
2.8.2 Importance Resampling (重点的リサンプリング)

The importance resampling method also utilizes the sampling density f∗(x), where we

should choose the sampling density from which it is easy to generate random draws.

If we can generate the random daws from f (x), denoted by xi for i = 1, 2, · · · , n, the expec-

tation of a function g(X) is approximately given by:

E(g(X)) =
∫

g(x) f (x)dx ≈ 1
n

∑
i

g(xi),

which implies that we choose g(xi) with probability 1/n.

However, if it is not easy to generate the random daws from f (x) and instead we can easily

generate random draws from f∗(x), denoted by x∗i for i = 1, 2, · · · , n, the expectation of a

function g(X) is given by:

E(g(X)) =
∫

g(x) f (x)dx =
∫

g(x)q(x) f∗(x)dx ≈ 1
n

∑
i

g(x∗i)q(x∗i).

128

which implies that we choose g(x∗i) with probability q(x∗i)/n

Let x∗i be the ith random draw of x generated from f∗(x).

Taking into account
1
n

∑
i

q(x∗i) −→ 1, i.e.,
∑

i

q(x∗i) −→ n, the acceptance probability is

defined as:

ω(x∗i) =
q(x∗i)∑n
j=1 q(x∗j)

,

where q(·) is represented as equation (1). Note that n is replaced by
∑n

j=1 q(x∗j).

To obtain a random draws from f (x), we perform the following procedure:

(i) Generate x∗j from the sampling density f∗(x) for j = 1, 2, · · · , n.

(ii) Compute ω(x∗j) for all j = 1, 2, · · · , n.

(iii) Choose one of x∗j, j = 1, 2, · · · , n, with probability ω(x∗j), j = 1, 2, · · · , n.

129

In other words, generate a uniform random draw u between zero and one and take

x = x∗j when Ω j−1 ≤ u < Ω j, where Ω j =
∑ j

i=1 ω(x∗i) and Ω0 ≡ 0.

The x obtained in Step (iii) represents a random draw from the target density f (x).

In Step (ii), all the probability weights ω(x∗j), j = 1, 2, · · · , n, have to be computed for

importance resampling.

Thus, we need to generate n random draws from the sampling density f∗(x) in advance.

When we want to generate more random draws (say, N random draws), we may repeat Step

(iii) N times.

In the importance resampling method, there are n realizations, i.e., x∗1, x∗2, · · ·, x∗n, which are

mutually independently generated from the sampling density f∗(x).

The cumulative distribution of f (x) is approximated by the following empirical distribution:

P(X ≤ x) =
∫ x

−∞
f (t) dt =

∫ x

−∞

f (t)
f∗(t)

f∗(t) dt =

∫ x

−∞ q(t) f∗(t) dt∫ ∞
−∞ q(t) f∗(t) dt

130

≈
(1/n)

∑n
i=1 q(x∗i)I(x, x∗i)

(1/n)
∑n

j=1 q(x∗j)
=

n∑
i=1

ω(x∗i)I(x, x∗i),

where I(x, x∗i) denotes the indicator function which satisfies I(x, x∗i) = 1 when x ≥ x∗i and

I(x, x∗i) = 0 otherwise.

P(X = x∗i) is approximated as ω(x∗i).

See Smith and Gelfand (1992) and Bernardo and Smith (1994) for the importance resam-

pling procedure.

For rejection sampling, f (x) may be a kernel of the target density, or equivalently, f (x) may

be proportional to the target density.

Similarly, the same situation holds in the case of importance resampling.

That is, f (x) may be proportional to the target density for importance resampling, too.

To obtain a random draws from f (x), importance resampling requires n random draws from

the sampling density f∗(x), but rejection sampling needs (1 + NR) random draws from the

131

sampling density f∗(x).

For importance resampling, when we have n different random draws from the sampling

density, we pick up one of them with the corresponding probability weight.

The importance resampling procedure computationally takes a lot of time, because we have

to compute all the probability weights Ω j, j = 1, 2, · · · , n, in advance even when we want

only one random draw.

Example of Importance Resampling: Beta Distribution B(α, β):

f (x) =

1

B(α, β)
xα−1(1 − x)β−1, for 0 < x < 1,

0, otherwise,

for α > 0 and β > 0.

