
85: for(j=m;j<=n-i;j++) w[j]=w[j+1];

86: }

87: }

In Line 73, a large value is given to xmin .

In Lines 78 – 84, given i , we search the ith minimum value.

in Line 85, remove the ith minimum data and reconstruct the new vector.

Quick Sort: In the previous sort algorithm, the computational number of times is given

by n+ (n− 1)+ (n− 2)+ · · · + 1 = n(n− 1)/2, which is O(n2). That is, computational time

is proportional to n2.

Computational time of the following sort algorithm, called the quick sort (クイック・ソー
ト), is proprtional to n log n.

The following sort algorithm is extremely faster than the previous one in order of n/ log n.
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——— Quick Sort Algorithm ———

1: #include<stdio.h>

2: #include<math.h>

3: #include<time.h>

4:

5: int ix=1,iy=1;

6:

7: void main()

8: {

9: int i,n;

10: int i025,i050,i500,i950,i975;

11: float x[100001];

12: float y[100001];

13: float urnd(void);

14: void qsort(float x[],int l,int n);

15: clock_t t0,t1;

16: double dt;

17:

18: for(i=1;i<=10000;i++) urnd();
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19:

20: scanf("%d",&n);

21:

22: for(i=1;i<=n;i++){

23: x[i]=urnd();

24: y[i]=x[i];

25: }

26:

27: t0=clock();

28: qsort(y,1,n);

29: t1=clock();

30: dt=(t1-t0)/((double)CLOCKS_PER_SEC);

31: /*

32: for(i=1;i<=n;i++) printf("%10d %10.8f %10.8f\n",i,x[i],y[i]);

33: */

34: printf("Computational Time = %10.2lf\n",dt);

35: i025=(int)( 0.025*(float)n );

36: i050=(int)( 0.050*(float)n );

37: i500=(int)( 0.500*(float)n );

38: i950=(int)( 0.950*(float)n );
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39: i975=(int)( 0.975*(float)n );

40: printf(" 2.5 percent point = %10.8f\n",(y[i025]+y[i025+1])/2.0 );

41: printf(" 5 percent point = %10.8f\n",(y[i050]+y[i050+1])/2.0 );

42: printf("50 percent point = %10.8f\n",(y[i500]+y[i500+1])/2.0 );

43: printf("95 percent point = %10.8f\n",(y[i950]+y[i950+1])/2.0 );

44: printf("97.5 percent point = %10.8f\n",(y[i975]+y[i975+1])/2.0 );

45: }

46: /* ================================================ */

47: float urnd(void)

48: {

49: int kx,ky;

50: float rn;

51: /*

52: Input:

53: ix, iy: Seeds

54: Output:

55: rn: Uniform Random Draw U(0,1)

56: */

57: kx=ix/53668;

58: ix=40014*(ix-kx*53668)-kx*12211;
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59:

60: ky=iy/52774;

61: iy=40692*(iy-ky*52774)-ky*3791;

62:

63: rn=(float)(ix-iy)/2147483563.;

64: rn-=(int)rn;

65: if( rn<0.) rn++;

66:

67: return rn;

68: }

69: /* ====================================================== */

70: #define THRESHOLD 10

71: #define STACKSIZE 32

72:

73: void qsort(float a[],int first,int last)

74: /**************** Quick Sort ****************/

75: /************ a[first],...,a[last] ************/

76: {

77: int i,j,left,right,p;

78: int leftstack[STACKSIZE],rightstack[STACKSIZE];
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79: float x,t;

80: void inssort(float a[],int first,int last);

81:

82: left=first; right=last; p=first;

83: for(;;) {

84: if( right-left<=THRESHOLD ) {

85: if( p==first ) break;

86: p--;

87: left = leftstack[p];

88: right=rightstack[p];

89: }

90: x=a[ (left+right)/2 ];

91: i=left; j=right;

92: for(;;) {

93: while( a[i]<x ) i++;

94: while( x<a[j] ) j--;

95: if( i>=j ) break;

96: t=a[i]; a[i]=a[j]; a[j]=t;

97: i++; j--;

98: }
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99: if( i-left>right-j ) {

100: if( i-left>THRESHOLD ) {

101: leftstack[p]=left;

102: rightstack[p]=i-1;

103: p++;

104: }

105: left=j+1;

106: } else {

107: if( right-j>THRESHOLD ) {

108: leftstack[p]=j+1;

109: rightstack[p]=right;

110: p++;

111: }

112: right=i-1;

113: }

114: }

115: inssort(a,first,last);

116: }

117: /* ------------------------------------------------------ */

118: void inssort(float a[],int first,int last)
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119: {

120: int i,j;

121: float x;

122:

123: for( i=first+1;i<=last;i++ ) {

124: x=a[i];

125: for( j=i-1;j>=first && a[j]>x;j-- ) a[j+1]=a[j];

126: a[j+1]=x;

127: }

128: }
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2.9 Sampling Method III: Gibbs Sampling

The sampling methods introduced in Sections 2.8.1 – 2.8.3 can be applied to the cases of

both univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in the multi-

variate cases.

