
2.5.1 Evaluation of Expectation: Numerical Integration

Univariate Case: Consider integration of a function f (x).

Suppose that x is a scalar.

Let x0, x1, x2, · · ·, xn be n nodes, which are sorted by order of size but not necessarily equal

intervals between xi−1 and xi for i = 1, 2, · · · , n.

Rectangular Approximation:∫
f (x)dx ≈

n∑
i=1

f (xi)(xi − xi−1) or
n∑

i=1

f (xi−1)(xi − xi−1).

Trapezoid Approximation:∫
f (x)dx ≈

n∑
i=1

1
2

( f (xi) + f (xi−1))(xi − xi−1).
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Bivariate Case: Consider integration of a function f (x, y).

Suppose that both x and y are scalars.

Let x0, x1, x2, · · ·, xn be n nodes, which are sorted by order of size not necessarily equal

intervals between xi−1 and xi for i = 1, 2, · · · , n.

Let y0, y1, y2, · · ·, ym be m nodes.

Rectangular Approximation:∫ ∫
f (x, y)dxdy ≈

n∑
i=1

m∑
j=1

f (xi, y j)(xi − xi−1)(y j − y j−1).

Trapezoid Approximation:∫ ∫
f (x.y)dxdy

≈
n∑

i=1

m∑
j=1

1
4

( f (xi, y j) + f (xi, y j−1) + f (xi−1, y j) + f (xi−1, y j−1))(xi − xi−1)(y j − y j−1).
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Applying to Bayes Method (Rectangular Approximation):

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)(θi − θi−1)∑n
i=1 fy|θ(y|θi) fθ(θi)(θi − θi−1)

=

∑n
i=1 θi fy|θ(y|θi) fθ(θi)∑n
i=1 fy|θ(y|θi) fθ(θi)

=

n∑
i=1

θiωi, for constant θi − θi−1,

where

ωi =
fy|θ(y|θi) fθ(θi)∑n

i=1 fy|θ(y|θi) fθ(θi)
.
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Problem of Numerical Integration:

1. Choice of initial and terminal values =⇒ Truncation errors

2. Accumulation of computational errors by computer

3. Increase of computational burden for large dimension.

=⇒ k dimension, and n nodes for each dimension =⇒ nk
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2.5.2 Evaluation of Expectation: Monte Carlo Integration

Univariate Case: Consider integration of a function f (x).

Suppose that x is a scalar.

Let x1, x2, · · ·, xn be n random draws generated from g(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

.

=⇒ Importance Sampling (重点的サンプリング)
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Multivariate Case: Consider integration of a function f (x).

Suppose that x is a vector.

Let x1, x2, · · ·, xn be n random draws generated from g(x).

∫
f (x)dx =

∫
f (x)
g(x)

g(x)dx = E
( f (x)
g(x)

)
≈ 1

n

n∑
i=1

f (xi)
g(xi)

,

which is exacly the same as the univariate case.

Computational burden: =⇒ Univariate case: n, Multivariate case: n

Precision of integration ???

Especially, when g(x) is not close to f (x), approximation is prror.
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Applying to Bayes Method:

E(θ|y) =

∫
θ fy|θ(y|θ) fθ(θ)dθ∫
fy|θ(y|θ) fθ(θ)dθ

=

∫
θ

fy|θ(y|θ) fθ(θ)
g(θ)

g(θ)dθ∫
fy|θ(y|θ) fθ(θ)

g(θ)
g(θ)dθ

=
(1/n)

∑n
i=1 θiω(θi)

(1/n)
∑n

i=1 ω(θi)
,

where

ω(θi) =
fy|θ(y|θi) fθ(θi)

g(θi)
.

Choice of g(θ) — One Solution: Define l(θ) ≡ fy|θ(y|θ) fθ(θ).

log l(θ) ≈ log l(θ̃) +
1

l(θ̃)
∂l(θ̃)
∂θ

(θ − θ̃)

+
1
2

(θ − θ̃)′
(
− 1

l(θ̃)2

∂l(θ̃)
∂θ

∂l(θ̃)
∂θ′
+

1
l(θ̃)
∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃)

= −1
2

(θ − θ̃)′
(
− 1

l(θ̃)
∂2l(θ̃)
∂θ∂θ′

)
(θ − θ̃), when θ̃ is a mode of l(θ).

