
Example: X1, X2, · · ·, Xn are mutually independent with Xi ∼ N(µ, σ2).

Derive Bayesian estimation of µ and σ2.

Assume that the prior distributions: µ ∼ N(µ0, σ
2
0) and σ2 ∼ IG(α0, β0), i.e.,

1
σ2 ∼ G(α0, β0).

(*) Note that the gamma distribution G(α, β) is given by:

f (x) =
1

βαΓ(α)
xα−1e−x/β

for x ≥ 0, α > 0 and β > 0. When X ∼ G(α, β) and Y =
1
X

, then Y ∼ IG(α, β).

the inverse gamma distribution is:

f (x) =
1

βαΓ(α)xα+1 exp(− 1
βx

)
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The prior distribution of σ2 is:

f (σ2) =
1

βα0
0 Γ(α0)(σ2)α0+1

exp(− 1
βσ2 )

Note that the posterior distributions are:

f (θ|x) =
f (x, θ)∫
f (x, θ)dθ

∝ f (x, θ)

∝


f (x, θ1|θ2) f (θ2) ∝ f (θ1|θ2, x)

f (x, θ2|θ1) f (θ1) ∝ f (θ2|θ1, x)

f (x, θ) = f (x, µ, σ2) = f (x|µ, σ2) f (µ) f (σ2)

= (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
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× (2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)

× 1
βα0

0 Γ(α0)(σ2)α0+1
exp(− 1

β0σ2 )

The conditional distribution of µ given σ2 and x is:

f (µ|σ2, x) ∝ (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

× (2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)

= (2πσ2)−n/2 exp
(
− 1

2σ2
(

n∑
i=1

(xi − x)2 + n(x − µ)2)
)

× (2πσ2
0)−1/2 exp

(
− 1

2σ2
0

(µ − µ0)2
)

∝ exp
(
− 1

2σ2/n
(µ − x)2

)
× exp

(
− 1

2σ2
0

(µ − µ0)2
)
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∝ exp
(
−1

2

( 1
σ2/n

(µ2 − 2xµ) +
1
σ2

0

(µ2 − 2µ0µ)
))

We focus on the parenthesis in the exponential part.

1
σ2/n

(µ2 − 2xµ) +
1
σ2

0

(µ2 − 2µ0µ)

= (
1
σ2/n

+
1
σ2

0

)(µ −
xσ2

0 + µ0σ
2/n

σ2/n + σ2
0

)2
+ ...

That is,

µ|σ2, x ∼ N
( xσ2

0 + µ0σ
2/n

σ2/n + σ2
0

, (
1
σ2/n

+
1
σ2

0

)−1
)

The conditional distribution of σ2 given µ and x is:

f (σ2|µ, x) ∝ (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

× 1
βα0

0 Γ(α0)(σ2)α0+1
exp(− 1

β0σ2 )
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∝ 1
(σ2)n/2+α0+1 exp

(
−(

1
2

n∑
i=1

(xi − µ)2 +
1
β0

)
1
σ2

)

which is IG
(n
2
+ α0, (

1
2

n∑
i=1

(xi − µ)2 +
1
β0

)−1
)
, i.e.,

1
σ2 |µ, x ∼ G

(n
2
+ α0, (

1
2

n∑
i=1

(xi − µ)2 +
1
β0

)−1
)
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2.10 Marginal Likelihood, Convergence Diagnostic and so on

2.10.1 Marginal Likelihood

Model Selection =⇒Marginal Likelihood

fy(y) =
∫

fy|θ(y|θ) fθ(θ)dθ

Evaluation of Marginal Likelihood =⇒ Proper Prior
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(i) Importance Sampling: Use of Prior Distribution

fy(y) = Eθ( fy|θ(y|θ)) ≈
1
N

N∑
i=1

fy|θ(y|θi),

where θi is the ith random draw generated from the prior distribution fθ(θ).
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(ii) Importance Sampling: Use of the Appropriate Importance Distribution

fy(y) =
∫

fy|θ(y|θ) fθ(θ)
g(θ)

g(θ)dθ = E
( fy|θ(y|θ) fθ(θ)

g(θ)

)
≈ 1

N

N∑
i=1

fy|θ(y|θi) fθ(θi)
g(θi)

,

where θi is the ith random draw generated from the appropriately chosen importance dis-

tribution g(θ).
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(iii) Harmonic Mean =⇒ Gelfand and Dey (1994) and Newton and Raftery (1994)

1
fy(y)

=

∫
g(θ)
fy(y)

dθ =
∫

g(θ)
fy(y) fθ|y(θ|y)

fθ|y(θ|y)dθ

=

∫
g(θ)

fy|θ(y|θ) fθ(θ)
fθ|y(θ|y)dθ ≈ 1

N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

,

where θi is the ith random draw generated from the posterir distribution fθ|y(θ|y).

Thus, the marginal distribution is evaluated by:

fy(y) ≈
 1

N

N∑
i=1

g(θi)
fy|θ(y|θi) fθ(θi)

−1

, =⇒ Gelfand and Dey (1994).

When g(θ) = fθ(θ) is taken, the marginal distribution is given by:

fy(y) ≈
 1

N

N∑
i=1

1
fy|θ(y|θi)

−1

, =⇒ Newton and Raftery (1994).
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(iv) Chib (1995) and Chib and Jeliazkov (2001)

fy(y) =
fy|θ(y|θ) fθ(θ)

fθ|y(θ|y)

log fy(y) = log fy|θ(y|θ̂) + log fθ(θ̂) − log fθ|y(θ̂|y),

where θ̂ denotes the Bayes estimates.

We need to evaluate log fθ|y(θ̂|y), using the Gibbs sampler or the MH algorithm.

2.10.2 Convergence Diagnostic

We need to check whether the burn-in period is enough and whether MCMC converges to

the invariant distribution.

Geweke (1992)

Divide the sample path into three periods, excluding the burn-in period..

Test whether the first period is different from the third period.
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Suppose that we have the MCMC sequence, i.e., θ−M+1, · · ·, θ0, θ1, · · ·, θN .

The burn-in period is denoted by θ−M+1, · · ·, θ0.

θ1, · · ·, θN are divided by three periods.

The first period is given by θ1, · · ·, θN1 .

The second period is given by θN1+1, · · ·, θN2 .

The third period is given by θN2+1, · · ·, θN .

Consider a function g(·).

Define g1 =
1

N1

N1∑
i=1

g(θi) and g3 =
1

N3

N∑
i=N1+N2+1

g(θi) for N3 = N − N2 − N1.

Estimate
1

N1
V(

N1∑
i=1

g(θi)) and
1

N3
V(

N∑
i=N1+N2+1

g(θi)),

which are denoted by s2
1 and s2

3, respectively.
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By the central limit theorem,

g1 − E(g1)
s1/
√

N1
−→ N(0, 1) and

g3 − E(g3)

s3/
√

N3
−→ N(0, 1).

Therefore, under the null hypothesis H0 : E(g1) = E(g3),

g1 − g3√
s2

1/N1 + s2
3/N3

−→ N(0, 1).

The case of g(θi) = θi =⇒ Testing whether the two means (i.e., first-moments) are equal.

The case of g(θi) = θ2i =⇒ Testing whether the two second-moments are equal.

Computation of s2
1 and s2

3 has to be careful, because g(θ1), · · ·, g(θN) are serially correlated.

=⇒ Long-run variance.

Take an example of s2
1, which is an estimate of

1
N1

V(
N1∑
i=1

g(θi)).
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1
N1

V(
N1∑
i=1

g(θi)) =
1

N1

N1∑
i=1

N1∑
j=1

Cov(g(θi), g(θ j))

=
1

N1
(N1γ(0) + 2(N1 − 1)γ(1) + 2(N1 − 2)γ(2) + · · · + 2γ(N1 − 1))

= γ(0) + 2
N1−1∑
τ=1

k(
τ

N1
)γ(τ), =⇒ Bartlett Kernel (Newy-West Est.)

where γ(τ) = Cov(g(θi), g(θi+τ)).

We may choose the other kernels (for example, Parzen kernel or second-order spectrum

kernel; see p.166-167) for k(x).

Thus, s2
1 is estimated by:

s2
1 = γ̂(0) + 2

q∑
τ=1

k(
τ

q + 1
)γ̂(τ),

for q ≤ N1 − 1. =⇒ Choice of q and k(·).

196



3 Bayesian Estimation — Examples

3.1 Heteroscedasticity Model

In Section 3.1, Tanizaki and Zhang (2001) is re-computed using the random number gen-

erators.

Here, we show how to use Bayesian approach in the multiplicative heteroscedasticity model

discussed by Harvey (1976).

The Gibbs sampler and the Metropolis-Hastings (MH) algorithm are applied to the mul-

tiplicative heteroscedasticity model, where some sampling densities are considered in the

MH algorithm.

We carry out Monte Carlo study to examine the properties of the estimates via Bayesian

approach and the traditional counterparts such as the modified two-step estimator (M2SE)

and the maximum likelihood estimator (MLE).
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The results of Monte Carlo study show that the sampling density chosen here is suitable,

and Bayesian approach shows better performance than the traditional counterparts in the

criterion of the root mean square error (RMSE) and the interquartile range (IR).

3.1.1 Introduction

For the heteroscedasticity model, we have to estimate both the regression coefficients and

the heteroscedasticity parameters.

In the literature of heteroscedasticity, traditional estimation techniques include the two-step

estimator (2SE) and the maximum likelihood estimator (MLE).

Harvey (1976) showed that the 2SE has an inconsistent element in the heteroscedasticity

parameters and furthermore derived the consistent estimator based on the 2SE, which is

called the modified two-step estimator (M2SE).

These traditional estimators are also examined in Amemiya (1985), Judge, Hill, Griffiths
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and Lee (1980) and Greene (1997).

Ohtani (1982) derived the Bayesian estimator (BE) for a heteroscedasticity linear model.

Using a Monte Carlo experiment, Ohtani (1982) found that among the Bayesian estimator

(BE) and some traditional estimators, the Bayesian estimator (BE) shows the best properties

in the mean square error (MSE) criterion.