132

f∗(x) is taken as the uniform distribution between zero and one:

f∗(x) =

1, for 0 < x < 1,

0, otherwise,

q(x) =
f (x)
f∗(x)

=
1

B(α, β)
xα−1(1 − x)β−1

ω(xi) is given by:

ω(xi) =
q(xi)∑n

j=1 q(x j)
=

xα−1
i (1 − xi)β−1∑n

j=1 xα−1
j (1 − x j)β−1

From computational viewpoint, the numerator of ω(xi) is computed as:

exp
(
(α − 1) log(xi) + (β − 1) log(1 − xi)

)
is recommended.

133

——— B(a,b) Distribution ———

1: #include <math.h>

2: #include <stdio.h>

3:

4: int ix=1,iy=1;

5:

6: void main(){

7:

8: float a,b;

9: int i,j,n;

10: double urnd(void);

11: double x0[100001],q[100001],w[100001];

12: double x,u,x1=0.0,x2=0.0;

13:

14: for(i=1;i<=10000;i++) urnd();

15:

16: scanf("%f%f%d",&a,&b,&n);

17:

18: w[0]=0.0;

134

19: for(i=1;i<=n;i++){

20: x0[i]=urnd();

21: w[i]=w[i-1]+exp((a-1.)*log(x0[i])+(b-1.)*log(1.-x0[i]));

22: }

23: for(i=1;i<=n;i++) w[i]/=w[n];

24: for(i=1;i<=n;i++){

25: u=urnd();

26: for(j=1;j<=n;j++){

27: if((w[j-1] <= u) && (u < w[j])){

28: x=x0[j];

29: goto LABEL;

30: }

31: }

32: LABEL:

33: x1+=x/((double)n);

34: x2+=x*x/((double)n);

35: }

36:

37: printf("# of Random Draws = %5d\n",n);

38: printf("Parameters = (%7.1f,%7.1f)\n",a,b);

135

39: printf("Mean = %10.5lf, which should be close to %10.5f\n"

40: ,x1,a/(a+b));

41: printf("Variance = %10.5lf, which should be close to %10.5f\n"

42: ,x2-x1*x1,a*b/((a+b)*(a+b)*(a+b+1.)));

43:

44: }

45: /* -- */

46: double urnd(void)

47: {

48: int kx,ky;

49: double rn;

50: /*

51: Input:

52: ix, iy: Seeds

53: Output:

54: rn: Uniform Random Draw U(0,1)

55: */

56: kx=ix/53668;

57: ix=40014*(ix-kx*53668)-kx*12211;

58:

136

59: ky=iy/52774;

60: iy=40692*(iy-ky*52774)-ky*3791;

61:

62: rn=(float)(ix-iy)/2147483563.;

63: rn-=(int)rn;

64: if(rn<0.) rn++;

65:

66: return rn;

67: }

In Lines 18 – 23, Ωi =
∑i

j=1 ω(x∗j) or equivalently Ωi = Ωi−1 + ω(x∗i) with Ω0 = 0 is

computed as w[i] .

In Lines 26 – 30, we search where u in Line 25 is.

137

2.8.3 Metropolis-Hastings Algorithm (メトロポリスーハスティングス・アルゴリズム)

This section is based on Geweke and Tanizaki (2003), where three sampling distributions

are compared with respect to precision of the random draws from the target density f (x).

The Metropolis-Hastings algorithm is also one of the sampling methods to generate ran-

dom draws from any target density f (x), utilizing sampling density f∗(x), even in the case

where it is not easy to generate random draws from the target density.

Let us define the acceptance probability by:

ω(xi−1, x∗) = min
(q(x∗)
q(xi−1)

, 1
)
= min

(f (x∗)/ f∗(x∗)
f (xi−1)/ f∗(xi−1)

, 1
)
,

where q(·) is defined as equation (1).

By the Metropolis-Hastings algorithm, a random draw from f (x) is generated in the fol-

lowing way:

(i) Take the initial value of x as x−M.

138

(ii) Generate x∗ from f∗(x) and compute ω(xi−1, x∗) given xi−1.

(iii) Set xi = x∗ with probability ω(xi−1, x∗) and xi = xi−1 otherwise.

(iv) Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · , 1.

In the above algorithm, x1 is taken as a random draw from f (x).