50



Thus, N
(
θ̃,

(
− 1

l(θ̃)
∂2l(θ̃)
∂θ∂θ′

)−1)
might be taken as the importance density g(θ).
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2.5.3 Evaluation of Expectation: Random Number Generation

Generate random draws of θ from the posterior distribution fθ|y(θ|y).

Then, (1/n)
∑n

i=1 θi is taken as a consistent estimator of E(θ|y), where θi indicates the ith

random draw generated from fθ|y(θ|y).

Note that (1/n)
∑n

i=1 θi −→ E(θ|y) under the condition (1/n)
∑n

i=1 θi < ∞.

Bayesian confidence interval, median, quntiles and so on are obtained by sorting θ1, θ2, · · ·,

θn in order of size.

=⇒ Sampling methods
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2.6 Sampling Method I: Random Number Generation

Note that a lot of distribution functions are introduced in Kotz, Balakrishman and Johnson

(2000a, 2000b, 2000c, 2000d, 2000e).

The random draws discussed in this section are based on uniform random draws between

zero and one.

2.6.1 Uniform Distribution: U(0, 1)

Properties of Uniform Distribution: The most heuristic and simplest distribution is

uniform.

The uniform distribution between zero and one is given by:

f (x) =

1, for 0 < x < 1,

0, otherwise.
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Mean, variance and the moment-generating function are given by:

E(X) =
1
2
, V(X) =

1
12
, ϕ(θ) =

eθ − 1
θ
.

Use L’Hospital’s theorem to derive E(X) and V(X) using ϕ(θ).

In the next section, we introduce an idea of generating uniform random draws, which in

turn yield the other random draws by the transformation of variables, the inverse transform

algorithm and so on.

Uniform Random Number Generators: It is no exaggeration to say that all the random

draws are based on a uniform random number.

Once uniform random draws are generated, the various random draws such as exponential,

normal, logistic, Bernoulli and other distributions are obtained by transforming the uniform

random draws.

Thus, it is important to consider how to generate a uniform random number.
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However, generally there is no way to generate exact uniform random draws.

As shown in Ripley (1987) and Ross (1997), a deterministic sequence that appears at ran-

dom is taken as a sequence of random numbers.

First, consider the following relation:

m = k − [k/n]n,

where k, m and n are integers.

[k/n] denotes the largest integer less than or equal to the argument.

In Fortran 77, it is written as m=k-int(k/n)*n, where 0 ≤ m < n.

m indicates the remainder (余り) when k is divided by n.

n is called the modulus (商).

We define the right hand side in the equation above as:

k − [k/n]n ≡ k mod n.
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Then, using the modular arithmetic we can rewrite the above equation as follows:

m = k mod n,

which is represented by: m=mod(k,n) in Fortran 77 and m=k%n in C language.

A basic idea of the uniform random draw is as follows.

Given xi−1, xi is generated by:

xi = (axi−1 + c) mod n,

where 0 ≤ xi < n.

a and c are positive integers, called the multiplier and the increment, respectively.

The generator above have to be started by an initial value, which is called the seed.

ui = xi/n is regarded as a uniform random number between zero and one.

This generator is called the linear congruential generator (線形合同法).
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Especially, when c = 0, the generator is called the multiplicative linear congruential

generator.

This method was proposed by Lehmer in 1948 (see Lehmer, 1951).

If n, a and c are properly chosen, the period of the generator is n.

However, when they are not chosen very carefully, there may be a lot of serial correlation

among the generated values.

Therefore, the performance of the congruential generators depend heavily on the choice of

(a, c).

There is a great amount of literature on uniform random number generation.

See, for example, Fishman (1996), Gentle (1998), Kennedy and Gentle (1980), Law and

Kelton (2000), Niederreiter (1992), Ripley (1987), Robert and Casella (1999), Rubinstein

and Melamed (1998), Thompson (2000) and so on for the other congruential generators.

However, we introduce only two uniform random number generators.
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Wichmann and Hill (1982 and corrigendum, 1984) describe a combination of three con-

gruential generators for 16-bit computers.