Because Ohtani (1982) obtained the Bayesian estimator by numerical integration, it is not

easy to extend to the multi-dimensional cases of both the regression coefficient and the

heteroscedasticity parameter.

Recently, Boscardin and Gelman (1996) developed a Bayesian approach in which a Gibbs

sampler and the Metropolis-Hastings (MH) algorithm are used to estimate the parameters

of heteroscedasticity in the linear model.

They argued that through this kind of Bayesian approach, we can average over our uncer-

tainty in the model parameters instead of using a point estimate via the traditional estima-
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tion techniques.

Their modeling for the heteroscedasticity, however, is very simple and limited. Their choice

of the heteroscedasticity is V(yi) = σ2w−θi , where wi are known “weights” for the problem

and θ is an unknown parameter.

In addition, they took only one candidate for the sampling density used in the MH algorithm

and compared it with 2SE.

In Section 3.1, we also consider Harvey’s (1976) model of multiplicative heteroscedasticity.

This modeling is very flexible, general, and includes most of the useful formulations for

heteroscedasticity as special cases.

The Bayesian approach discussed by Ohtani (1982) and Boscardin and Gelman (1996)

can be extended to the multi-dimensional and more complicated cases, using the model

introduced here.

The Bayesian approach discussed here includes the MH within Gibbs algorithm, where
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through Monte Carlo studies we examine two kinds of candidates for the sampling density

in the MH algorithm and compare the Bayesian approach with the two traditional estima-

tors, i.e., M2SE and MLE, in the criterion of the root mean square error (RMSE) and the

interquartile range (IR).

We obtain the results that the Bayesian estimator significantly has smaller RMSE and IR

than M2SE and MLE at least for the heteroscedasticity parameters.

Thus, the results of the Monte Carlo study show that the Bayesian approach performs better

than the traditional estimators.

3.1.2 Multiplicative Heteroscedasticity Regression Model

The multiplicative heteroscedasticity model discussed by Harvey (1976) can be shown as

follows:

yt = Xtβ + ut, ut ∼ N(0, σ2
t ), (3)
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σ2
t = σ

2 exp(qtα), (4)

for t = 1, 2, · · · , n, where yt is the tth observation, Xt and qt are the tth 1 × k and 1 × (J − 1)

vectors of explanatory variables, respectively.

β and α are vectors of unknown parameters.

The model given by equations (3) and (4) includes several special cases such as the model

in Boscardin and Gelman (1996), in which qt = log wt and θ = −α.

As shown in Greene (1997), there is a useful simplification of the formulation.

Let zt = (1, qt) and γ = (logσ2, α′)′, where zt and γ denote 1 × J and J × 1 vectors.

Then, we can simply rewrite equation (4) as:

σ2
t = exp(ztγ). (5)

Note that exp(γ1) provides σ2, where γ1 denotes the first element of γ.

As for the variance of ut, hereafter we use (5), rather than (4).
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The generalized least squares (GLS) estimator of β, denoted by β̂GLS , is given by:

β̂GLS =
( n∑

t=1

exp(−ztγ)X′t Xt

)−1
n∑

t=1

exp(−ztγ)X′t yt, (6)

where β̂GLS depends on γ, which is the unknown parameter vector.

To obtain the feasible GLS estimator, we need to replace γ by its consistent estimate.

We have two traditional consistent estimators of γ, i.e., M2SE and MLE, which are briefly

described as follows.

Modified Two-Step Estimator (M2SE): First, define the ordinary least squares (OLS)

residual by et = yt − Xtβ̂OLS , where β̂OLS represents the OLS estimator, i.e.,

β̂OLS = (
∑n

t=1 X′t Xt)−1 ∑n
t=1 X′t yt.

For 2SE of γ, we may form the following regression:

log e2
t = ztγ + vt.
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The OLS estimator of γ applied to the above equation leads to the 2SE of γ, because et is

obtained by OLS in the first step.

Thus, the OLS estimator of γ gives us 2SE, denoted by γ̂2S E , which is given by:

γ̂2S E = (
n∑

t=1

z′tzt)−1
n∑

t=1

z′t log e2
t .

A problem with this estimator is that vt, t = 1, 2, · · · , n, have non-zero means and are

heteroscedastic.

If et converges in distribution to ut, the vt will be asymptotically independent with mean

E(vt) = −1.2704 and variance V(vt) = 4.9348, which are shown in Harvey (1976).

Then, we have the following mean and variance of γ̂2S E :

E(γ̂2S E ) = γ − 1.2704(
n∑

t=1

z′tzt)−1
n∑

t=1

z′t , (7)

V(γ̂2S E ) = 4.9348(
n∑

t=1

z′tzt)−1.
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For the second term in equation (7), the first element is equal to −1.2704 and the remaining

elements are zero, which can be obtained by simple calculation.

Therefore, the first element of γ̂2S E is biased but the remaining elements are still unbiased.

To obtain a consistent estimator of γ1, we consider M2SE of γ, denoted by γ̂M2S E , which is

given by:

γ̂M2S E = γ̂2S E + 1.2704(
n∑

t=1

z′tzt)−1
n∑

t=1

z′t .

Let ΣM2S E be the variance of γ̂M2S E .

Then, ΣM2S E is represented by:

ΣM2S E ≡ V(γ̂M2S E ) = V(γ̂2S E ) = 4.9348(
n∑

t=1

z′tzt)−1.

The first element of γ̂2S E and γ̂M2S E corresponds to the estimate of σ2, which value does not

influence β̂GLS .
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Since the remaining elements of γ̂2S E are equal to those of γ̂M2S E , β̂2S E is equivalent to β̂M2S E ,

where β̂2S E and β̂M2S E denote 2SE and M2SE of β, respectively.

Note that β̂2S E and β̂M2S E can be obtained by substituting γ̂2S E and γ̂M2S E into γ in (6).

Maximum Likelihood Estimator (MLE): The density of Yn = (y1, y2, · · ·, yn) based on

(3) and (5) is:

f (Yn|β, γ) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) , (8)

which is maximized with respect to β and γ, using the method of scoring.

That is, given values for β( j) and γ( j), the method of scoring is implemented by the following

iterative procedure:

β( j) =
( n∑

t=1

exp(−ztγ
( j−1))X′t Xt

)−1
n∑

t=1

exp(−ztγ
( j−1))X′t yt,
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γ( j) = γ( j−1) + 2(
n∑

t=1

z′tzt)−1 1
2

n∑
t=1

z′t
(
exp(−ztγ

( j−1))e2
t − 1

)
,

for j = 1, 2, · · · , where et = yt − Xtβ
( j−1).

The starting value for the above iteration may be taken as (β(0), γ(0)) = (β̂OLS , γ̂2S E ), (β̂2S E , γ̂2S E )

or (β̂M2S E , γ̂M2S E ).

Let θ = (β, γ).

The limit of θ( j) = (β( j), γ( j)) gives us the MLE of θ, which is denoted by θ̂MLE = (β̂MLE , γ̂MLE ).

Based on the information matrix, the asymptotic covariance matrix of θ̂MLE is represented

by:

V(θ̂MLE ) =
(
− E

(
∂2 log f (Yn|θ)
∂θ∂θ′

))−1

=

( (∑n
t=1 exp(−ztγ)X′t Xt

)−1
0

0 2(
∑n

t=1 z′tzt)−1

)
. (9)

Thus, from (9), asymptotically there is no correlation between β̂MLE and γ̂MLE , and further-
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more the asymptotic variance of γ̂MLE is represented by: ΣMLE ≡ V(γ̂MLE ) = 2(
∑n

t=1 z′tzt)−1,

which implies that γ̂M2S E is asymptotically inefficient because ΣM2S E − ΣMLE is positive defi-

nite.

Remember that the variance of γ̂M2S E is given by: V(γ̂M2S E ) = 4.9348(
∑n

t=1 z′tzt)−1.

3.1.3 Bayesian Estimation

We assume that the prior distributions of the parameters β and γ are noninformative, which

are represented by:

fβ(β) = constant, fγ(γ) = constant. (10)

Combining the prior distributions (10) and the likelihood function (8), the posterior distri-

bution f
βγ

(β, γ|y) is obtained as follows:

f
βγ

(β, γ|Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) .
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The posterior means of β and γ are not operationally obtained.

Therefore, by generating random draws of β and γ from the posterior density f
βγ

(β, γ|Yn),

we consider evaluating the mathematical expectations as the arithmetic averages based on

the random draws.

Now we utilize the Gibbs sampler, which has been introduced in Section 2.9, to sample

random draws of β and γ from the posterior distribution.

Then, from the posterior density f
βγ

(β, γ|Yn), we can derive the following two conditional

densities:

f
γ|β(γ|β,Yn) ∝ exp

−1
2

n∑
t=1

(
exp(−ztγ)(yt − Xtβ)2 + ztγ

) , (11)

f
β|γ(β|γ,Yn) = N(B1,H1), (12)
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where

H−1
1 =

n∑
t=1

exp(−ztγ)X′t Xt, B1 = H1

n∑
t=1

exp(−ztγ)X′t yt.

Sampling from (12) is simple since it is a k-variate normal distribution with mean B1 and

variance H1.

However, since the J-variate distribution (11) does not take the form of any standard den-

sity, it is not easy to sample from (11).

In this case, the MH algorithm discussed in Section 2.8.3 can be used within the Gibbs

sampler.

See Tierney (1994) and Chib and Greeberg (1995) for a general discussion.

Let γi−1 be the (i − 1)th random draw of γ and γ∗ be a candidate of the ith random draw of

γ.

The MH algorithm utilizes another appropriate distribution function f∗(γ|γi), which is

called the sampling density or the proposal density.
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Let us define the acceptance rate ω(γi−1, γ
∗) as:

ω(γi−1, γ
∗) = min

(
f
γ|β(γ

∗|βi−1,Yn)/ f∗(γ∗|γi−1)
f
γ|β(γi−1|βi−1,Yn)/ f∗(γi−1|γ∗)

, 1
)
.

