Gauss-Markov Theorem (A7 X « <JLO7FE¥): It has been discussed above
that ,[32 is represented as (9), which implies that ,@2 is a linear estimator, i.e., linear in
Yi-

In addition, (14) indicates that 3, is an unbiased estimator.

Therefore, summarizing these two facts, it is shown that ,32 is a linear unbiased

estimator (RN RHEEEE).

Furthermore, here we show that 3, has minimum variance within a class of the linear

unbiased estimators.

Consider the alternative linear unbiased estimator 3, as follows:

n n

B = Z Ciyi = Z((Ui +dy)yi,

i=1 i=1

where c¢; = w; + d; 1s defined and d; is nonstochastic.
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Then, 3, is transformed into:

n

B :Z ciyi = Z(wd)(ﬂl + i + )

—ﬁlzw,+ﬁ22wx,+2wu,+ﬁlzd +ﬁzzdx,+2dul
=P +ﬁlZdi+ﬁzzdixi+zwiui+zdiui~
i=1 i=1 i=1 i=1

Equations (10) and (11) are used in the forth equality.

Taking the expectation on both sides of the above equation, we obtain:
BB =Bo+p1 ) di+p> ) dixi+ ) wF(u) + Y diB(u)
i=1 i=1 i=1 i=1

= B2+ B Zn: di+ B> z": d;x;.
i=1 i=1

Note that d; is not a random variable and that E(x;) = 0
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Since 52 is assumed to be unbiased, we need the following conditions:

Zdi =0, Zd,-x,- =0.
i=1 i=1
When these conditions hold, we can rewrite 52 as:
Bz =0+ Z(wi + d;)u;.
i=1
The variance of 3, is derived as:

VB) = V(B + Z(w, +di)uy) Z(wl + di)u;) Z V(@i + ;)
i=1
= Z(w,- +d)* V() = 02<Z Wl +2 Z wid; + Z d?)
i=1 i=1 i=1 i=1
= 0_2(2”: w? + Zn: a.
i=1 i=1
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From unbiasedness of 5, using Y-, d; = 0 and Y-, d;x; = 0, we obtain:

Zn:wid.:Zi?:l(xi—?_C)di_mezz XY di -0,

;'1:1(351' -X)? N 21_1(351 -X)?

which is utilized to obtain the variance of 3, in the third line of the above equation.

From (15), the variance of 3, is given by: V(3,) = 0> Y1, w?.

Therefore, we have:
V(Ba) = V(Ba),

because of Y, d7 > 0.

When Y}, d? = 0,ie.,whend, =d =---=d, =0,
we have the equality: V(3,) = V(5,).

Thus, inthe caseof d; =d, =---=d, =0, ,@2 is equivalent to Bz-
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As shown above, the least squares estimator /3, gives us the minimum variance lin-
ear unbiased estimator (&/)\53 BUHRR; NMRHEE E), or equivalently the best linear
unbiased estimator (RRIRF;FRHEEE, BLUE), which is called the Gauss-
Markov theorem (A7 X « TILI7EI).
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HATA A
Asymptotic Properties GETTEVEE) of B,:  We assume that as n goes to infinity

we have the following:
1 ¢ 0
— ;= —> m < 090,

where m is a constant value. From (12), we obtain:

< 1 1
DI Am Y i-%  m

i=1
Note that  f(x,) — f(m) when x, — m, called Slutsky’s theorem (X JL*/ ¥ —

EIB), where m is a constant value and £(-) is a function.

We show both consistency (—E1%) of 3, and asymptotic normality GEiyTIEFR1%)
of \/ﬁ(,éz - B2).
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@ First, we prove that ,32 is a consistent estimator of £3,.

[Review] Chebyshev’s inequality (F E > =7 DFRZFR) is given by:
o2

POX -l > e < =

x where u = E(X), 0? = V(X) and any € > 0.
€

[End of Review]
Replace X, E(X) and V(X) by:

n 2
3 A A o
B, E@B) =P and VB) =0’ ) wi=———.
; 2ic1 (X = X)
Then, when n — oo, we obtain the following result:
N o Y u)l.2 o*n YL a)l.z
P([By = ol > €) < 621 = nezl — 0,

1 .
where Y7, w? — 0 because n )\, w? — — from the assumption.
m
Thus, we obtain the result that 8, — 8, as n —> .
Therefore, we can conclude that /3, is a consistent estimator (—E#EE) of 5.
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@ Next, we want to show that vn(3, — ,) is asymptotically normal.

