
85: for(j=m;j<=n-i;j++) w[j]=w[j+1];

86: }

87: }

In Line 73, a large value is given to xmin .

In Lines 78 – 84, given i , we search the ith minimum value.

in Line 85, remove the ith minimum data and reconstruct the new vector.

Quick Sort: In the previous sort algorithm, the computational number of times is given

by n+ (n− 1)+ (n− 2)+ · · · + 1 = n(n− 1)/2, which is O(n2). That is, computational time

is proportional to n2.

Computational time of the following sort algorithm, called the quick sort (クイック・ソー
ト), is proprtional to n log n.

The following sort algorithm is extremely faster than the previous one in order of n/ log n.

161

——— Quick Sort Algorithm ———

1: #include<stdio.h>

2: #include<math.h>

3: #include<time.h>

4:

5: int ix=1,iy=1;

6:

7: void main()

8: {

9: int i,n;

10: int i025,i050,i500,i950,i975;

11: float x[100001];

12: float y[100001];

13: float urnd(void);

14: void qsort(float x[],int l,int n);

15: clock_t t0,t1;

16: double dt;

17:

18: for(i=1;i<=10000;i++) urnd();

162

19:

20: scanf("%d",&n);

21:

22: for(i=1;i<=n;i++){

23: x[i]=urnd();

24: y[i]=x[i];

25: }

26:

27: t0=clock();

28: qsort(y,1,n);

29: t1=clock();

30: dt=(t1-t0)/((double)CLOCKS_PER_SEC);

31: /*

32: for(i=1;i<=n;i++) printf("%10d %10.8f %10.8f\n",i,x[i],y[i]);

33: */

34: printf("Computational Time = %10.2lf\n",dt);

35: i025=(int)(0.025*(float)n);

36: i050=(int)(0.050*(float)n);

37: i500=(int)(0.500*(float)n);

38: i950=(int)(0.950*(float)n);

163

39: i975=(int)(0.975*(float)n);

40: printf(" 2.5 percent point = %10.8f\n",(y[i025]+y[i025+1])/2.0);

41: printf(" 5 percent point = %10.8f\n",(y[i050]+y[i050+1])/2.0);

42: printf("50 percent point = %10.8f\n",(y[i500]+y[i500+1])/2.0);

43: printf("95 percent point = %10.8f\n",(y[i950]+y[i950+1])/2.0);

44: printf("97.5 percent point = %10.8f\n",(y[i975]+y[i975+1])/2.0);

45: }

46: /* == */

47: float urnd(void)

48: {

49: int kx,ky;

50: float rn;

51: /*

52: Input:

53: ix, iy: Seeds

54: Output:

55: rn: Uniform Random Draw U(0,1)

56: */

57: kx=ix/53668;

58: ix=40014*(ix-kx*53668)-kx*12211;

164

59:

60: ky=iy/52774;

61: iy=40692*(iy-ky*52774)-ky*3791;

62:

63: rn=(float)(ix-iy)/2147483563.;

64: rn-=(int)rn;

65: if(rn<0.) rn++;

66:

67: return rn;

68: }

69: /* == */

70: #define THRESHOLD 10

71: #define STACKSIZE 32

72:

73: void qsort(float a[],int first,int last)

74: /**************** Quick Sort ****************/

75: /************ a[first],...,a[last] ************/

76: {

77: int i,j,left,right,p;

78: int leftstack[STACKSIZE],rightstack[STACKSIZE];

165

79: float x,t;

80: void inssort(float a[],int first,int last);

81:

82: left=first; right=last; p=first;

83: for(;;) {

84: if(right-left<=THRESHOLD) {

85: if(p==first) break;

86: p--;

87: left = leftstack[p];

88: right=rightstack[p];

89: }

90: x=a[(left+right)/2];

91: i=left; j=right;

92: for(;;) {

93: while(a[i]<x) i++;

94: while(x<a[j]) j--;

95: if(i>=j) break;

96: t=a[i]; a[i]=a[j]; a[j]=t;

97: i++; j--;

98: }

166

99: if(i-left>right-j) {

100: if(i-left>THRESHOLD) {

101: leftstack[p]=left;

102: rightstack[p]=i-1;

103: p++;

104: }

105: left=j+1;