The sampling procedure based on the MH algorithm within Gibbs sampling is as follows:

(i) Set the initial value β−M, which may be taken as β̂M2S E or β̂MLE .

(ii) Given βi−1, generate a random draw of γ, denoted by γi, from the conditional density

f
γ|β(γ|βi−1,Yn), where the MH algorithm is utilized for random number generation

because it is not easy to generate random draws of γ from (11).

The Metropolis-Hastings algorithm is implemented as follows:

(a) Given γi−1, generate a random draw γ∗ from f∗(·|γi−1) and compute the accep-

tance rate ω(γi−1, γ
∗).

We will discuss later about the sampling density f∗(γ|γi−1).
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(b) Set γi = γ
∗ with probability ω(γi−1, γ

∗) and γi = γi−1 otherwise,

(iii) Given γi, generate a random draw of β, denoted by βi, from the conditional density

f
β|γ(β|γi,Yn), which is β|γi,Yn ∼ N(B1,H1) as shown in (12).

(iv) Repeat (ii) and (iii) for i = −M + 1,−M + 2, · · · ,N.

Note that the iteration of Steps (ii) and (iii) corresponds to the Gibbs sampler, which it-

eration yields random draws of β and γ from the joint density f
βγ

(β, γ|Yn) when i is large

enough.

It is well known that convergence of the Gibbs sampler is slow when β is highly correlated

with γ.

That is, a large number of random draws have to be generated in this case.

Therefore, depending on the underlying joint density, we have the case where the Gibbs

sampler does not work at all.
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For example, see Chib and Greenberg (1995) for convergence of the Gibbs sampler.

In the model represented by (3) and (4), however, there is asymptotically no correlation

between β̂MLE and γ̂MLE , as shown in (9).

It might be expected that correlation between β̂MLE and γ̂MLE is not too high even in the small

sample.

Therefore, it might be appropriate to consider that the Gibbs sampler works well in this

model.

In Step (ii), the sampling density f∗(γ|γi−1) is utilized.

We consider the multivariate normal density function for the sampling distribution, which

is discussed as follows.

Choice of the Sampling Density in Step (ii): Several generic choices of the sampling

density are discussed by Tierney (1994) and Chib and Greenberg (1995).
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Here, we take f∗(γ|γi−1) = f∗(γ) as the sampling density, which is called the independence

chain because the sampling density is not a function of γi−1.

We consider taking the multivariate normal sampling density in the independence MH al-

gorithm, because of its simplicity.

Therefore, f∗(γ) is taken as follows:

f∗(γ) = N(γ+, c2Σ+), (13)

which represents the J-variate normal distribution with mean γ+ and variance c2Σ+.

The tuning parameter c is introduced into the sampling density (13).

We have mentioned that for the independence chain (Sampling Density I) the sampling

density with the variance which gives us the maximum acceptance probability is not nec-

essarily the best choice.

From some Monte Carlo experiments, we have obtained the result that the sampling density

with the 1.5 – 2.5 times larger standard error is better than that with the standard error which
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maximizes the acceptance probability.

Therefore, c = 2 is taken in the next section, and it is the larger value than the c which gives

us the maximum acceptance probability.

This detail discussion is given in Section 3.1.4.

Thus, the sampling density of γ is normally distributed with mean γ+ and variance c2Σ+.

As for (γ+,Σ+), in the next section we choose one of (γ̂M2S E , ΣM2S E ) and (γ̂MLE , ΣMLE ) from

the criterion of the acceptance rate.

As shown in Section 2, both of the two estimators γ̂M2S E and γ̂MLE are consistent estimates

of γ.

Therefore, it might be very plausible to consider that the sampling density is distributed

around the consistent estimates.
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Bayesian Estimator: From the convergence theory of the Gibbs sampler and the MH

algorithm, as i goes to infinity we can regard γi and βi as random draws from the target

density f
βγ

(β, γ|Yn).

Let M be a sufficiently large number. γi and βi for i = 1, 2, · · · ,N are taken as the random

draws from the posterior density f
βγ

(β, γ|Yn).

Therefore, the Bayesian estimators γ̂BZZ and β̂BZZ are given by:

γ̂BZZ =
1
N

N∑
i=1

γi, β̂BZZ =
1
N

N∑
i=1

βi,

where we read the subscript BZZ as the Bayesian estimator which uses the multivariate

normal sampling density with mean γ̂ZZ and variance ΣZZ . ZZ takes M2SE or MLE.

We consider two kinds of candidates of the sampling density for the Bayesian estimator,

which are denoted by BM2SE and BMLE.

Thus, in Section 3.1.4, we compare the two Bayesian estimators (i.e, BM2SE and BMLE)
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with the two traditional estimators (i.e., M2SE and MLE).

3.1.4 Monte Carlo Study

Setup of the Model: In the Monte Carlo study, we consider using the artificially sim-

ulated data, in which the true data generating process (DGP) is presented in Judge, Hill,

Griffiths and Lee (1980, p.156).

The DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, (14)

where ut, t = 1, 2, · · · , n, are normally and independently distributed with E(ut) = 0, E(u2
t ) =

σ2
t and,

σ2
t = exp(γ1 + γ2x2,t), for t = 1, 2, · · · , n. (15)
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As it is discussed in Judge, Hill, Griffiths and Lee (1980), the parameter values are set to

be (β1, β2, β3, γ1, γ2) = (10, 1, 1,−2, 0.25).

From (14) and (15), Judge, Hill, Griffiths and Lee (1980, pp.160 – 165) generated one

hundred samples of y with n = 20.

In the Monte Carlo study, we utilize x2,t and x3,t given in Judge, Hill, Griffiths and Lee

(1980, pp.156), which is shown in Table 1, and generate G samples of yt given the Xt for

t = 1, 2, · · · , n.

That is, we perform G simulation runs for each estimator, where G = 104 is taken.

The simulation procedure is as follows:

(i) Given γ and x2,t for t = 1, 2, · · · , n, generate random numbers of ut for t = 1, 2, · · · , n,

based on the assumptions: ut ∼ N(0, σ2
t ), where (γ1, γ2) = (−2, 0.25) and σ2

t =

exp(γ1 + γ2x2,t) are taken.

(ii) Given β, (x2,t, x3,t) and ut for t = 1, 2, · · · , n, we obtain a set of data yt, t = 1, 2, · · · , n,
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Table 1: The Exogenous Variables x1,t and x2,t

t 1 2 3 4 5 6 7 8 9 10

x2,t 14.53 15.30 15.92 17.41 18.37 18.83 18.84 19.71 20.01 20.26

x3,t 16.74 16.81 19.50 22.12 22.34 17.47 20.24 20.37 12.71 22.98

t 11 12 13 14 15 16 17 18 19 20

x2,t 20.77 21.17 21.34 22.91 22.96 23.69 24.82 25.54 25.63 28.73

x3,t 19.33 17.04 16.74 19.81 31.92 26.31 25.93 21.96 24.05 25.66
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from equation (14), where (β1, β2, β3) = (10, 1, 1) is assumed.

(iii) Given (yt, Xt) for t = 1, 2, · · · , n, perform M2SE, MLE, BM2SE and BMLE discussed

in Sections 3.1.2 and 3.1.3 in order to obtain the estimates of θ = (β, γ), denoted by

θ̂.

Note that θ̂ takes θ̂M2S E , θ̂MLE , θ̂BM2S E and θ̂BMLE .

(iv) Repeat (i) – (iii) G times, where G = 104 is taken as mentioned above.

(v) From G estimates of θ, compute the arithmetic average (AVE), the root mean square

error (RMSE), the first quartile (25%), the median (50%), the third quartile (75%)

and the interquartile range (IR) for each estimator.

AVE and RMSE are obtained as follows:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE =

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)2

)1/2
,
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for j = 1, 2, · · · , 5, where θ j denotes the jth element of θ and θ̂(g)
j represents the

j-element of θ̂ in the gth simulation run.

As mentioned above, θ̂ denotes the estimate of θ, where θ̂ takes θ̂M2S E , θ̂MLE , θ̂BM2S E and

θ̂BMLE .

Choice of (γ+, Σ+) and c: For the Bayesian approach, depending on (γ+, Σ+) we have

BM2SE and BMLE, which denote the Bayesian estimators using the multivariate normal

sampling density whose mean and covariance matrix are calibrated on the basis of M2SE

or MLE.

We consider the following sampling density: f∗(γ) = N(γ+, c2Σ+), where c denotes the

tuning parameter and (γ+,Σ+) takes (γM2S E ,ΣM2S E ) or (γMLE ,ΣMLE ).

Generally, for choice of the sampling density, the sampling density should not have too

large variance and too small variance.
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Figure 1: Acceptance Rates in Average: M = 5000 and N = 104
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Chib and Greenberg (1995) pointed out that if standard deviation of the sampling density

is too low, the Metropolis steps are too short and move too slowly within the target distri-

bution; if it is too high, the algorithm almost always rejects and stays in the same place.

The sampling density should be chosen so that the chain travels over the support of the

target density.

First, we consider choosing (γ+,Σ+) and c which maximizes the arithmetic average of the

acceptance rates obtained from G simulation runs.

The results are in Figure 1, where n = 20, M = 5000, N = 104, G = 104 and c =

0.1, 0.2, · · · , 4.0 are taken (choice of N and M is discussed in Appendix of Section 3.1.6).

In the case of (γ+,Σ+) = (γMLE ,ΣMLE ) and c = 1.2, the acceptance rate in average is 0.5078,

which gives us the largest one.

It is important to reduce positive correlation between γi and γi−1 and keep randomness.

Therefore, (γ+,Σ+) = (γMLE , ΣMLE ) is adopted, rather than (γ+,Σ+) = (γM2S E , ΣM2S E ), because
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BMLE has a larger acceptance probability than BM2SE for all c (see Figure 1).

However, the sampling density with the largest acceptance probability is not necessarily

the best choice.

We have the result that the optimal standard error should be 1.5 – 2.5 times larger than the

standard error which gives us the largest acceptance probability.

Here, (γ+,Σ+) = (γMLE ,ΣMLE ) and c = 2 are taken.