The Gibbs sampler shows how to generate random draws from the unconditional densities

under the situation that we can generate random draws from two conditional densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon and

Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger and Karim

(1991), Casella and George (1992), Gamerman (1997) and so on developed the Gibbs

sampling theory.

Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and Tanizaki

(1999, 2001) applied the Gibbs sampler to the nonlinear and/or non-Gaussian state-space
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models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two random variables

X and Y in order to make things easier.

Two conditional density functions, fx|y(x|y) and fy|x(y|x), are assumed to be known, which

denote the conditional distribution function of X given Y and that of Y given X, respectively.

Suppose that we can easily generate random draws of X from fx|y(x|y) and those of Y from

fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the joint

density of X and Y , denoted by fxy(x, y).

In order to have the random draws of (X,Y) from the joint density fxy(x, y), we take the

following procedure:
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(i) Take the initial value of X as x−M.

(ii) Given xi−1, generate a random draw of Y , i.e., yi, from f (y|xi−1).

(iii) Given yi, generate a random draw of X, i.e., xi, from f (x|yi).

(iv) Repeat the procedure for i = −M + 1,−M + 2, · · · , 1.

From the convergence theory of the Gibbs sampler, as M goes to infinity, we can regard x1

and y1 as random draws from fxy(x, y), which is a joint density function of X and Y .

M denotes the burn-in period, and the first M random draws, (xi, yi) for i = −M+1,−M+

2, · · · , 0, are excluded from further consideration.

When we want N random draws from fxy(x, y), Step (iv) should be replaced by Step (iv)’,

which is as follows.

(iv)’ Repeat the procedure for i = −M + 1,−M + 2, · · · ,N.

As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii) and (iv)’
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is formulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv.

For convergence of the Gibbs sampler, we need to have the invariant distribution f (u) which

satisfies fi(u) = fi−1(u) = f (u). If we have the reversibility condition, i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),

the random draws based on the Gibbs sampler converge to those from the invariant distri-

bution, which implies that there exists the invariant distribution f (u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribution, i.e.,

f ∗(u|v).

Here, we consider that both u and v are bivariate vectors.

That is, f ∗(u|v) and fi(u) denote the bivariate distributions. xi and yi are generated from

fi(u) through f ∗(u|v), given fi−1(v).
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Note that u = (u1, u2) = (xi, yi) is taken while v = (v1, v2) = (xi−1, yi−1) is set.

The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)

Thus, we can choose f ∗(u|v) as shown above.

Then, as i goes to infinity, (xi, yi) tends in distribution to a random vector whose joint

density is fxy(x, y).

See, for example, Geman and Geman (1984) and Smith and Roberts (1993).

Furthermore, under the condition that there exists the invariant distribution, the basic result

of the Gibbs sampler is as follows:

1
N

N∑
i=1

g(xi, yi) −→ E(g(x, y)) =
∫∫

g(x, y) fxy(x, y) dx dy, as N −→ ∞,

where g(·, ·) is a function.
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The Gibbs sampler is a powerful tool in a Bayesian framework.

Based on the conditional densities, we can generate random draws from the joint density.

Remark 1: We have considered the bivariate case, but it is easily extended to the multi-

variate cases.

That is, it is possible to take multi-dimensional vectors for x and y.

Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the ith

random draws from fx|yz(x|yi−1, zi−1), fy|xz(y|xi, zi−1) and fz|xy(z|xi, yi), sequentially, we can

obtain the random draws from fxyz(x, y, z).

Remark 2: Let X, Y and Z be the random variables.

Take an example of the case where X is highly correlated with Y .

If we generate random draws from fx|yz(x|y, z), fy|xz(y|x, z) and fz|xy(z|x, y), it is known that

convergence of the Gibbs sampler is slow.
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In this case, without separating X and Y , random number generation from f (x, y|z) and

f (z|x, y) yields better random draws from the joint density f (x, y, z).