The generator is given by:

xi = 171xi−1 mod 30269,

yi = 172yi−1 mod 30307,

zi = 170zi−1 mod 30323,

and

ui =
( xi

30269
+

yi

30307
+

zi

30323

)
mod 1.

We need to set three seeds, i.e., x0, y0 and z0, for this random number generator.

ui is regarded as a uniform random draw within the interval between zero and one.

The period is of the order of 1012 (more precisely the period is 6.95 × 1012).
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For 32-bit computers, L’Ecuyer (1988) proposed a combination of k congruential genera-

tors that have prime moduli n j, such that all values of (n j − 1)/2 are relatively prime, and

with multipliers that yield full periods.

Let the sequence from jth generator be x j,1, x j,2, x j,3, · · ·.

Consider the case where each individual generator j is a maximum-period multiplicative

linear congruential generator with modulus n j and multiplier a j, i.e.,

x j,i ≡ a jx j,i−1 mod n j.

Assuming that the first generator is a relatively good one and that n1 is fairly large, we form

the ith integer in the sequence as:

xi =

k∑
j=1

(−1) j−1x j,i mod (n1 − 1),

where the other moduli n j, j = 2, 3, · · · , k, do not need to be large.
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The normalization takes care of the possibility of zero occurring in this sequence:

ui =


xi

n1
, if xi > 0,

n1 − 1
n1
, if xi = 0.

As for each individual generator j, note as follows.

Define q = [n/a] and r ≡ n mod a, i.e., n is decomposed as n = aq + r, where r < a.

Therefore, for 0 < x < n, we have:

ax mod n = (ax − [x/q]n) mod n

=
(
ax − [x/q](aq + r)

)
mod n

=
(
a(x − [x/q]q) − [x/q]r

)
mod n

=
(
a(x mod q) − [x/q]r

)
mod n.

Practically, L’Ecuyer (1988) suggested combining two multiplicative congruential genera-
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tors, where k = 2, (a1, n1, q1, r1) = (40014, 2147483563, 53668, 12211) and (a2, n2, q2, r2)

= (40692, 2147483399, 52774, 3791) are chosen.

Two seeds are required to implement the generator.

The period of the generator proposed by L’Ecuyer (1988) is of the order of 1018 (more

precisely 2.31 × 1018), which is quite long and practically long enough.

L’Ecuyer (1988) presents the results of both theoretical and empirical tests, where the above

generator performs well.

Furthermore, L’Ecuyer (1988) gives an additional portable generator for 16-bit computers.

Also, see L’Ecuyer(1990, 1998).

To improve the length of period, the above generator proposed by L’Ecuyer (1988) is com-

bined with the shuffling method suggested by Bays and Durham (1976), and it is introduced

as ran2 in Press, Teukolsky, Vetterling and Flannery (1992a, 1992b).
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2.6.2 Transforming U(0, 1): Continuous Type

In this section, we focus on a continuous type of distributions, in which density functions

are derived from the uniform distribution U(0, 1) by transformation of variables.

Normal Distribution: N(0, 1): The normal distribution with mean zero and variance

one, i.e, the standard normal distribution, is represented by:

f (x) =
1
√

2π
e−

1
2 x2
,

for −∞ < x < ∞.

Mean, variance and the moment-generating function are given by:

E(X) = 0, V(X) = 1, ϕ(θ) = exp
(1
2
θ2

)
.

The normal random variable is constructed using two independent uniform random vari-

ables.
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This transformation is well known as the Box-Muller (1958) transformation and is shown

as follows.

Let U1 and U2 be uniform random variables between zero and one.

Suppose that U1 is independent of U2.

Consider the following transformation:

X1 =
√
−2 log(U1) cos(2πU2),

X2 =
√
−2 log(U1) sin(2πU2).

where we have −∞ < X1 < ∞ and −∞ < X2 < ∞ when 0 < U1 < 1 and 0 < U2 < 1.

Then, the inverse transformation is given by:

u1 = exp
(
−

x2
1 + x2

2

2

)
, u2 =

1
2π

arctan
x2

x1
.