When c is larger than 2, both the estimates and their standard errors become stable although

here we do not show these facts.

Therefore, in this Monte Carlo study, f∗(γ) = N(γMLE , 2
2ΣMLE ) is chosen for the sampling

density.

Hereafter, we compare BMLE with M2SE and MLE (i.e., we do not consider BM2SE

anymore).

As for computational CPU time, the case of n = 20, M = 5000, N = 104 and G = 104 takes
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about 76 minutes for each of c = 0.1, 0.2, · · · , 4.0 and each of BM2SE and BMLE, where

Dual Pentium III 1GHz CPU, Microsoft Windows 2000 Professional Operating System and

Open Watcom FORTRAN 77/32 Optimizing Compiler (Version 1.0) are utilized.

Note that WATCOM Fortran 77 Compiler is downloaded from

http://www.openwatcom.org/.

Results and Discussion: Through Monte Carlo simulation studies, the Bayesian esti-

mator (i.e., BMLE) is compared with the traditional estimators (i.e., M2SE and MLE).

The arithmetic mean (AVE) and the root mean square error (RMSE) have been usually used

in Monte Carlo study.

Moreover, for comparison with the standard normal distribution, Skewness and Kurtosis

are also computed.

Moments of the parameters are needed in the calculation of AVE, RMSE, Skewness and
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Kurtosis.

However, we cannot assure that these moments actually exist.

Therefore, in addition to AVE and RMSE, we also present values for quartiles, i.e., the first

quartile (25%), median (50%), the third quartile (75%) and the interquartile range (IR).

Thus, for each estimator, AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75% and IR are

computed from G simulation runs.

The results are given in Table 3, where BMLE is compared with M2SE and MLE.

The case of n = 20, M = 5000 and N = 104 is examined in Table 3.

A discussion on choice of M and N is given in Appendix 3.1.6, where we examine whether

M = 5000 and N = 104 are sufficient.
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Table 3: The AVE, RMSE and Quartiles: n = 20

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.064 0.995 1.002 −0.988 0.199

RMSE 7.537 0.418 0.333 3.059 0.146

Skewness 0.062 −0.013 −0.010 −0.101 −0.086

M2SE Kurtosis 4.005 3.941 2.988 3.519 3.572

25% 5.208 0.728 0.778 −2.807 0.113

50% 10.044 0.995 1.003 −0.934 0.200

75% 14.958 1.261 1.227 0.889 0.287

IR 9.751 0.534 0.449 3.697 0.175
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Table 3: The AVE, RMSE and Quartiles: n = 20 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.029 0.997 1.002 −2.753 0.272

RMSE 7.044 0.386 0.332 2.999 0.139

Skewness 0.081 −0.023 −0.014 0.006 −0.160

MLE Kurtosis 4.062 3.621 2.965 4.620 4.801

25% 5.323 0.741 0.775 −4.514 0.189

50% 10.066 0.998 1.002 −2.710 0.273

75% 14.641 1.249 1.229 −0.958 0.355

IR 9.318 0.509 0.454 3.556 0.165
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Table 3: The AVE, RMSE and Quartiles: n = 20 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.034 0.996 1.002 −2.011 0.250

RMSE 6.799 0.380 0.328 2.492 0.117

Skewness 0.055 −0.016 −0.013 −0.016 −0.155

BMLE Kurtosis 3.451 3.340 2.962 3.805 3.897

25% 5.413 0.745 0.778 −3.584 0.176

50% 10.041 0.996 1.002 −1.993 0.252

75% 14.538 1.246 1.226 −0.407 0.325

IR 9.125 0.501 0.448 3.177 0.150

c = 2.0, M = 5000 and N = 104 are chosen for BMLE

First, we compare the two traditional estimators, i.e., M2SE and MLE.

Judge, Hill, Griffiths and Lee (1980, pp.141–142) indicated that 2SE of γ1 is inconsistent

although 2SE of the other parameters is consistent but asymptotically inefficient.
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For M2SE, the estimate of γ1 is modified to be consistent.

But M2SE is still asymptotically inefficient while MLE is consistent and asymptotically

efficient.

Therefore, for γ, MLE should have better performance than M2SE in the sense of efficiency.

In Table 3, for all the parameters except for IR of β3, RMSE and IR of MLE are smaller

than those of M2SE.

For both M2SE and MLE, AVEs of β are close to the true parameter values.

Therefore, it might be concluded that M2SE and MLE are unbiased for β even in the case

of small sample.

However, the estimates of γ are different from the true values for both M2SE and MLE.

That is, AVE and 50% of γ1 are −0.988 and −0.934 for M2SE, and −2.753 and −2.710 for

MLE, which are far from the true value −2.0.

Similarly, AVE and 50% of γ2 are 0.199 and 0.200 for M2SE, which are different from the
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true value 0.25.

But 0.272 and 0.273 for MLE are slightly larger than 0.25 and they are close to 0.25.

Thus, the traditional estimators work well for the regression coefficients β but not for the

heteroscedasticity parameters γ.

Next, the Bayesian estimator (i.e., BMLE) is compared with the traditional ones (i.e., M2SE

and MLE).

For all the parameters of β, we can find from Table 3 that BMLE shows better performance

in RMSE and IR than the traditional estimators, because RMSE and IR of BMLE are

smaller than those of M2SE and MLE.

Furthermore, from AVEs of BMLE, we can see that the heteroscedasticity parameters as

well as the regression coefficients are unbiased in the small sample.

Thus, Table 3 also shows the evidence that for both β and γ, AVE and 50% of BMLE are

very close to the true parameter values.
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The values of RMSE and IR also indicate that the estimates are concentrated around the

AVE and 50%, which are vary close to the true parameter values.

For the regression coefficient β, all of the three estimators are very close to the true pa-

rameter values. However, for the heteroscedasticity parameter γ, BMLE shows a good

performance but M2SE and MLE are poor.

The larger values of RMSE for the traditional counterparts may be due to “outliers” en-

countered with the Monte Carlo experiments.

This problem is also indicated in Zellner (1971, pp.281).

Compared with the traditional counterparts, the Bayesian approach is not characterized by

extreme values for posterior modal values.

Now we compare empirical distributions for M2SE, MLE and BMLE in Figures 2 – 6.

For the posterior densities of β1 (Figure 2), β2 (Figure 3), β3 (Figure 4) and γ1 (Figure 5),

all of M2SE, MLE and BMLE are almost symmetric (also, see Skewness in Table 3).
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Figure 2: Empirical Distributions of β1
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Figure 3: Empirical Distributions of β2
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Figure 4: Empirical Distributions of β3
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Figure 5: Empirical Distributions of γ1
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Figure 6: Empirical Distributions of γ2
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For the posterior density of γ2 (Figure 6), both MLE and BMLE are slightly skewed to the

left because Skewness of γ2 in Table 3 is negative, while M2SE is almost symmetric.

As for Kurtosis, all the empirical distributions except for β3 have a sharp kurtosis and fat

tails, compared with the normal distribution.

Especially, for the heteroscedasticity parameters γ1 and γ2, MLE has the largest kurtosis of

the three.

For all figures, location of the empirical distributions indicates whether the estimators are

unbiased or not.

For β1 in Figure 2, β2 in Figure 3 and β3 in Figure 4, M2SE is biased while MLE and BMLE

are distributed around the true value.

For γ1 in Figure 5 and γ2 in Figure 6, the empirical distributions of M2SE, MLE and BMLE

are quite different.

For γ1 in Figure 5, M2SE is located in the right-hand side of the true parameter value, MLE
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is in the left-hand side, and BMLE is also slightly in the left-hand side.

Moreover, for γ2 in Figure 6, M2SE is downward-biased, MLE is overestimated, and

BMLE is distributed around the true parameter value.

On the Sample Size n: Finally, we examine how the sample size n influences precision

of the parameter estimates.

Since we utilize the exogenous variable X shown in Judge, Hill, Griffiths and Lee (1980),

we cannot examine the case where n is greater than 20.

In order to see the effect of the sample size n, here the case of n = 15 is compared with that

of n = 20.

The case n = 15 of BMLE is shown in Table 4, which should be compared with BMLE in

Table 3.

As a result, all the AVEs are very close to the corresponding true parameter values.
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Therefore, we can conclude from Tables 3 and 4 that the Bayesian estimator is unbiased

even in the small sample such as n = 15, 20.

However, RMSE and IR become large as n decreases.

That is, for example, RMSEs of β1, β2, β3, γ1 and γ2 are given by 6.799, 0.380, 0.328, 2.492

and 0.117 in Table 3, and 8.715, 0.455, 0.350, 4.449 and 0.228 in Table 4.

Thus, we can see that RMSE and IR decrease as n is large.
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Table 4: BMLE: n = 15, c = 2.0, M = 5000 and N = 104

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.060 0.995 1.002 −2.086 0.252

RMSE 8.715 0.455 0.350 4.449 0.228

Skewness 0.014 0.033 −0.064 −0.460 0.308

Kurtosis 3.960 3.667 3.140 4.714 4.604

25% 4.420 0.702 0.772 −4.725 0.107

50% 10.053 0.995 1.004 −1.832 0.245

75% 15.505 1.284 1.237 0.821 0.391

IR 11.085 0.581 0.465 5.547 0.284
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3.1.5 Summary

In Section 3.1, we have examined the multiplicative heteroscedasticity model discussed

by Harvey (1976), where the two traditional estimators are compared with the Bayesian

estimator.

For the Bayesian approach, we have evaluated the posterior mean by generating random

draws from the posterior density, where the Markov chain Monte Carlo methods (i.e., the

MH within Gibbs algorithm) are utilized.

In the MH algorithm, the sampling density has to be specified.

We examine the multivariate normal sampling density, which is the independence chain in

the MH algorithm.

For mean and variance in the sampling density, we consider using the mean and variance

estimated by the two traditional estimators (i.e., M2SE and MLE).

The Bayesian estimators with M2SE and MLE are called BM2SE and BMLE in Section
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3.1.

Through the Monte Carlo studies, the results are summarized as follows:

(i) We compare BM2SE and BMLE with respect to the acceptance rates in the MH

algorithm.

