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1 Maximum Likelihood Estimation (MLE, S 755%) — Re-
view

1. We have random variables X;, X5, ---, X,,, which are assumed to be mutually inde-

pendently and identically distributed.

2. The distribution function of {X;}! | is f(x;6), where x = (x,x2,---,x,) and 6 =
W, 2).

Note that X is a vector of random variables and x is a vector of their realizations (i.e.,

observed data).

Likelihood function L(-) is defined as L(6; x) = f(x; ).

Note that f(x;6) = [, f(x;;0) when X;, X5, - - -, X,, are mutually independently and



identically distributed.

The maximum likelihood estimator (MLE) of 6 is 8 such that:

max L(6; X). = max log L(6; X).
0 0

MLE satisfies the following two conditions:
dlog L(6; X)

0.
(a) 50
0% log L(0; X
(b) % is a negative definite matrix.

. Fisher’s information matrix (7 1 < ¥ —D1&#R17%Y) is defined as:

0% log L(6; X))

1(6) = -E
2 ( 06000’
where we have the following equality:

O log L(6; X)\ _ _ 0log L(6; X) dlog L(6; X)\ _ dlog L(6; X)
—E( 9000’ )=E( 90 a0 J=V( 90 )
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Proof of the above equality:

f L(9; x)dx = 1

Take a derivative with respect to 6.

OL(o:
f ©®:04 -0
00

(We assume that (i) the domain of x does not depend on € and (ii) the derivative
O0L(9; x)
00

Rewriting the above equation, we obtain:

f dlog L(6; x)
00

exists.)

L(6; x)dx = 0,

i.e.,
E (6 log L(#; X)) _o.
00
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Again, differentiating the above with respect to 6, we obtain:

O logL(6;x) dlog L(6; x) OL(6; x)
f 2008 L(6; x)dx + f 50 50 dx

0% log L(6; x) dlog L(6; x) 8 log L(6; x)
= | —==2" 8 L(6; x)d
f 3000 (0; x)dx + f 50 50 (6; x)dx
0% log L(6; X) dlog L(6; X) dlog L(6; X)
=F(————)+E
(o) "B o6

)=0.

Therefore, we can derive the following equality:

9

0% log L(6; X) dlog L(6; X) dlog L(6; X) dlog L(6; X)
_p| L08R g - v (Lg% A)
06000’ 00 oo 00

dlog L(6; X))
—1=0.
a6

where the second equality utilizes E (



4. Cramer-Rao Lower Bound (7 5 X—JL « SADTFMR): (1(6))!
Suppose that an unbiased estimator of 6 is given by s(X).

Then, we have the following:
V(s(X)) > (1)

Proof:

The expectation of s(X) is:
E(s(X)) = f s(x)L(6; x)dx.

Differentiating the above with respect to 6,

OE(s(X)) _ oLO;x) , dlog L(6;x)
T‘f O d’“‘f g LE:0x

= Cov (S(X), W)

06
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For simplicity, let s(X) and 6 be scalars.

Then,
FE(s(X)\ dlog LG; X)\\ dlog L(6; X)
( o ) —(COV(S(X), T)) =p V(s(X))V(T)
<V V (W)

dlog L(6; X) .
where p denotes the correlation coefficient between s(X) and w ie

e
oo 221030
p:
W\/ alogL(e X))

Note that |p| < 1.



Therefore, we have the following inequality:

1.e.,

SE(s(X))\’ dlog L(6; X)
(T) < V(s(X)) V(T)
(aE(s(X»)Z
V(s(X)) >

- (810g Lo, X))
00

Especially, when E(s(X)) = 6,

1 _ -1
V(s(X)) > - ( Fiog LG X)) = (1O)".
062

Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) = (1(6),
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where 1(0) is defined as:

0% log L(6; X)
16) = _E( 9006/ )
_E dlog L(6; X) dlog L(6; X) _v dlog L(6; X)
- 90 06’ - 90 '

The variance of any unbiased estimator of 6 is larger than or equal to (1(6))~'.
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5. Asymptotic Normality of MLE:

Let § be MLE of 6.
As n goes to infinity, we have the following result:

-1
Vn@ -6 — N[O, lim (@) ]

n—oo\ n

1(60
where it is assumed that lim (Q) converges.

n—oo n
That is, when 7 is large, 6 is approximately distributed as follows:
6~N (9, (1(9))“) .

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (/ (9))_1.
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Practically, we utilize the following approximated distribution:
~N(0.a@)™).
Then, we can obtain the significance test and the confidence interval for 6

. Central Limit Theorem: Let X;, X, -+, X,, be mutually independently distributed

2

random variables with mean E(X;) = u and variance V(X;) = 0 < oo for i =

1,2,---,n.
Define X = (1/n) Y1, X;.
Then, the central limit theorem is given by:

X-EX) X-pu

\/ﬁ_a/x/ﬁ

Note that E(X) = p and V(X) = o%/n.

— N(,1).
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That is,

_ 1 <&
VaX —p) = —= > (Xi=p) — N©.0%).
i=1

\n 4
Note that E(X) = u and nV(X) = 2.