When we want more random draws (say, N), we replace Step (iv) by Step (iv)’, which is

represented as follows:

(iv)’ Repeat Steps (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

When we implement Step (iv)’, we can obtain a series of random draws x−M, x−M+1, · · ·, x0,

x1, x2, · · ·, xN , where x−M, x−M+1, · · ·, x0 are discarded from further consideration.

The last N random draws are taken as the random draws generated from the target density

f (x).

Thus, N denotes the number of random draws.

139

M is sometimes called the burn-in period.

We can justify the above algorithm given by Steps (i) – (iv) as follows.

The proof is very similar to the case of rejection sampling in Section 2.8.1.

We show that xi is the random draw generated from the target density f (x) under the as-

sumption xi−1 is generated from f (x).

Let U be the uniform random variable between zero and one, X be the random variable

which has the density function f (x) and x∗ be the realization (i.e., the random draw) gener-

ated from the sampling density f∗(x).

Consider the probability P(X ≤ x|U ≤ ω(xi−1, x∗)), which should be the cumulative distri-

bution of X, i.e., F(x).

The probability P(X ≤ x|U ≤ ω(xi−1, x∗)) is rewritten as follows:

P(X ≤ x|U ≤ ω(xi−1, x∗)) =
P(X ≤ x,U ≤ ω(xi−1, x∗))

P(U ≤ ω(xi−1, x∗))
,

140

where the numerator is represented as:

P(X ≤ x,U ≤ ω(xi−1, x∗)) =
∫ x

−∞

∫ ω(xi−1,t)

0
fu,∗(u, t) du dt

=

∫ x

−∞

∫ ω(xi−1,t)

0
fu(u) f∗(t) du dt =

∫ x

−∞

(∫ ω(xi−1,t)

0
fu(u) du

)
f∗(t) dt

=

∫ x

−∞

(∫ ω(xi−1,t)

0
du
)

f∗(t) dt =
∫ x

−∞

[
u
]ω(xi−1,t)

0
f∗(t) dt

=

∫ x

−∞
ω(xi−1, t) f∗(t) dt =

∫ x

−∞

f∗(xi−1) f (t)
f (xi−1)

dt =
f∗(xi−1)
f (xi−1)

F(x)

and the denominator is given by:

P(U ≤ ω(xi−1, x∗)) = P(X ≤ ∞,U ≤ ω(xi−1, x∗)) =
f∗(xi−1)
f (xi−1)

F(∞) =
f∗(xi−1)
f (xi−1)

.

The density function of U is given by fu(u) = 1 for 0 < u < 1.

Let X∗ be the random variable which has the density function f∗(x).

In the numerator, fu,∗(u, x) denotes the joint density of random variables U and X∗.

141

Because the random draws of U and X∗ are independently generated, we have fu,∗(u, x) =

fu(u) f∗(x) = f∗(x).

Thus, the first four equalities are derived.

Substituting the numerator and denominator shown above, we have the following equality:

P(X ≤ x|U ≤ ω(xi−1, x∗)) = F(x).

Thus, the x∗ which satisfies u ≤ ω(xi−1, x∗) indicates a random draw from f (x).

We set xi = xi−1 if u ≤ ω(xi−1, x∗) is not satisfied. xi−1 is already assumed to be a random

draw from f (x).

Therefore, it is shown that xi is a random draw from f (x).

See Gentle (1998) for the discussion above.

As in the case of rejection sampling and importance resampling, note that f (x) may be a

kernel of the target density, or equivalently, f (x) may be proportional to the target density.

142

The same algorithm as Steps (i) – (iv) can be applied to the case where f (x) is proportional

to the target density, because f (x∗) is divided by f (xi−1) in ω(xi−1, x∗).

As a general formulation of the sampling density, instead of f∗(x), we may take the sam-

pling density as the following form: f∗(x|xi−1), where a candidate random draw x∗ depends

on the (i − 1)th random draw, i.e., xi−1.

For choice of the sampling density f∗(x|xi−1), Chib and Greenberg (1995) pointed out as

follows.

f∗(x|xi−1) should be chosen so that the chain travels over the support of f (x), which implies

that f∗(x|i−1) should not have too large variance and too small variance, compared with f (x).