In this case, BMLE shows higher acceptance rates than BM2SE for all c, which is

shown in Figure 1.

For the sampling density, we utilize the independence chain through Section 3.1.

The high acceptance rate implies that the chain travels over the support of the target

density.

For the Bayesian estimator, therefore, BMLE is preferred to BM2SE.

However, note as follows.
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The sampling density which yields the highest acceptance rate is not necessarily the

best choice and the tuning parameter c should be larger than the value which gives

us the maximum acceptance rate.

Therefore, we have focused on BMLE with c = 2 (remember that BMLE with c = 1.2

yields the maximum acceptance rate).

(ii) For the traditional estimators (i.e., M2SE and MLE), we have obtained the result that

MLE has smaller RMSE than M2SE for all the parameters, because for one reason

the M2SE is asymptotically less efficient than the MLE.

Furthermore, for M2SE, the estimates of β are unbiased but those of γ are different

from the true parameter values (see Table 3).

(iii) From Table 3, BMLE performs better than the two traditional estimators in the sense

of RMSE and IR, because RMSE and IR of BMLE are smaller than those of the

traditional ones for all the cases.
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(iv) Each empirical distribution is displayed in Figures 2 – 6.

The posterior densities of almost all the estimates are distributed to be symmetric

(γ2 is slightly skewed to the left), but the posterior densities of both the regression

coefficients (except for β3) and the heteroscedasticity parameters have fat tails.

Also, see Table 3 for skewness and kurtosis.

(v) As for BMLE, the case of n = 15 is compared with n = 20.

The case n = 20 has smaller RMSE and IR than n = 15, while AVE and 50% are

close to the true parameter values for β and γ.

Therefore, it might be expected that the estimates of BMLE go to the true parameter

values as n is large.
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3.1.6 Appendix: Are M = 5000 and N = 104 Sufficient?

Table 5: BMLE: n = 20 and c = 2.0

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.028 0.997 1.002 −2.008 0.250

RMSE 6.807 0.380 0.328 2.495 0.117

Skewness 0.041 −0.007 −0.012 0.017 −0.186

M = 1000 Kurtosis 3.542 3.358 2.963 3.950 4.042

N = 104 25% 5.413 0.745 0.778 −3.592 0.176

50% 10.027 0.996 1.002 −1.998 0.252

75% 14.539 1.245 1.226 −0.405 0.326

IR 9.127 0.500 0.448 3.187 0.150
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Table 5: BMLE: n = 20 and c = 2.0 — Cont.

β1 β2 β3 γ1 γ2

True Value 10 1 1 −2 0.25

AVE 10.033 0.996 1.002 −2.010 0.250

RMSE 6.799 0.380 0.328 2.491 0.117

Skewness 0.059 −0.016 −0.011 −0.024 −0.146

M = 5000 Kurtosis 3.498 3.347 2.961 3.764 3.840

N = 5000 25% 5.431 0.747 0.778 −3.586 0.176

50% 10.044 0.995 1.002 −1.997 0.252

75% 14.532 1.246 1.225 −0.406 0.326

IR 9.101 0.499 0.447 3.180 0.149

In Section 3.1.4, only the case of (M,N) = (5000, 104) is examined.

In this appendix, we check whether M = 5000 and N = 104 are sufficient.

For the burn-in period M, there are some diagnostic tests, which are discussed in Geweke
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(1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999).

However, since their tests are applicable in the case of one sample path, we cannot utilize

them.

Because G simulation runs are implemented in Section 3.1.4 (see p.218 for the simulation

procedure), we have G test statistics if we apply the tests.

It is difficult to evaluate G testing results at the same time.

Therefore, we consider using the alternative approach to see if M = 5000 and N = 104 are

sufficient.

For choice of M and N, we consider the following two issues.

(i) Given fixed M = 5000, compare N = 5000 and N = 104.

(ii) Given fixed N = 104, compare M = 1000 and M = 5000.

(i) examines whether N = 5000 is sufficiently large, while (ii) checks whether M = 1000 is
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large enough. If the case of (M,N) = (5000, 5000) is close to that of (M,N) = (5000, 104),

we can conclude that N = 5000 is sufficiently large.

Similarly, if the case of (M,N) = (1000, 104) is not too different from that of (M,N) =

(5000, 104), it might be concluded that M = 1000 is also sufficient.

The results are in Table 5, where AVE, RMSE, Skewness, Kurtosis, 25%, 50%, 75% and

IR are shown for each of the regression coefficients and the heteroscedasticity parameters.

BMLE in Table 3 should be compared with Table 5.

From Tables 3 and 5, the three cases, i.e., (M,N) = (5000, 104), (1000, 104), (5000, 5000),

are very close to each other.

Therefore, we can conclude that both M = 1000 and N = 5000 are large enough in the

simulation study shown in Section 3.1.4.

We take the case of M = 5000 and N = 104 for safety in Section 3.1.4, although we obtain

the results that both M = 1000 and N = 5000 are large enough.
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3.2 Autocorrelation Model

In the previous section, we have considered estimating the regression model with the het-

eroscedastic error term, where the traditional estimators such as MLE and M2SE are com-

pared with the Bayesian estimators.

In this section, using both the maximum likelihood estimator and the Bayes estimator,

we consider the regression model with the first order autocorrelated error term, where the

initial distribution of the autocorrelated error is taken into account.

As for the autocorrelated error term, the stationary case is assumed, i.e., the autocorrelation

coefficient is assumed to be less than one in absolute value.

The traditional estimator (i.e., MLE) is compared with the Bayesian estimator. Utilizing the

Gibbs sampler, Chib (1993) discussed the regression model with the autocorrelated error

term in a Bayesian framework, where the initial condition of the autoregressive process is

not taken into account.

250



In this section, taking into account the initial density, we compare the maximum likelihood

estimator and the Bayesian estimator.

For the Bayes estimator, the Gibbs sampler and the Metropolis-Hastings algorithm are

utilized to obtain random draws of the parameters.

As a result, the Bayes estimator is less biased and more efficient than the maximum likeli-

hood estimator. Especially, for the autocorrelation coefficient, the Bayes estimate is much

less biased than the maximum likelihood estimate.

Accordingly, for the standard error of the estimated regression coefficient, the Bayes esti-

mate is more plausible than the maximum likelihood estimate.

3.2.1 Introduction

In Section 3.2, we consider the regression model with the first order autocorrelated error

term, where the error term is assumed to be stationary, i.e., the autocorrelation coefficient
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is assumed to be less than one in absolute value.

The traditional estimator, i.e., the maximum likelihood estimator (MLE), is compared with

the Bayes estimator (BE).

Utilizing the Gibbs sampler, Chib (1993) and Chib and Greenberg (1994) discussed the

regression model with the autocorrelated error term in a Bayesian framework, where the

initial condition of the autoregressive process is ignored.

Here, taking into account the initial density, we compare MLE and BE, where the Gibbs

sampler and the Metropolis-Hastings (MH) algorithm are utilized in BE.

As for MLE, it is well known that the autocorrelation coefficient is underestimated in small

sample and therefore that variance of the estimated regression coefficient is also biased.

See, for example, Andrews (1993) and Tanizaki (2000, 2001).

Under this situation, inference on the regression coefficient is not appropriate, because

variance of the estimated regression coefficient depends on the estimated autocorrelation
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coefficient.

We show in Section 3.2 that BE is superior to MLE because BEs of both the autocorrelation

coefficient and the variance of the error term are closer to the true values, compared with

MLEs.

3.2.2 Setup of the Model

Let Xt be a 1 × k vector of exogenous variables and β be a k × 1 parameter vector.

Consider the following regression model:

yt = Xtβ + ut, ut = ρut−1 + ϵt, ϵt ∼ N(0, σ2
ϵ ),

for t = 1, 2, · · · , n, where ϵ1, ϵ2, · · ·, ϵn are assumed to be mutually independently distributed.

In this model, the parameter to be estimated is given by θ = (β, ρ, σ2
ϵ ).
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The unconditional density of yt is:

f (yt|β, ρ, σ2
ϵ ) =

1√
2πσ2

ϵ/(1 − ρ2)
exp

(
− 1

2σ2
ϵ/(1 − ρ2)

(yt − Xtβ)2
)
.

Let Yt be the information set up to time t, i.e., Yt = {yt, yt−1, · · · , y1}.

The conditional density of yt given Yt−1 is:

f (yt|Yt−1, β, ρ, σ
2
ϵ ) = f (yt|yt−1, β, ρ, σ

2
ϵ )

=
1√

2πσ2
ϵ

exp
(
− 1

2σ2
ϵ

((yt − ρyt−1) − (Xt − ρXt−1)β)2
)
.

Therefore, the joint density of Yn, i.e., the likelihood function, is given by :

f (Yn|β, ρ, σ2
ϵ ) = f (y1|β, ρ, σ2

ϵ )
n∏

t=2

f (yt|Yt−1, β, ρ, σ
2
ϵ )

= (2πσ2
ϵ )
−n/2(1 − ρ2)1/2 exp

(
− 1

2σ2
ϵ

n∑
t=1

(y∗t − X∗t β)
2
)
, (16)
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where y∗t and X∗t represent the following transformed variables:

y∗t = y∗t (ρ) =


√

1 − ρ2yt, for t = 1,

yt − ρyt−1, for t = 2, 3, · · · , n,

X∗t = X∗t (ρ) =


√

1 − ρ2Xt, for t = 1,

Xt − ρXt−1, for t = 2, 3, · · · , n,

which depend on the autocorrelation coefficient ρ.

Maximum Likelihood Estimator: We have shown above that the likelihood function is

given by equation (16).

Maximizing equation (16) with respect to β and σ2
ϵ , we obtain the following expressions:

β̂ ≡ β̂(ρ) = (
n∑

t=1

X∗t
′X∗t )−1

n∑
t=1

X∗t
′y∗t ,
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σ̂2
ϵ ≡ σ̂2

ϵ (ρ) =
1
n

n∑
t=1

(y∗t − X∗t β̂)
2. (17)

By substituting β̂ and σ̂2
ϵ into β andσ2

ϵ in equation (16), we have the concentrated likelihood

function:

f (Yn|β̂, ρ, σ̂2
ϵ ) =

(
2πσ̂2

ϵ (ρ)
)−n/2

(1 − ρ2)1/2 exp(−n
2

), (18)

which is a function of ρ.