106: } else {

107: if(right-j>THRESHOLD) {

108: leftstack[p]=j+1;

109: rightstack[p]=right;

110: p++;

111: }

112: right=i-1;

113: }

114: }

115: inssort(a,first,last);

116: }

117: /* -- */

118: void inssort(float a[],int first,int last)

167

119: {

120: int i,j;

121: float x;

122:

123: for(i=first+1;i<=last;i++) {

124: x=a[i];

125: for(j=i-1;j>=first && a[j]>x;j--) a[j+1]=a[j];

126: a[j+1]=x;

127: }

128: }

168

2.9 Sampling Method III: Gibbs Sampling

The sampling methods introduced in Sections 2.8.1 – 2.8.3 can be applied to the cases of

both univariate and multivariate distributions.

The Gibbs sampler in this section is the random number generation method in the multi-

variate cases.

The Gibbs sampler shows how to generate random draws from the unconditional densities

under the situation that we can generate random draws from two conditional densities.

Geman and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Racine-Poon and

Smith (1990), Gelfand and Smith (1990), Carlin and Polson (1991), Zeger and Karim

(1991), Casella and George (1992), Gamerman (1997) and so on developed the Gibbs

sampling theory.

Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and Tanizaki

(1999, 2001) applied the Gibbs sampler to the nonlinear and/or non-Gaussian state-space

169

models.

There are numerous other applications of the Gibbs sampler.

The Gibbs sampling theory is concisely described as follows.

We can deal with more than two random variables, but we consider two random variables

X and Y in order to make things easier.

Two conditional density functions, fx|y(x|y) and fy|x(y|x), are assumed to be known, which

denote the conditional distribution function of X given Y and that of Y given X, respectively.

Suppose that we can easily generate random draws of X from fx|y(x|y) and those of Y from

fy|x(y|x).

However, consider the case where it is not easy to generate random draws from the joint

density of X and Y , denoted by fxy(x, y).

In order to have the random draws of (X,Y) from the joint density fxy(x, y), we take the

following procedure:

170

(i) Take the initial value of X as x−M.

(ii) Given xi−1, generate a random draw of Y , i.e., yi, from f (y|xi−1).

(iii) Given yi, generate a random draw of X, i.e., xi, from f (x|yi).

(iv) Repeat the procedure for i = −M + 1,−M + 2, · · · , 1.

From the convergence theory of the Gibbs sampler, as M goes to infinity, we can regard x1

and y1 as random draws from fxy(x, y), which is a joint density function of X and Y .

M denotes the burn-in period, and the first M random draws, (xi, yi) for i = −M+1,−M+

2, · · · , 0, are excluded from further consideration.

When we want N random draws from fxy(x, y), Step (iv) should be replaced by Step (iv)’,

which is as follows.

(iv)’ Repeat the procedure for i = −M + 1,−M + 2, · · · ,N.

As in the Metropolis-Hastings algorithm, the algorithm shown in Steps (i) – (iii) and (iv)’

171

is formulated as follows:

fi(u) =
∫

f ∗(u|v) fi−1(v) dv.

For convergence of the Gibbs sampler, we need to have the invariant distribution f (u) which

satisfies fi(u) = fi−1(u) = f (u). If we have the reversibility condition, i.e.,

f ∗(v|u) f (u) = f ∗(u|v) f (v),

the random draws based on the Gibbs sampler converge to those from the invariant distri-

bution, which implies that there exists the invariant distribution f (u).

Therefore, in the Gibbs sampling algorithm, we have to find the transition distribution, i.e.,

f ∗(u|v).

Here, we consider that both u and v are bivariate vectors.

That is, f ∗(u|v) and fi(u) denote the bivariate distributions. xi and yi are generated from

fi(u) through f ∗(u|v), given fi−1(v).

172

Note that u = (u1, u2) = (xi, yi) is taken while v = (v1, v2) = (xi−1, yi−1) is set.

The transition distribution in the Gibbs sampler is taken as:

f ∗(u|v) = fy|x(u2|u1) fx|y(u1|v2)

Thus, we can choose f ∗(u|v) as shown above.

Then, as i goes to infinity, (xi, yi) tends in distribution to a random vector whose joint

density is fxy(x, y).

See, for example, Geman and Geman (1984) and Smith and Roberts (1993).