See, for example, Smith and Roberts (1993), Bernardo and Smith (1994), O’Hagan (1994),

Tierney (1994), Geweke (1996), Gamerman (1997), Robert and Casella (1999) and so on

for the Metropolis-Hastings algorithm.

Therefore, for precision of the random draws, the Metropolis-Hastings algorithm gives us

143

the worst random number of the three sampling methods. i.e., rejection sampling in Section

2.8.1, importance resampling in Section 2.8.2 and the Metropolis-Hastings algorithm in this

section.

Based on Steps (i) – (iii) and (iv)’, under some conditions the basic result of the Metropolis-

Hastings algorithm is as follows:

1
N

N∑
i=1

g(xi) −→ E(g(x)) =
∫

g(x) f (x) dx, as N −→ ∞,

where g(·) is a function, which is representatively taken as g(x) = x for mean and g(x) =

(x − x)2 for variance.

x denotes x = (1/N)
∑N

i=1 xi.

Thus, it is shown that (1/N)
∑N

i=1 g(xi) is a consistent estimate of E(g(x)), even though x1,

x2, · · ·, xN are mutually correlated.

Furthermore, the sampling density has to satisfy the following conditions:

144

(i) we can quickly and easily generate random draws from the sampling density and

(ii) the sampling density should be distributed with the same range as the target den-

sity.

See, for example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999)

for the MCMC convergence diagnostics.

Since the random draws based on the Metropolis-Hastings algorithm heavily depend on

choice of the sampling density, we can see that the Metropolis-Hastings algorithm has the

problem of specifying the sampling density, which is the crucial criticism.

Several generic choices of the sampling density are discussed by Tierney (1994) and Chib

and Greenberg (1995).

3.4.1.1 Sampling Density I (Independence Chain) For the sampling density, we have

started with f∗(x) in this section.

145

Thus, one possibility of the sampling density is given by: f∗(x|xi−1) = f∗(x), where f∗(·)

does not depend on xi−1.

This sampling density is called the independence chain.

For example, it is possible to take f∗(x) = N(µ∗, σ2
∗), where µ∗ and σ2

∗ are the hyper-

parameters.

Or, when x lies on a certain interval, say (a, b), we can choose the uniform distribution

f∗(x) = 1/(b − a) for the sampling density.

3.4.1.2 Sampling Density II (Random Walk Chain) We may take the sampling den-

sity called the random walk chain, i.e., f∗(x|xi−1) = f∗(x − xi−1).

Representatively, we can take the sampling density as f∗(x|xi−1) = N(xi−1, σ2
∗), where σ2

∗

denotes the hyper-parameter.

Based on the random walk chain, we have a series of the random draws which follow the

146

random walk process.

3.4.1.3 Sampling Density III (Taylored Chain) The alternative sampling distribution

is based on approximation of the log-kernel (see Geweke and Tanizaki (1999, 2001, 2003)),

which is a substantial extension of the Taylored chain discussed in Chib, Greenberg and

Winkelmann (1998).

Let p(x) = log(f (x)), where f (x) may denote the kernel which corresponds to the target

density.

Approximating the log-kernel p(x) around xi−1 by the second order Taylor series expansion,

p(x) is represented as:

p(x) ≈ p(xi−1) + p′(xi−1)(x − xi−1) +
1
2

p′′(xi−1)(x − xi−1)2, (2)

where p′(·) and p′′(·) denote the first- and second-derivatives.

147

Depending on the values of p′(x) and p′′(x), we have the three cases: p′′(x) < 0, p′′(x) ≥ 0

and p′(x) = 0.

Geweke and Tanizaki (2003) suggested introducing ϵ into the Taylored chain discussed in

Geweke and Tanizaki (1999, 2001).

p′′(xi−1) < 0: Equation (2) is rewritten by:

p(x) ≈ p(xi−1) − 1
2

(1
−1/p′′(xi−1)

)(
x − (xi−1 −

p′(xi−1)
p′′(xi−1)

)
)2
+ r(xi−1),

where r(xi−1) is an appropriate function of xi−1.

Since p′′(xi−1) is negative, the second term in the right-hand side is equivalent to the expo-

nential part of the normal density.

Therefore, f∗(x|xi−1) is taken as N(µ∗, σ2
∗), where µ∗ = xi−1 − p′(xi−1)/p′′(xi−1) and σ2

∗ =

−1/p′′(xi−1).

148