Equation (18) has to be maximized with respect to ρ.

In the next section, we obtain the maximum likelihood estimate of ρ by a simple grid

search, in which the concentrated likelihood function (18) is maximized by changing the

parameter value of ρ by 0.0001 in the interval between −0.9999 and 0.9999.

Once the solution of ρ, denoted by ρ̂, is obtained, β̂(ρ̂) and σ̂2
ϵ (ρ̂) lead to the maximum

likelihood estimates of β and σ2
ϵ .
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Hereafter, β̂, σ̂2
ϵ and ρ̂ are taken as the maximum likelihood estimates of β, σ2

ϵ and ρ, i.e.,

β̂(ρ̂) and σ̂2
ϵ (ρ̂) are simply written as β̂ and σ̂2

ϵ .

Variance of the estimate of θ = (β′, σ2, ρ)′ is asymptotically given by: V(θ̂) = I−1(θ), where

I(θ) denotes the information matrix, which is represented as:

I(θ) = −E
(
∂2 log f (Yn|θ)
∂θ∂θ′

)
.

Therefore, variance of β̂ is given by V(β̂) = σ2(
∑n

t=1 X∗t
′X∗t )−1 in large sample, where ρ in

X∗t is replaced by ρ̂, i.e., X∗t = X∗t (ρ̂).

For example, suppose that X∗t has a tendency to rise over time t and that we have ρ > 0.

If ρ is underestimated, then V(β̂) is also underestimated, which yields incorrect inference

on the regression coefficient β.

Thus, unless ρ is properly estimated, the estimate of V(β̂) is also biased.

In large sample, ρ̂ is a consistent estimator of ρ and therefore V(β̂) is not biased.
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However, in small sample, since it is known that ρ̂ is underestimated (see, for example,

Andrews (1993), Tanizaki (2000, 2001)), clearly V(β̂) is also underestimated.

In addition to ρ̂, the estimate of σ2 also influences inference of β, because we have V(β̂) =

σ2(
∑n

t=1 X∗t
′X∗t )−1 as mentioned above.

If σ2 is underestimated, the estimated variance of β is also underestimated.

σ̂2 is a consistent estimator of σ2 in large sample, but it is appropriate to consider that σ̂2

is biased in small sample, because σ̂2 is a function of ρ̂ as in (17).

Therefore, the biased estimate of ρ gives us the serious problem on inference of β.

Bayesian Estimator: We assume that the prior density functions of β, ρ and σ2
ϵ are the

following noninformative priors:

fβ(β) ∝ constant, for −∞ < β < ∞, (19)

fρ(ρ) ∝ constant, for −1 < ρ < 1, (20)
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fσϵ (σ
2
ϵ ) ∝

1
σ2
ϵ

, for 0 < σ2
ϵ < ∞. (21)

In equation (20), theoretically we should have −1 < ρ < 1.

As for the prior density of σ2
ϵ , since we consider that logσ2

ϵ has the flat prior for −∞ <

logσ2
ϵ < ∞, we obtain fσϵ (σ

2
ϵ ) ∝ 1/σ2

ϵ .

Note that in Section 3.1 the first element of the heteroscedasticity parameter γ is also as-

sumed to be diffuse, where it is formulated as the logarithm of variance of the error term,

i.e., logσ2
ϵ .

Combining the four densities (16) and (19) – (21), the posterior density function of β, ρ and

σ2
ϵ , denoted by fβρσϵ (β, ρ, σ

2
ϵ |Yn), is represented as follows:

fβρσϵ (β, ρ, σ
2
ϵ |Yn)

∝ f (Yn|β, ρ, σ2
ϵ ) fβ(β) fρ(ρ) fσϵ (σ

2
ϵ )

∝ (σ2
ϵ )
−(n/2+1)(1 − ρ2)1/2 exp

(
− 1

2σ2
ϵ

n∑
t=1

(y∗t − X∗t β)
2
)
. (22)
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We want to have random draws of β, ρ and σ2
ϵ given Yn.

However, it is not easy to generate random draws of β, ρ and σ2
ϵ from fβρσϵ (β, ρ, σ

2
ϵ |Yn).

Therefore, we perform the Gibbs sampler in this problem.

According to the Gibbs sampler, we can sample from the posterior density function (22),

using the three conditional distributions fβ|ρσϵ (β|ρ, σ2
ϵ ,Yn), fρ|βσϵ (ρ|β, σ2

ϵ ,Yn) and fσϵ |βρ(σ
2
ϵ |β, ρ, Yn),

which are proportional to fβρσ(β, ρ, σ2|Yn) and are obtained as follows:

• fβ|ρσϵ (β|ρ, σ2
ϵ ,Yn) is given by:

fβ|ρσϵ (β|ρ, σ2
ϵ ,Yn)

∝ fβρσϵ (β, ρ, σ
2
ϵ |Yn) ∝ exp

(
− 1

2σ2
ϵ

n∑
t=1

(y∗t − X∗t β)
2
)

= exp
(
− 1

2σ2
ϵ

n∑
t=1

(
(y∗t − X∗t β̂) − Xt(β − β̂)

)2)
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= exp
(
− 1

2σ2
ϵ

n∑
t=1

(y∗t − X∗t β̂)
2 − 1

2σ2
ϵ

(β − β̂)′(
n∑

t=1

X∗t
′X∗t )(β − β̂)

)
∝ exp

(
−1

2
(β − β̂)′( 1

σ2
ϵ

n∑
t=1

X∗t
′X∗t )(β − β̂)

)
, (23)

which indicates that β ∼ N(β̂, σ2
ϵ (
∑n

t=1 X∗t
′X∗t )−1), where β̂ represents the OLS estimate, i.e.,

β̂ = (
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ).

Thus, (23) implies that β can be sampled from the multivariate normal distribution with

mean β̂ and variance σ2
ϵ (
∑n

t=1 X∗t
′X∗t )−1.

• fρ|βσϵ (ρ|β, σ2
ϵ ,Yn) is obtained as:

fρ|βσϵ (ρ|β, σ2
ϵ ,Yn) ∝ fβρσϵ (β, ρ, σ

2
ϵ |Yn)

∝ (1 − ρ2)1/2 exp
(
− 1

2σ2
ϵ

n∑
t=1

(
y∗t − X∗t β

)2)
, (24)

for −1 < ρ < 1, which cannot be represented in a known distribution.
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Note that y∗t = y∗t (ρ) and X∗t = X∗t (ρ).

Sampling from (24) is implemented by the MH algorithm.

A detail discussion on sampling will be given later.

• fσϵ |βρ(σ
2
ϵ |β, ρ, Yn) is represented as:

fσϵ |βρ(σ
2
ϵ |β, ρ, Yn) ∝ fβρσϵ (β, ρ, σ

2
ϵ |Yn)

∝ 1
(σ2
ϵ )n/2+1 exp

(
− 1

2σ2
ϵ

n∑
t=1

(y∗t − X∗t β)
2
)
, (25)

which is written as follows: σ2
ϵ ∼ IG(n/2, 2/

∑n
t=1 ϵ

2
t ), or equivalently, 1/σ2

ϵ ∼ G(n/2,

2/
∑n

t=1 ϵ
2
t ), where ϵt = y∗t − X∗t β.

Thus, in order to generate random draws of β, ρ andσ2
ϵ from the posterior density fβρσϵ (β, ρ, σ

2
ϵ |Yn),

the following procedures have to be taken:

(i) Let βi, ρi and σ2
ϵ,i be the ith random draws of β, ρ and σ2

ϵ .
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Take the initial values of (β, ρ, σ2
ϵ ) as (β−M, ρ−M, σ2

ϵ,−M).

(ii) From equation (23), generate βi given ρi−1,σ2
ϵ,i−1 and Yn, using β∼ N(β̂,σ2

ϵ,i−1(
∑n

t=1 X∗t
′X∗t )−1),

where β̂ = (
∑n

t=1 X∗t
′X∗t )−1(

∑n
t=1 X∗t

′y∗t ), y∗t = y∗t (ρi−1) and X∗t = X∗t (ρi−1).

(iii) From equation (24), generate ρi given βi, σ2
ϵ,i−1 and Yn.

Since it is not easy to generate random draws from (23), the Metropolis-Hastings

algorithm is utilized, which is implemented as follows:

(a) Generate ρ∗ from the uniform distribution between −1 and 1, which implies that

the sampling density of ρ is given by f∗(ρ|ρi−1) = 1/2 for −1 < ρ < 1.

Compute the acceptance probability ω(ρi−1, ρ
∗), which is defined as:

ω(ρi−1, ρ
∗) = min

 fρ|βσϵ (ρ
∗|βi, σ

2
ϵ,i−1,Yn)/ f∗(ρ∗|ρi−1)

fρ|βσϵ (ρi−1|βi, σ
2
ϵ,i−1,Yn)/ f∗(ρi−1|ρ∗)

, 1


= min

 fρ|βσϵ (ρ
∗|βi, σ

2
ϵ,i−1,Yn)

fρ|βσϵ (ρi−1|βi, σ
2
ϵ,i−1,Yn)

, 1

 .
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(b) Set ρi = ρ
∗ with probability ω(ρi−1, ρ

∗) and ρi = ρi−1 otherwise.

(iv) From equation (25), generateσ2
ϵ,i given βi, ρi and Yn, using 1/σ2

ϵ ∼G(n/2, 2/
∑n

t=1 u2
t ),

where ut = y∗t − X∗t β, y∗t = y∗t (ρi) and X∗t = X∗t (ρi).

(v) Repeat Steps (ii) – (iv) for i = −M+1,−M+2, · · · ,N, where M indicates the burn-in

period.

Repetition of Steps (ii) – (iv) corresponds to the Gibbs sampler.