In the case where X; is a vector of random variable with mean u and variance £ < oo,

the central limit theorem is given by:
_ 1 <&
VaX —p) = —= > (Xi=p) — NO.%).
Vi =

Note that E(X) = u and nV(X) = .
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7. Central Limit Theorem II: Let X;, X, ---, X,, be mutually independently dis-
tributed random variables with mean E(X;) = u and variance V(X;) = 0'1.2 fori =

1,2,---,n.

Assume:

Define X = (1/n) Y1, X;.

Then, the central limit theorem is given by:

X-EX) X-pu

\/ﬁ_a/x/ﬁ

1 n

— X, — — N(0, ).
7 Z( n 0,0?)
Note that E(X) = p and nV(X) — o2

— N, D),

1.e.,

V(X — p) =

15



In the case where X; is a vector of random variable with mean y and variance Z;, the

central limit theorem is given by:

_ 1 <&
V(X — ) = 7 ;(Xi —p) — NQ©,3),

n

1
where £ = lim — 3 < oo,
n—oo n

i=1
Note that E(X) = p and nV(X) — 2.

[Review of Asymptotic Theories]

e Convergence in Probability (FEZRUINER) X, — a, i.e., X converges in proba-

bility to a, where a is a fixed number.
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e Convergence in Distribution (9% IX3R) X, — X, i.e., X converges in dis-
tribution to X. The distribution of X,, converges to the distribution of X as n goes to

infinity.

Some Formulas
X, and Y, : Convergence in Probability

Z, . Convergence in Distribution

o If X, — a,then f(X,) — f(a).
e IfX, — aandY, — b,then f(X,Y,) — f(ab).

e If X, — aandZ, — Z, then X,Z, — aZ,i.e., aZ is distributed with mean

E(aZ) = aE(Z) and variance V(aZ) = a*V(2).
[End of Review]
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=Wg s
8. Weak Law of Large Numbers (*?ﬂ@%fﬁﬁ']) — Review:

Suppose that X;, X, - - -, X, are distributed.

Asn — 00, X —> lim E(X) under lim nV(X) < oo, which is called the weak law

n—oo

of large numbers.
— Convergence in probability
— Proved by Chebyshev’s inequality
(1) Suppose that X;, X,, -+, X,, are assumed to be mutually independently and
identically distributed with E(X;) = u and V(X;) = 0% < 0.

_ 1<
C ider X = — Xi-
onsider n Z

i=1

Then, X —> pasn — oo,
Note that E(X) = u and nV(X) = 2.
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(i) Suppoose that X;, X5, - -+, X, are assumed to be mutually independently dis-
tributed with E(X;) = ; and V(X)) = o7
Assume that

_ 1 <& _
(a) EX) = ‘Z“i — u,ie., lim E(X) = g, and
n P n—oo

_ 1 & _
(b) nV(X) = - Zaf —s 02 < o0, ie., lim nV(X) = 02 < .
n n—oo

i=1

Then,Y — pasn —> oo,

. 1 n . 1 n
Note that E(X) = Z‘ prand nV(X) = ~ ; o,
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(iii) Suppose that Xi, X5, - - -, X,, are assumed to be serially correlated with E(X;) = y;
and COV(Xi, X]) = 0jj.
Assume that

_ 1 <& _
(a) EX) = - E i — u,ie., lim E(X) = u, and
n P n—o0

_ 1 1 _
(b) nV(X) = — E E oij — o? < 0, ie., lim nV(X) = 02 < oo,
n n—oo
i=1 j=1

Then, X —> pasn — oo,

_ 1l’l _ ln n
NtthtEX = - i d VX = - iie
ote that E(X) nZ,uann() nZZO'J

i=1 i=1 j=1
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9. Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:
A vector of randam variavle X: E(X) =uand VIX) = E(X — )X -w)) =%

Then, E(AX) = Au and V(AX) = AXA’.

Proof:
E(AX) = AE(X) = Au
V(AX) = E(AX - Aw)(AX — Ap)') = E(AX — 1)(AX — ))’)
= E(AX - )X —p)'A") = AE((X — i)(X — ))A" = AV(X)A" = AZA’
10. Asymptotic Normality of MLE — Proof:
The density (or probability) function of X; is given by f(x;; 6).
The likelihood function is: L(6; x) = f(x;6) = [, f(x:;0),
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where x = (x1, X2, -+, Xp).

MLE of @ results in the following maximization problem:

max log L(6; x).
0

A solution of the above problem is given by MLE of 6, denoted by 6.