We perform transformation of variables in multivariate cases.
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From this transformation, the Jacobian is obtained as:

J =

∣∣∣∣∣∣∣∣
∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
−x1 exp

(
−1

2
(x2

1 + x2
2)
)
−x2 exp

(
−1

2
(x2

1 + x2
2)
)

1
2π
−x2

x2
1 + x2

2

1
2π

x1

x2
1 + x2

2

∣∣∣∣∣∣∣∣
= − 1

2π
exp

(
−1

2
(x2

1 + x2
2)
)
.

Let fx(x1, x2) be the joint density of X1 and X2 and fu(u1, u2) be the joint density of U1 and

U2.

Since U1 and U2 are assumed to be independent, we have the following:

fu(u1, u2) = f1(u1) f2(u2) = 1,

where f1(u1) and f2(u2) are the density functions of U1 and U2, respectively.

Note that f1(u1) = f2(u2) = 1 because U1 and U2 are uniform random variables between

zero and one.
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Accordingly, the joint density of X1 and X2 is:

fx(x1, x2) = |J| fu

(
exp(−

x2
1 + x2

2

2
),

1
2π

arctan
x2

x1

)
=

1
2π

exp
(
−1

2
(x2

1 + x2
2)
)

=
1
√

2π
exp

(
−1

2
x2

1

)
× 1
√

2π
exp

(
−1

2
x2

2

)
,

which is a product of two standard normal distributions.

Thus, X1 and X2 are mutually independently distributed as normal random variables with

mean zero and variance one.

See Hogg and Craig (1995, pp.177 – 178).

Therefore, to avoid computation of the sine, various algorithms have been invented (Ahrens

and Dieter (1988), Fishman (1996), Gentle (1998), Marsaglia, MacLaren and Bray (1964)

and so on).
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Exponential Distribution: The exponential distribution with parameter β is written as:

f (x) =


1
β

e−
x
β , for 0 < x < ∞,

0, otherwise,

for β > 0.

β indicates a scale parameter.

Mean, variance and the moment-generating function are obtained as follows:

E(X) = β, V(X) = β2, ϕ(θ) =
1

1 − βθ .

The relation between the exponential random variable the uniform random variable is

shown as follows:

When U ∼ U(0, 1), consider the following transformation:

X = −β log(U).
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Then, X is an exponential distribution with parameter β.

Because the transformation is given by u = exp(−x/β), the Jacobian is:

J =
du
dx
= −1
β

exp
(
−1
β

x
)
.

By transforming the variables, the density function of X is represented as:

f (x) = |J| fu

(
exp(−1

β
x)

)
=

1
β

exp
(
−1
β

x
)
,

where f (·) and fu(·) denote the probability density functions of X and U, respectively.

Note that 0 < x < ∞ because of x = −β log(u) and 0 < u < 1.

Thus, the exponential distribution with parameter β is obtained from the uniform random

draw between zero and one.

When β = 2, the exponential distribution reduces to the chi-square distribution with 2

degrees of freedom.
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Gamma Distribution: G(α, β): The gamma distribution with parameters α and β, de-

noted by G(α, β), is represented as follows:

f (x) =


1

βαΓ(α)
xα−1e−

x
β , for 0 < x < ∞,

0, otherwise,

for α > 0 and β > 0, where α is called a shape parameter and β denotes a scale parameter.

Γ(·) is called the gamma function, which is the following function of α:

Γ(α) =
∫ ∞

0
xα−1e−x dx.

The gamma function has the following features:

Γ(α + 1) = αΓ(α), Γ(1) = 1, Γ
(1
2

)
= 2Γ

(3
2

)
=
√
π.

Mean, variance and the moment-generating function are given by:

E(X) = αβ, V(X) = αβ2, ϕ(θ) =
1

(1 − βθ)α .
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The gamma distribution with α = 1 is equivalent to the exponential distribution shown in

Section 2.6.2.

This fact is easily checked by comparing both moment-generating functions.

Now, utilizing the uniform random variable, the gamma distribution with parameters α and

β are derived as follows.

The derivation shown in this section deals with the case where α is a positive integer, i.e.,

α = 1, 2, 3, · · ·.

The random variables Z1, Z2, · · ·, Zα are assumed to be mutually independently distributed

as exponential random variables with parameter β, which are shown in Section 2.6.2.

Define X =
∑α

i=1 Zi.