For sufficiently large M, we have the following results:

1
N

N∑
i=1

g(βi) −→ E(g(β)),

1
N

N∑
i=1

g(ρi) −→ E(g(ρ)),

1
N

N∑
i=1

g(σ2
ϵ,i) −→ E(g(σ2

ϵ )),
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where g(·) is a function, typically g(x) = x or g(x) = x2.

We define the Bayesian estimates of β, ρ and σ2
ϵ as β̃ ≡ (1/N)

∑N
i=1 βi, ρ̃ ≡ (1/N)

∑N
i=1 ρi and

σ̃2
ϵ ≡ (1/N)

∑N
i=1 σ

2
ϵ,i, respectively.

Thus, using both the Gibbs sampler and the MH algorithm, we have shown that we can

sample from fβρσϵ (β, ρ, σ
2
ϵ |Yn).

See, for example, Bernardo and Smith (1994), Carlin and Louis (1996), Chen, Shao and

Ibrahim (2000), Gamerman (1997), Robert and Casella (1999) and Smith and Roberts

(1993) for the Gibbs sampler and the MH algorithm.

3.2.3 Monte Carlo Experiments

For the exogenous variables, again we take the data used in Section 3.1, in which the true

data generating process (DGP) is presented in Judge, Hill, Griffiths and Lee (1980, p.156).
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As in equation (14), the DGP is defined as:

yt = β1 + β2x2,t + β3x3,t + ut, ut = ρut−1 + ϵt, (26)

where ϵt, t = 1, 2, · · · , n, are normally and independently distributed with E(ϵt) = 0 and

E(ϵ2t ) = σ2
ϵ .

As in Judge, Hill, Griffiths and Lee (1980), the parameter values are set to be (β1, β2, β3) =

(10, 1, 1).

We utilize x2,t and x3,t given in Judge, Hill, Griffiths and Lee (1980, pp.156), which is

shown in Table 1, and generate G samples of yt given the Xt for t = 1, 2, · · · , n.

That is, we perform G simulation runs for each estimator, where G = 104 is taken.

The simulation procedure is as follows:

(i) Given ρ, generate random numbers of ut for t = 1, 2, · · · , n, based on the assumptions:

ut = ρut−1 + ϵt and ϵt ∼ N(0, 1).
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Figure 7: The Arithmetic Average from the 104 MLE’s of AR(1) Coeff.
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Figure 8: The Arithmetic Average from the 104 BE’s of AR(1) Coeff.

——— M = 5000 and N = 104 ———
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Table 2: MLE: n = 20 and ρ = 0.9

Parameter β1 β2 β3 ρ σ2
ϵ

True Value 10 1 1 0.9 1

AVE 10.012 0.999 1.000 0.559 0.752

SER 3.025 0.171 0.053 0.240 0.276

RMSE 3.025 0.171 0.053 0.417 0.372

Skewness 0.034 −0.045 −0.008 −1.002 0.736

Kurtosis 2.979 3.093 3.046 4.013 3.812

5% 5.096 0.718 0.914 0.095 0.363

10% 6.120 0.785 0.933 0.227 0.426

25% 7.935 0.883 0.965 0.426 0.550

50% 10.004 0.999 1.001 0.604 0.723

75% 12.051 1.115 1.036 0.740 0.913

90% 13.913 1.217 1.068 0.825 1.120

95% 15.036 1.274 1.087 0.863 1.255

269



Table 3: BE with M = 5000 and N = 104: n = 20 and ρ = 0.9

Parameter β1 β2 β3 ρ σ2
ϵ

True Value 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051

SER 2.782 0.160 0.051 0.188 0.380

RMSE 2.782 0.160 0.051 0.304 0.384

Skewness 0.008 −0.029 −0.022 −1.389 0.725

Kurtosis 3.018 3.049 2.942 5.391 3.783

5% 5.498 0.736 0.915 0.285 0.515

10% 6.411 0.798 0.934 0.405 0.601

25% 8.108 0.891 0.966 0.572 0.776

50% 10.018 1.000 1.001 0.707 1.011

75% 11.888 1.107 1.036 0.799 1.275

90% 13.578 1.205 1.067 0.852 1.555

95% 14.588 1.258 1.085 0.875 1.750
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Table 4: BE with M = 5000 and N = 5000: n = 20 and ρ = 0.9

Parameter β1 β2 β3 ρ σ2
ϵ

True Value 10 1 1 0.9 1

AVE 10.011 0.999 1.000 0.661 1.051

SER 2.785 0.160 0.051 0.189 0.380

RMSE 2.785 0.160 0.052 0.305 0.384

Skewness 0.004 −0.027 −0.022 −1.390 0.723

Kurtosis 3.028 3.056 2.938 5.403 3.776

5% 5.500 0.736 0.915 0.285 0.514

10% 6.402 0.797 0.934 0.405 0.603

25% 8.117 0.891 0.966 0.572 0.775

50% 10.015 1.000 1.001 0.707 1.011

75% 11.898 1.107 1.036 0.799 1.277

90% 13.612 1.205 1.066 0.852 1.559

95% 14.600 1.257 1.085 0.876 1.747
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Table 5: BE with M = 1000 and N = 104: n = 20 and ρ = 0.9

Parameter β1 β2 β3 ρ σ2
ϵ

True Value 10 1 1 0.9 1

AVE 10.010 0.999 1.000 0.661 1.051

SER 2.783 0.160 0.051 0.188 0.380

RMSE 2.783 0.160 0.051 0.304 0.384

Skewness 0.008 −0.029 −0.021 −1.391 0.723

Kurtosis 3.031 3.055 2.938 5.404 3.774

5% 5.495 0.736 0.915 0.284 0.514

10% 6.412 0.797 0.935 0.404 0.602

25% 8.116 0.891 0.966 0.573 0.774

50% 10.014 1.000 1.001 0.706 1.011

75% 11.897 1.107 1.036 0.799 1.275

90% 13.587 1.204 1.067 0.852 1.558

95% 14.588 1.257 1.085 0.876 1.746
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(ii) Given β, (x2,t, x3,t) and ut for t = 1, 2, · · · , n, we obtain a set of data yt, t = 1, 2, · · · , n,

from equation (26), where (β1, β2, β3) = (10, 1, 1) is assumed.

(iii) Given (yt, Xt) for t = 1, 2, · · · , n, obtain the estimates of θ = (β, ρ, σ2
ϵ ) by the max-

imum likelihood estimation (MLE) and the Bayesian estimation (BE) discussed in

Sections 3.2.2, which are denoted by θ̂ and θ̃, respectively.

(iv) Repeat (i) – (iii) G times, where G = 104 is taken.

(v) From G estimates of θ, compute the arithmetic average (AVE), the standard error

(SER), the root mean square error (RMSE), the skewness (Skewness), the kurtosis

(Kurtosis), and the 5, 10, 25, 50, 75, 90 and 95 percent points (5%, 10%, 25%, 50%,

75%, 90% and 95%) for each estimator.

For the maximum likelihood estimator (MLE), we compute:

AVE =
1
G

G∑
g=1

θ̂
(g)
j , RMSE =

( 1
G

G∑
g=1

(θ̂(g)
j − θ j)2

)1/2
,
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for j = 1, 2, · · · , 5, where θ j denotes the jth element of θ and θ̂(g)
j represents the jth

element of θ̂ in the gth simulation run.

For the Bayesian estimator (BE), θ̂ in the above equations is replaced by θ̃, and AVE

and RMSE are obtained.

(vi) Repeat (i) – (v) for ρ = −0.99, −0.98, · · ·, 0.99.

Thus, in Section 3.2.3, we compare the Bayesian estimator (BE) with the maximum likeli-

hood estimator (MLE) through Monte Carlo studies.

In Figures 7 and 8, we focus on the estimates of the autocorrelation coefficient ρ.

In Figure 7 we draw the relationship between ρ and ρ̂, where ρ̂ denotes the arithmetic

average of the 104 MLEs, while in Figure 8 we display the relationship between ρ and ρ̃,

where ρ̃ indicates the arithmetic average of the 104 BEs.

In the two figures the cases of n = 10, 15, 20 are shown, and (M,N) = (5000, 104) is taken

in Figure 8 (we will discuss later about M and N).

274



If the relationship between ρ and ρ̂ (or ρ̃) lies on the 45◦ degree line, we can conclude that

MLE (or BE) of ρ is unbiased.

However, from the two figures, both estimators are biased.

Take an example of ρ = 0.9 in Figures 7 and 8.

When the true value is ρ = 0.9, the arithmetic averages of 104 MLEs are given by 0.142 for

n = 10, 0.422 for n = 15 and 0.559 for n = 20 (see Figure 7), while those of 104 BEs are

0.369 for n = 10, 0.568 for n = 15 and 0.661 for n = 20 (see Figure 8).

As n increases the estimators are less biased, because it is shown that MLE gives us the

consistent estimators.

Comparing BE and MLE, BE is less biased than MLE in the small sample, because BE is

closer to the 45◦ degree line than MLE.

Especially, as ρ goes to one, the difference between BE and MLE becomes quite large.

Tables 2 – 5 represent the basic statistics such as arithmetic average, standard error, root
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Figure 9: Empirical Distributions of β1

MLE

0 5 10 15 20

BE

0 5 10 15 20
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Figure 10: Empirical Distributions of β2
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Figure 11: Empirical Distributions of β3
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Figure 12: Empirical Distributions of ρ

MLE

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

BE

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

mean square error, skewness, kurtosis and percent points, which are computed from G =

104 simulation runs, where the case of n = 20 and ρ = 0.9 is examined.

Table 2 is based on the MLEs while Tables 3 – 5 are obtained from the BEs.
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Figure 13: Empirical Distributions of σ2
ϵ
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To check whether M and N are enough large, Tables 3 – 5 are shown for BE.

Comparison between Tables 3 and 4 shows whether N = 5000 is large enough and we can

see from Tables 3 and 5 whether the burn-in period M = 1000 is large enough.

We can conclude that N = 5000 is enough if Table 3 is very close to Table 4 and that

M = 1000 is enough if Table 3 is close to Table 5.