Example: Bivariate Normal Distribution: Consider two random variables, X and Y .

From two conditional distributions f (x|y) and f (y|x), we make sure whether we can gener-

are random draws of the joint ditribution f (x, y).

Suppose that the joint distribution of X and Y is the following bivariate normal distribution:

f (x, y) =
( 1
√

2π

)2∣∣∣∣ 1 ρ

ρ 1

∣∣∣∣−1/2
exp

(
−1

2
( x y )

( 1 ρ

ρ 1

)−1 ( x

y

))
=

1

2π
√

1 − ρ2
exp

(
− 1

2(1 − ρ2)
(x2 − 2ρxy + y2)

)
That is, we have E(X) = E(Y) = 0，V(X) = V(Y) = 1, and Cov(X,Y) = ρ.

The marginal distribution of Y is given by:

f (y) =
1
√

2π
exp(−1

2
y2),
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because of E(Y) = 0 and V(Y) = 1.

Thereore, the conditional distribution of X given Y is:

f (x|y) =
f (x, y)
f (y)

=
1√

2π(1 − ρ2)
exp

(
− 1

2(1 − ρ2)
(x2 − 2ρxy + y2) +

1
2

y2
)

=
1√

2π(1 − ρ2)
exp

(
− 1

2(1 − ρ2)
(x2 − 2ρxy + ρ2y2)

)
=

1√
2π(1 − ρ2)

exp
(
− 1

2(1 − ρ2)
(x − ρy)2

)
which is the normal distribution with mean ρY and variance 1 − ρ2, i.e., N(ρY, 1 − ρ2).

Smilarly, f (y|x) is given by N(ρX, 1 − ρ2).

Thus, we obtain the following two conditional distributions:

X|Y ∼ N(ρY, 1 − ρ2), Y |X ∼ N(ρX, 1 − ρ2).

From the two conditional distributions, we check
( X

Y

)
∼ N

(( 0

0

)
,

( 1 ρ

ρ 1

))
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——— Gibbs Sampler ———

1: #include <math.h>

2: #include <stdio.h>

3:

4: int ix=1,iy=1;

5:

6: void main(){

7:

8: float rho;

9: long int i,m,n;

10: double nrnd(void);

11: double x,y;

12: double x1=0.0,x2=0.0;

13: double y1=0.0,y2=0.0;

14: double xy1=0.0;

15:

16: for(i=1;i<=10000;i++) nrnd();

17:

18: scanf("%f%ld%ld",&rho,&m,&n);
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19:

20: x=0.0;

21: y=0.0;

22: for(i=-m+1;i<=n;i++){

23: x=rho*y+sqrt( 1.-rho*rho )*nrnd();

24: y=rho*x+sqrt( 1.-rho*rho )*nrnd();

25: if( i >= 1 ){

26: x1+=x/((double)n);

27: x2+=x*x/((double)n);

28: y1+=y/((double)n);

29: y2+=y*y/((double)n);

30: xy1+=x*y/((double)n);

31: }

32: }

33:

34: printf("# of Burn-in = %10ld\n",m);

35: printf("# of Random Draws = %10ld\n",n);

36: printf("Rho = %7.2f\n",rho);

37: printf("Mean = ( %10.5lf, %10.5lf )\n",x1,y1);

38: printf("Variance = ( %10.5lf, %10.5lf )\n",x2,y2);
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39: printf("Covariance = %10.5lf\n",xy1);

40:

41: }

42: /* ------------------------------------------------ */

43: double urnd(void)

44: {

45: int kx,ky;

46: double rn;

47: /*

48: Input:

49: ix, iy: Seeds

50: Output:

51: rn: Uniform Random Draw U(0,1)

52: */

53: kx=ix/53668;

54: ix=40014*(ix-kx*53668)-kx*12211;

55:

56: ky=iy/52774;

57: iy=40692*(iy-ky*52774)-ky*3791;

58:
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59: rn=(float)(ix-iy)/2147483563.;

60: rn-=(int)rn;

61: if( rn<0.) rn++;

62:

63: return rn;

64: }

65: /* ------------------------------------------------ */

66: double nrnd(void)

67: {

68: double rn,r1,r2;

69: double pi=3.1415926535897932385;

70: double urnd();

71:

72: r1=urnd(); r2=urnd();

73:

74: rn=sqrt( -2.*log(r1) )*sin( 2.*pi*r2 );

75:

76: return rn;

77: }
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