Then, X has distributed as a gamma distribution with parameters α and β, where α should
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be an integer, which is proved as follows:

ϕx(θ) = E(eθX) = E(eθ
∑α

i=1 Zi) =
α∏

i=1

E(eθZi) =
α∏

i=1

ϕi(θ) =
α∏

i=1

1
1 − βθ

=
1

(1 − βθ)α ,

where ϕx(θ) and ϕi(θ) represent the moment-generating functions of X and Zi, respectively.

Thus, sum of the α exponential random variables yields the gamma random variable with

parameters α and β.

When α is large, we have serious problems computationally in the above algorithm, because

α exponential random draws have to be generated to obtain one gamma random draw with

parameters α and β.

When α = k/2 and β = 2, the gamma distribution reduces to the chi-square distribution

with k degrees of freedom.
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Chi-Square Distribution: χ2(k): The chi-square distribution with k degrees of freedom,

denoted by χ2(k), is written as follows:

f (x) =


1

2k/2Γ( k
2 )

x
k
2−1e−

1
2 x, for 0 < x < ∞,

0, otherwise,

where k is a positive integer.

The chi-square distribution is equivalent to the gamma distribution with β = 2 and α = k/2.

The chi-square distribution with k = 2 reduces to the exponential distribution with β = 2,

shown in Section 2.6.2.

Mean, variance and the moment-generating function are given by:

E(X) = k, V(X) = 2k, ϕ(θ) =
1

(1 − 2θ)k/2 .
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F Distribution: F(m, n): The F distribution with m and n degrees of freedom, denoted

by F(m, n), is represented as:

f (x) =


Γ(m+n

2 )
Γ(m

2 )Γ(n
2 )

(m
n

)m
2 x

m
2 −1

(
1 +

m
n

x
)−m+n

2
, for 0 < x < ∞,

0, otherwise,

where m and n are positive integers.

Mean and variance are given by:

E(X) =
n

n − 2
, for n > 2,

V(X) =
2n2(m + n − 2)

m(n − 2)2(n − 4)
, for n > 4.

The moment-generating function of F distribution does not exist.

One F random variable is derived from two chi-square random variables.

Suppose that U and V are independently distributed as chi-square random variables, i.e.,

U ∼ χ2(m) and V ∼ χ2(n).
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Then, it is shown that X =
U/m
V/n

has a F distribution with (m, n) degrees of freedom.

t Distribution: t(k): The t distribution (or Student’s t distribution) with k degrees of

freedom, denoted by t(k), is given by:

f (x) =
Γ( k+1

2 )

Γ( k
2 )

1
√

kπ

(
1 +

x2

k

)− k+1
2
,

for −∞ < x < ∞, where k does not have to be an integer but conventionally it is a positive

integer.

When k is small, the t distribution has fat tails.

The t distribution with k = 1 is equivalent to the Cauchy distribution.

As k goes to infinity, the t distribution approaches the standard normal distribution, i.e.,

t(∞) = N(0, 1), which is easily shown by using the definition of e, i.e.,(
1 +

x2

k

)− k+1
2
=

(
1 +

1
h

)− hx2+1
2
=

(
(1 +

1
h

)h
)− 1

2 x2(
1 +

1
h

)− 1
2 −→ e−

1
2 x2
,
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where h = k/x2 is set and h goes to infinity (equivalently, k goes to infinity).

Thus, a kernel of the t distribution is equivalent to that of the standard normal distribution.

Therefore, it is shown that as k is large the t distribution approaches the standard normal

distribution.

Mean and variance of the t distribution with k degrees of freedom are obtained as:

E(X) = 0, for k > 1,

V(X) =
k

k − 2
, for k > 2.

In the case of the t distribution, the moment-generating function does not exist, because all

the moments do not necessarily exist.

For the t random variable X, we have the fact that E(Xp) exists when p is less than k.

Therefore, all the moments exist only when k is infinity.

One t random variable is obtained from chi-square and standard normal random variables.
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Suppose that Z ∼ N(0, 1) is independent of U ∼ χ2(k).

Then, X = Z/
√

U/k has a t distribution with k degrees of freedom.

Marsaglia (1984) gives a very fast algorithm for generating t random draws, which is based

on a transformed acceptance/rejection method, which will be discussed later.
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