The difference between Tables 3 and 4 is at most 0.034 (see 90% in β1) and that between

Tables 3 and 5 is less than or equal to 0.013 (see Kurtosis in β1).

Thus, all the three tables are very close to each other.

Therefore, we can conclude that (M,N) = (1000, 5000) is enough.

For safety, hereafter we focus on the case of (M,N) = (5000, 104).

We compare Tables 2 and 3.

Both MLE and BE give us the unbiased estimators of regression coefficients β1, β2 and

β3, because the arithmetic averages from the 104 estimates of β1, β2 and β3, (i.e., AVE in
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the tables) are very close to the true parameter values, which are set to be (β1, β2, β3) =

(10, 1, 1).

However, in the SER and RMSE criteria, BE is better than MLE, because SER and RMSE

of BE are smaller than those of MLE. From Skewness and Kurtosis in the two tables, we

can see that the empirical distributions of MLE and BE of (β1, β2, β3) are very close to the

normal distribution. Remember that the skewness and kurtosis of the normal distribution

are given by zero and three, respectively.

As for σ2
ϵ , AVE of BE is closer to the true value than that of MLE, because AVE of MLE

is 0.752 (see Table 2) and that of BE is 1.051 (see Table 3).

However, in the SER and RMSE criteria, MLE is superior to BE, since SER and RMSE of

MLE are given by 0.276 and 0.372 (see Table 2) while those of BE are 0.380 and 0.384

(see Table 3).

The empirical distribution obtained from 104 estimates of σ2
ϵ is skewed to the right (Skew-
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ness is positive for both MLE and BE) and has a larger kurtosis than the normal distribution

because Kurtosis is greater than three for both tables.

For ρ, AVE of MLE is 0.559 (Table 2) and that of BE is given by 0.661 (Table 3).

As it is also seen in Figures 7 and 8, BE is less biased than MLE from the AVE criterion.

Moreover, SER and RMSE of MLE are 0.240 and 0.417, while those of BE are 0.188 and

0.304.

Therefore, BE is more efficient than MLE.

Thus, in the AVE, SER and RMSE criteria, BE is superior to MLE with respect to ρ.

The empirical distributions of MLE and BE of ρ are skewed to the left because Skewness

is negative, which value is given by −1.002 in Table 2 and −1.389 in Table 3.

We can see that MLE is less skewed than BE.

For Kurtosis, both MLE and BE of ρ are greater than three and therefore the empirical

distributions of the estimates of ρ have fat tails, compared with the normal distribution.
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Since Kurtosis in Table 3 is 5.391 and that in Table 2 is 4.013, the empirical distribution of

BE has more kurtosis than that of MLE.

Figures 9 – 13 correspond to the empirical distributions for each parameter, which are

constructed from the G estimates used in Tables 2 and 3.

As we can see from Skewness and Kurtosis in Tables 2 and 3, β̂i and β̃i, i = 1, 2, 3, are very

similar to normal distributions in Figures 9 – 11.

For βi, i = 1, 2, 3, the empirical distributions of MLE have the almost same centers as those

of BE, but the empirical distributions of MLE are more widely distributed than those of

BE.

We can also observe these facts from AVEs and SERs in Tables 2 and 3.

In Figure 12, the empirical distribution of ρ̂ is quite different from that of ρ̃.

ρ̃ is more skewed to the left than ρ̂ and ρ̃ has a larger kurtosis than ρ̂.

Since the true value of ρ is 0.9, BE is distributed at the nearer place to the true value than
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MLE.

Figure 13 displays the empirical distributions of σ2
ϵ . MLE σ̂2

ϵ is biased and underestimated,

but it has a smaller variance than BE σ̃2
ϵ .

In addition, we can see that BE σ̃2
ϵ is distributed around the true value.

3.2.4 Summary

In Section 3.2, we have compared MLE with BE, using the regression model with the

autocorrelated error term.

Chib (1993) applied the Gibbs sampler to the autocorrelation model, where the initial den-

sity of the error term is ignored.

Under this setup, the posterior distribution of ρ reduces to the normal distribution.

Therefore, random draws of ρ given β, σ2
ϵ and (yt, Xt) can be easily generated.

However, when the initial density of the error term is taken into account, the posterior
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distribution of ρ is not normal and it cannot be represented in an explicit functional form.

Accordingly, in Section 3.2, the Metropolis-Hastings algorithm have been applied to gen-

erate random draws of ρ from its posterior density.

The obtained results are summarized as follows.

Given β′ = (10, 1, 1) and σ2 = 1, in Figure 7 we have the relationship between ρ and ρ̂, and

ρ̃ corresponding to ρ is drawn in Figure 8.

In the two figures, we can observe:

(i) both MLE and BE approach the true parameter value as n is large, and

(ii) BE is closer to the 45◦ degree line than MLE and accordingly BE is superior to MLE.

Moreover, we have compared MLE with BE in Tables 2 and 3, where β′ = (10, 1, 1),

ρ = 0.9 and σ2 = 1 are taken as the true values.

As for the regression coefficient β, both MLE and BE gives us the unbiased estimators.

However, we have obtained the result that BE of β is more efficient than MLE. For estima-
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tion of σ2,

BE is less biased than MLE.

In addition, BE of the autocorrelation coefficient ρ is also less biased than MLE.

Therefore, as for inference on β, BE is superior to MLE, because it is plausible to consider

that the estimated variance of β̂ is biased much more than that of β̃.

Remember that variance of β̂ depends on both ρ and σ2.

Thus, from the simulation studies, we can conclude that BE performs much better than

MLE.

References

Amemiya, T., 1985, Advanced Econometrics, Cambridge:Harvard University Press.

Andrews, D.W.K., 1993, “Exactly Median-Unbiased Estimation of First Order Autoregres-

287



sive / Unit Root Models,” Econometrica, Vol.61, No.1, pp.139 – 165.

Bernardo, J.M. and Smith, A.F.M., 1994, Bayesian Theory, John Wiley & Sons.

Boscardin, W.J. and Gelman, A., 1996, “Bayesian Computation for parametric Models of

Heteroscedasticity in the Linear Model,” in Advances in Econometrics, Vol.11 (Part

A), edited by Hill, R.C., pp.87 – 109, Connecticut:JAI Press Inc.

Carlin, B.P. and Louis, T.A., 1996, Bayes and Empirical Bayes Methods for Data Analysis,

Chapman & Hall.

Chen, M.H., Shao, Q.M. and Ibrahim, J.G., 2000, Monte Carlo Methods in Bayesian Com-

putation, Springer-Verlag.

Chib, S., 1993, “Bayes Regression with Autoregressive Errors: A Gibbs Sampling Ap-

proach,” Journal of Econometrics, Vol.58, No.3, pp.275 – 294.

Chib, S. and Greenberg, E., 1994, “Bayes Inference in Regression Models with ARMA(p, q)

Errors,” Journal of Econometrics, Vol.64, No.1&2, pp.183 – 206.

288



Chib, S. and Greenberg, E., 1995, “Understanding the Metropolis-Hastings Algorithm,”

The American Statistician, Vol.49, No.4, pp.327 – 335.

Gamerman, D., 1997, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian

Inference, Chapman & Hall.

Geweke, J., 1992, “Evaluating the Accuracy of Sampling-Based Approaches to the Calcu-

lation of Posterior Moments,” in Bayesian Statistics, Vol.4, edited by Bernardo,

J.M., Berger, J.O., Dawid, A.P. and Smith, A.F.M., pp.169 – 193 (with discussion),

Oxford University Press.

Greene, W.H., 1997, Econometric Analysis (Third Edition), Prentice-Hall.

Harvey, A.C., 1976, “Estimating Regression Models with Multiplicative Heteroscedas-

ticity,” Econometrica, Vol.44, No.3, pp.461 – 465.

Hogg, R.V. and Craig, A.T., 1995, Introduction to Mathematical Statistics (Fifth Edition),

Prentice Hall.

289



Judge, G., Hill, C., Griffiths, W. and Lee, T., 1980, The Theory and Practice of Economet-

rics, John Wiley & Sons.

Mengersen, K.L., Robert, C.P. and Guihenneuc-Jouyaux, C., 1999, “MCMC Convergence

Diagnostics: A Reviewww,” in Bayesian Statistics, Vol.6, edited by Bernardo, J.M.,

Berger, J.O., Dawid, A.P. and Smith, A.F.M., pp.514 – 440 (with discussion), Oxford

University Press.

O’Hagan, A., 1994, Kendall’s Advanced Theory of Statistics, Vol.2B (Bayesian Inference),

Edward Arnold.

Ohtani, K., 1982, “Small Sample Properties of the Two-step and Three-step Estimators in a

Heteroscedastic Linear Regression Model and the Bayesian Alternative,” Economics

Letters, Vol.10, pp.293 – 298.

Robert, C.P. and Casella, G., 1999, Monte Carlo Statistical Methods, Springer-Verlag.

Smith, A.F.M. and Roberts, G.O., 1993, “Bayesian Computation via Gibbs Sampler and

290



Related Markov Chain Monte Carlo Methods,” Journal of the Royal Statistical Soci-

ety, Ser.B, Vol.55, No.1, pp.3 – 23.

Tanizaki, H., 2000, “Bias Correction of OLSE in the Regression Model with Lagged De-

pendent Variables,” Computational Statistics and Data Analysis, Vol.34, No.4,

pp.495 – 511.

Tanizaki, H., 2001, “On Least-Squares Bias in the AR(p) Models: Bias Correction Using

the Bootstrap Methods,” Unpublished Manuscript.

Tanizaki, H. and Zhang, X., 2001, “Posterior Analysis of the Multiplicative Heteroscedas-

ticity Model,” Communications in Statistics, Theory and Methods, Vol.30, No.2,

pp.855 – 874.

Tierney, L., 1994, “Markov Chains for Exploring Posterior Distributions,” The Annals of

Statistics, Vol.22, No.4, pp.1701 – 1762.

Zellner, A., 1971, An Introduction to Bayesian Inference in Econometrics, John Wiley &

291



Sons.

292


