \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \Sigma)$$

where

$$nV\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = \frac{1}{n}V\left(\sum_{i=1}^{n}\frac{\partial \log f(X_{i};\theta)}{\partial \theta}\right) = \frac{1}{n}V\left(\frac{\partial \log L(\theta;X)}{\partial \theta}\right)$$
$$= \frac{1}{n}I(\theta) \longrightarrow \Sigma.$$

That is,

$$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \longrightarrow N(0, \Sigma),$$

where $X = (X_1, X_2, \dots, X_n)$.

Now, replacing θ by $\tilde{\theta}$, consider the asymptotic distribution of

$$\frac{1}{\sqrt{n}}\frac{\partial \log L(\tilde{\theta};X)}{\partial \theta},$$

which is expanded around $\tilde{\theta} = \theta$ as follows:

$$0 = \frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta}; X)}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} + \frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta).$$

Therefore,

$$-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta} - \theta) \approx \frac{1}{\sqrt{n}}\frac{\partial \log L(\theta;X)}{\partial \theta} \longrightarrow N(0,\Sigma).$$

The left-hand side is rewritten as:

$$-\frac{1}{\sqrt{n}}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}(\tilde{\theta} - \theta) = \sqrt{n} \left(-\frac{1}{n}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right)(\tilde{\theta} - \theta).$$

Then,

$$\sqrt{n}(\tilde{\theta} - \theta) \approx \left(-\frac{1}{n} \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right)^{-1} \left(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta}\right)$$
$$\longrightarrow N(0, \Sigma^{-1} \Sigma \Sigma^{-1}) = N(0, \Sigma^{-1}).$$

Using the law of large number, note that

$$-\frac{1}{n}\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} \longrightarrow \lim_{n \to \infty} \frac{1}{n} \left(-\mathbb{E}\left(\frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'}\right) \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \left(\mathbb{V}\left(\frac{\partial \log L(\theta; X)}{\partial \theta}\right) \right) = \lim_{n \to \infty} \frac{1}{n} I(\theta) = \Sigma,$$

and $\left(\frac{1}{n}\frac{\partial^2 \log L(\theta;X)}{\partial \theta \partial \theta'}\right)^{-1} \left(\frac{1}{\sqrt{n}}\frac{\partial \log L(\theta;X)}{\partial \theta}\right)$ has the same asymptotic distribution as

$$\Sigma^{-1} \Big(\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta; X)}{\partial \theta} \Big).$$

11. Optimization (最適化):

MLE of θ results in the following maximization problem:

$$\max_{\theta} \log L(\theta; x).$$

We often have the case where the solution of θ is not derived in closed form.

⇒ Optimization procedure

$$0 = \frac{\partial \log L(\theta; x)}{\partial \theta} = \frac{\partial \log L(\theta^*; x)}{\partial \theta} + \frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'} (\theta - \theta^*).$$

Solving the above equation with respect to θ , we obtain the following:

$$\theta = \theta^* - \left(\frac{\partial^2 \log L(\theta^*; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^*; x)}{\partial \theta}.$$

Replace the variables as follows:

$$\theta \longrightarrow \theta^{(i+1)}, \qquad \theta^* \longrightarrow \theta^{(i)}.$$

Then, we have:

$$\theta^{(i+1)} = \theta^{(i)} - \left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}.$$

⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing $\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}$ by $E\left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right)$, we obtain the following optimization algorithm:

$$\theta^{(i+1)} = \theta^{(i)} - \left(E\left(\frac{\partial^2 \log L(\theta^{(i)}; x)}{\partial \theta \partial \theta'}\right) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}$$
$$= \theta^{(i)} + \left(I(\theta^{(i)}) \right)^{-1} \frac{\partial \log L(\theta^{(i)}; x)}{\partial \theta}$$

⇒ Method of Scoring (スコア法)

2 Bayesian Estimation (ベイズ推定)

Greenberg, E. (2013) Introduction to Bayesian Econometrics (2nd ed.)

安藤知寛 (2010) 『ベイズ統計モデリング』 (朝倉書店)

豊田秀樹編 (2008) 『マルコフ連鎖モンテカルロ法』 (朝倉書店)

Dey, D.K. and Rao, C.R., (2005) *Handbook of Statistics, Vol.25: Bayesian Thinking: Modeling and Computation*

繁桝・岸野・大森監訳 (2011) 『ベイズ統計分析ハンドブック』 (朝倉書店)

2.1 Introduction

Two Events: A and B

Conditional Probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Posterior Distribution (事後分布): $f_{\theta|y}(\theta|y)$:

$$f_{\theta|y}(\theta|y) = \frac{f_{y|\theta}(y|\theta)f_{\theta}(\theta)}{f_{y}(y)} = \frac{f_{y|\theta}(y|\theta)f_{\theta}(\theta)}{\int f_{y|\theta}(y|\theta)f_{\theta}(\theta)d\theta} \propto f_{y|\theta}(y|\theta)f_{\theta}(\theta),$$

where $f_{\theta}(\theta)$ is called the prior distribution (事前分布).

Example 1: Let x be the number of successes in a series of n trials with probability θ of success in each.

That is, x has the binomial probability function, given θ ,

$$f_{x|\theta}(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}, \qquad x = 0, 1, \dots, n.$$

 θ is assumed to be the beta distribution:

$$f_{\theta}(\theta) = \frac{1}{B(p,q)} \theta^{p-1} (1-\theta)^{q-1},$$

for $\leq \theta \leq 1$, which corresponds to a prior distribution.

Before applying Bayes' theorem, $f_x(x)$ is given by:

$$f_x(x) = \int f_{x|\theta}(x|\theta) f_{\theta}(\theta) d\theta$$

$$= {n \choose r} \frac{1}{B(p,q)} \int_0^1 \theta^{p+x-1} (1-\theta)^{q+n-x-1} d\theta$$

$$= {n \choose r} \frac{B(p+x,q+n-x)}{B(p,q)}.$$

The posterior distribution of θ is:

$$f_{\theta|x}(\theta|x) = \frac{1}{B(p+x, q+n-x)} \theta^{p+x-1} (1-\theta)^{q+n-x-1},$$

which is also a beta distribution with prameters p + x and q + n - x.

The posterior mean and variance are:

$$E(\theta|x) = \frac{p+x}{p+q+n}, \qquad V(\theta|x) = \frac{(p+x)(q+n-x)}{(p+q+n)^2(p+q+n+1)}.$$

Example 2: $x|\theta \sim N(\theta, v)$, where v is known.

 $\theta \sim N(m, w)$, where m and w are known. \implies prior dist.

Then, the posterior distribution of θ is:

$$\theta | x \sim N\left(\frac{wx + vm}{w + v}, \frac{vw}{w + v}\right).$$