That is, f is given by the 6 which satisfies the following equation:

dlog L(6; x) Z": dlog f(xi;0) _

0.
06 — 00
01 Xi;0) . .
Replacing x; by the underlying random variable X;, % is taken as the ith

random variable, i.e., X; in the Central Limit Theorem II.
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Consider applying Central Limit Theorem II as follows:

%Z % _E(% Z W) 19log L(6;X) _E(lalogL(H;X))

i=1 i=1 _n 06 n 00
1 < dlog f(X;;6) \/ 1 dlog L(6; X)
B W = Y s V(-—==2""
T (12ee L)
Note that
Z”: dlog f(X;;0) _ dlog L(6; X)
a0 - il

i=1

In this case, we need the following expectation and variance:

n & o0 n 00
and
1 - dlog f(X;;6) oy 10logL(6;X)y 1
V(n Z 00 ) B V(n 00 ) T on? 1®).
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O0log L(6; X O0log L(6; X
OELEX)) _ g y(PI0ELEX)
06 06

Thus, the asymptotic distribution of

l@logL(G;X) 1 an dlog f(X;; 6)

Note that E( ) = 1(0).

n 00 " n4 - 06
is given by:
I\ dlog f(Xi36) (1 <~ dlog f(Xi; 6)
\/ﬁ(n ZZ; 00 E(n ; 00 )
1 0log L(6; X) 1 0log L(6; X)
B \/_( 96 E(n 06 ))
1 dlog L(6; X)
=— z
N7 20 — N(0,%)
where
1 x dlog f(X;;6) 1 = dlog f(X;; 0) _1,0log L(6; X)
nV(n ; 060 ) - nV(; 00 ) B nV( 06 )
= l1(19) — 2.
n

24



That is,
1 Odlog L(6; X)

NAL

where X = (X1, X5, -+, X,).

— N(0,2),

Now, replacing 6 by 6, consider the asymptotic distribution of

_Lamgu&X)
N 90 ’

which is expanded around 6 = 6 as follows:

1 0logL(6;X) 1 dlogL(6;X) 1 8*logL(6:;X)

0= 6-0).
N N RN - T T
Therefore,
1 6?logL(6;X) - 1 dlog L(8; X)
TR G~ — L2 N, ).
N Y -7 ©0.%)

25



The left-hand side is rewritten as:

1 6*log L(6; X) - 1 8% log L(6; X)
- TN - 6 i, eI

N )(9 ~9.

Then,

2 . B
V(@ - 6) ~ (_%M) !

L 0log L(6; X))
0006

\n o0
—s N(,27'Ex7H = N,Z7).

Using the law of large number, note that

1 6% log L(6; X) o1 0% log L(6; X)
__Z e Al lim = | -p(=——2" 2/
n 0000  nben ( (a0 )
1 log L(6; X 1
= lim - (V(M)) — lim ~1(6) = %,
n—oo N1 a n—oo N1

q (l 0% log L(6; X))—I(L dlog L(6; X)

n 9000 v 50 ) has the same asymptotic distribution as
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11.

1 dlog L(6; X)
= T )
Optimization (&&1t):

MLE of 6 results in the following maximization problem:

max log L(6; x).
0

We often have the case where the solution of 8 is not derived in closed form.

= Optimization procedure

0 00 06 0006

@—-6).

Solving the above equation with respect to 6, we obtain the following:

0=0— (02 log L(é?*;x))_l dlog L(6*; x)

0000’ 06

27



Replace the variables as follows:

0 — 0(i+1)’ 0* SN 6(!)
Then, we have:
D) — gl 0% log L(6Y; x) -l dlog L(6; x)
B 9000’ 90 '

— Newton-Raphson method (Za—F > « 57V ViE)

& log L(6?; & log L(6;
Replacing & 102070 E( og L(6; x)

9000’ 2000 ) we obtain the following optimiza-

tion algorithm:

girh — g (E(a2 log L(Q(l’); x) ))—1 dlog L(@(i); x)

0006’ 06
. NN OF
g (I(H(’))) 1 dlog g(g@ 3 X)

— Method of Scoring (X J773%)
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2.1 Introduction

Two Events: A and B

Conditional Probability:

P(ANB) _ P(BIA)P(A)

PAB) = =55 P(B)
Posterior Distribution (B2 77 11): Jan(6ly):

FuO10f®) _ fo010)f6)
) [ fe(y10) fo(6)do

where f;(6) is called the prior distribution (3543 1f).

Jan(Bly) = oc fyo(¥10) fo(0),

Example 1:  Let x be the number of successes in a series of n trials with probability 6 of

success in each.
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That is, x has the binomial probability function, given 6,

fre(x10) = (n)ex(l -0, x=0,1,---,n

X

6 1s assumed to be the beta distribution:

Jo(6) = o' (1 - 6",

B(p,q)

for < 8 < 1, which corresponds to a prior distribution.

Before applying Bayes’ theorem, f,(x) is given by:

i) = f Fuol0)£(6)d0

n 1 1
— ( ) f 9p+x—1(1 _ 0)q+n—x—]d0
r B(p’ Q) 0
(”)B(p+x,q+n—x)

r B(p,q)
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The posterior distribution of 6 is:

1
. 2 — 9p+x—1 1-6 q+n—x—l’
Jax(O1%) B(p+x,g+n—x) ( )

which is also a beta distribution with prameters p + x and g + n — x.

The posterior mean and variance are:

. p+x B (p+x)(g+n-x
B T ET R A R E TS TY

Example 2:  x|6 ~ N(6,v), where v is known.
6 ~ N(m,w), where m and w are known. = prior dist.

Then, the posterior distribution of € is:

le - N(wx+vm vw )

w+v w4+
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