Furthermore, under the condition that there exists the invariant distribution, the basic result

of the Gibbs sampler is as follows:

1
N

N∑
i=1

g(xi, yi) −→ E(g(x, y)) =
∫∫

g(x, y) fxy(x, y) dx dy, as N −→ ∞,

where g(·, ·) is a function.

173

The Gibbs sampler is a powerful tool in a Bayesian framework.

Based on the conditional densities, we can generate random draws from the joint density.

Remark 1: We have considered the bivariate case, but it is easily extended to the multi-

variate cases.

That is, it is possible to take multi-dimensional vectors for x and y.

Taking an example, as for the tri-variate random vector (X,Y,Z), if we generate the ith

random draws from fx|yz(x|yi−1, zi−1), fy|xz(y|xi, zi−1) and fz|xy(z|xi, yi), sequentially, we can

obtain the random draws from fxyz(x, y, z).

Remark 2: Let X, Y and Z be the random variables.

Take an example of the case where X is highly correlated with Y .

If we generate random draws from fx|yz(x|y, z), fy|xz(y|x, z) and fz|xy(z|x, y), it is known that

convergence of the Gibbs sampler is slow.

174

In this case, without separating X and Y , random number generation from f (x, y|z) and

f (z|x, y) yields better random draws from the joint density f (x, y, z).

Example: Bivariate Normal Distribution: Consider two random variables, X and Y .

From two conditional distributions f (x|y) and f (y|x), we make sure whether we can gener-

are random draws of the joint ditribution f (x, y).

Suppose that the joint distribution of X and Y is the following bivariate normal distribution:

f (x, y) =
(1
√

2π

)2∣∣∣∣ 1 ρ

ρ 1

∣∣∣∣−1/2
exp

(
−1

2
(x y)

(1 ρ

ρ 1

)−1 (x

y

))
=

1

2π
√

1 − ρ2
exp

(
− 1

2(1 − ρ2)
(x2 − 2ρxy + y2)

)
That is, we have E(X) = E(Y) = 0，V(X) = V(Y) = 1, and Cov(X,Y) = ρ.

The marginal distribution of Y is given by:

f (y) =
1
√

2π
exp(−1

2
y2),

175

because of E(Y) = 0 and V(Y) = 1.

Thereore, the conditional distribution of X given Y is:

f (x|y) =
f (x, y)
f (y)

=
1√

2π(1 − ρ2)
exp

(
− 1

2(1 − ρ2)
(x2 − 2ρxy + y2) +

1
2

y2
)

=
1√

2π(1 − ρ2)
exp

(
− 1

2(1 − ρ2)
(x2 − 2ρxy + ρ2y2)

)
=

1√
2π(1 − ρ2)

exp
(
− 1

2(1 − ρ2)
(x − ρy)2

)
which is the normal distribution with mean ρY and variance 1 − ρ2, i.e., N(ρY, 1 − ρ2).

Smilarly, f (y|x) is given by N(ρX, 1 − ρ2).

Thus, we obtain the following two conditional distributions:

X|Y ∼ N(ρY, 1 − ρ2), Y |X ∼ N(ρX, 1 − ρ2).

From the two conditional distributions, we check
(X

Y

)
∼ N

((0

0

)
,

(1 ρ

ρ 1

))

176

——— Gibbs Sampler ———

1: #include <math.h>

2: #include <stdio.h>

3:

4: int ix=1,iy=1;

5:

6: void main(){

7:

8: float rho;

9: long int i,m,n;

10: double nrnd(void);

11: double x,y;

12: double x1=0.0,x2=0.0;

13: double y1=0.0,y2=0.0;

14: double xy1=0.0;

15:

16: for(i=1;i<=10000;i++) nrnd();

17:

18: scanf("%f%ld%ld",&rho,&m,&n);

177

19:

20: x=0.0;

21: y=0.0;

22: for(i=-m+1;i<=n;i++){

23: x=rho*y+sqrt(1.-rho*rho)*nrnd();

24: y=rho*x+sqrt(1.-rho*rho)*nrnd();

25: if(i >= 1){

26: x1+=x/((double)n);

27: x2+=x*x/((double)n);

28: y1+=y/((double)n);

29: y2+=y*y/((double)n);

30: xy1+=x*y/((double)n);

31: }

32: }

33:

34: printf("# of Burn-in = %10ld\n",m);

35: printf("# of Random Draws = %10ld\n",n);

36: printf("Rho = %7.2f\n",rho);

37: printf("Mean = (%10.5lf, %10.5lf)\n",x1,y1);

38: printf("Variance = (%10.5lf, %10.5lf)\n",x2,y2);

178

39: printf("Covariance = %10.5lf\n",xy1);

40:

41: }

42: /* -- */

43: double urnd(void)

44: {

45: int kx,ky;

46: double rn;

47: /*

48: Input:

49: ix, iy: Seeds

50: Output:

51: rn: Uniform Random Draw U(0,1)

52: */

53: kx=ix/53668;

54: ix=40014*(ix-kx*53668)-kx*12211;

55:

56: ky=iy/52774;

57: iy=40692*(iy-ky*52774)-ky*3791;

58:

179

59: rn=(float)(ix-iy)/2147483563.;

60: rn-=(int)rn;

61: if(rn<0.) rn++;

62:

63: return rn;

64: }

65: /* -- */

66: double nrnd(void)

67: {

68: double rn,r1,r2;

69: double pi=3.1415926535897932385;

70: double urnd();

71:

72: r1=urnd(); r2=urnd();

73:

74: rn=sqrt(-2.*log(r1))*sin(2.*pi*r2);

75:

76: return rn;

77: }

180

References

Carlin, B.P. and Polson, N.G., 1991, “Inference for Nonconjugate Bayesian Models

Using the Gibbs Sampler,” Canadian Journal of Statistics, Vol.19, pp.399 – 405.

Carlin, B.P., Polson, N.G. and Stoffer, D.S., 1992, “A Monte Carlo Approach to Nonnormal

and Nonlinear State Space Modeling,” Journal of the American Statistical Associa-

tion, Vol.87, No.418, pp.493 – 500.

Carter, C.K. and Kohn, R., 1994, “On Gibbs Sampling for State Space Models,” Biometrika,

Vol.81, No.3, pp.541 – 553.

Carter, C.K. and Kohn, R., 1996, “Markov Chain Monte Carlo in Conditionally Gaussian

State Space Models,” Biometrika, Vol.83, No.3, pp.589 – 601.

Casella, G. and George, E.I., 1992, “Explaining the Gibbs Sampler,” The American Statis-

tician, Vol.46, pp.167 – 174.

181

Chib, S. and Greenberg, E., 1995, “Understanding the Metropolis-Hastings Algorithm,”

The American Statistician, Vol.49, No.4, pp.327 – 335.

Gamerman, D., 1997, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian

Inference, Chapman & Hall.

Gelfand, A.E. and Smith, A.F.M., 1990, “Sampling-Based Approaches to Calculating Marginal

Densities,” Journal of the American Statistical Association, Vol.85, No.410, pp.398

– 409.

Liu, J.S., 1996, “Metropolized Independent Sampling with Comparisons to Rejection Sam-

pling and Importance Sampling,” Statistics and Computing, Vol.6, pp.113 – 119.

Mengersen, K.L., Robert, C.P. and Guihenneuc-Jouyaux, C., 1999, “MCMC Convergence

Diagnostics: A Reviewww,” in Bayesian Statistics, Vol.6, edited by Bernardo, J.M.,

Berger, J.O., Dawid, A.P. and Smith, A.F.M., pp.514 – 440 (with discussion), Oxford

University Press.

182

Smith, A.F.M. and Gelfand, A.E., 1992, “Bayesian Statistics without Tears: A Sampling-

Resampling Perspective,” The American Statistician, Vol.46, No.2, pp.84 – 88.

Smith, A.F.M. and Roberts, G.O., 1993, “Bayesian Computation via Gibbs Sampler and

Related Markov Chain Monte Carlo Methods,” Journal of the Royal Statistical Soci-

ety, Ser.B, Vol.55, No.1, pp.3 – 23.

Tanner, M.A. and Wong, W.H., 1987, “The Calculation of Posterior Distributions by Data

Augmentation,” Journal of the American Statistical Association, Vol.82, No.398,

pp.528 – 550 (with discussion).

Tierney, L., 1994, “Markov Chains for Exploring Posterior Distributions,” The Annals of

Statistics, Vol.22, No.4, pp.1701 – 1762.

183