[Review] The Central Limit Theorem (F/.OMEPREIE, CLT I) is:  for random

variables Xi, X5, - - -, X,,, which are mutually independently and identically disributed

as X; ~ N(u, o) for all i,
X-EX) X-pu

Fw o

_ 1<
where X = — X;.

— N(,1), as n— oo,

Equiuvalently,_we can rewrite as follows:

Va(X — ) — N(0,0?)
[Review] The Central Limit Theorem (F/.UMBPREIE, CLT II) is: for random vari-
ables X, X5, - - -, X,,, which are mutually independently disributed as X; ~ N(u, af),
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we still have the following theorem:
VX =) — NO,07), as n— oo,

under the assumption: 0 = lim,,e + Y- 0.

[End of Review]

X1, X5, - -+, X, are not necessarily iid, if lim nV(y) is finite in this case.
n—00
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Note that ,32 =+ Y, wu; asin (13), and we focus on the second term in the right

hand side.

L Ly (X = Xu
Z witl; = 1 n E%
P - 2 (X = X)?
Assume:

1< -
EZ(Xj_X)Z — m as n — o9,
=1

m denotes a certain value.

X; - )_()ui, 1=1,2,---,n, are random variables, which are mutually independently
distributed with mean 0 and variance o-2(X; — X)2.

CLT II is applied.

(X; — X)u;, 0 and o2(X; — X)? correspond to X;, u and o7, respectively, in the CLT II

theorem.
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That is,
\n % ;(Xi — X)u; — E(}l ;(Xi - Y)”i) - \/_% ;(Xi - Xou

1 _
N N(o, o lim = > (X; - X)z) = N(O, >m).
n—oo n
=1

Therefore, we obtain:

‘/ﬁ% Y (Xi = Y)Mi N 0'2)
L (X; = X)?

Note that (X -X)? — m

\/ﬁ Z wilt; =
i=1
Because 3, — 8, = iy win;, we finally obtain the following asymptotic normality:
A - o?
\/ﬁ(ﬁz —-p2) = ‘/EZ will; — N(O, —)
i=1 mn

Thus, the asymptotic normality of (B3> — 8,) is shown.
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We can use either of the following two:

B - B>
— N(,1),
o/ 2 (x; — %)
2 n
V(B> - B,) — N(O, %), where m = lim % (x; — %)%

i=1
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Finally, replacing o by its consistent estimator s2, it is known as follows:

B =B — — N, 1), (16)
s/ Z?:1(xi - X)?
where s? is defined as:
poLya- L Zn](yi =1 = Pox)’, (17)
n—2 Yon=2

i=1 i=1

which is a consistent and unbiased estimator of 2. — Proved later.

Thus, using (16), in large sample we can construct the confidence interval and test

the hypothesis.
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[Review] Confidence Interval ((Sf8XR, XEH#EE)):

2

Suppose Xi, X5, - - -, X, are iid with mean y and variance o°. — No N assumption

X-EX) X-u

\/ﬁ_a/x/ﬁ )

1 < - X -
Replacing o2 by §2 = —— Z(Xi — X)?, we have: a
n—1 —

From CLT, — N(,1).

— N, 1).

S/~n

That is, for large n,

X — _ _
P(-1.96 < g 1.96) = 0.95, 1., P(X — 1.96-0 < u<X+ 1.96i) =0.95.
S/n \n Vn

Note that 1.96 is obtained from the normal distribution table.

Then, replacing the estimators X and S by the estimates X and s?, we obtain the 95%

confidence interval of u as follows:
S S
x—-196—, x+ 1.96—).
( Nz \/ﬁ)

[End of Review]
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Going back to OLS, we have:

P2 = b — — N(0, 1).
s/ 2z (xi = %)?

Therefore, A

B =P _

P(-2.576 < - — < 2.576) = 0.99,

Zi=1(xi - x)2

i.e.,
A S A S
P(B, - 2.576 <Br <P +2576 ) =0.99.

V2 (xi = X)? i (x; = X)?
Note that 2.576 is 0.005 value of N(0, 1), which comes from the statistical table.

Thus, the 99% confidence interval of 3, is:

(B 2576 By +2.576 > )

S
N > (x — X)?

where 3, and s? should be replaced by the observed data.
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[Review] Testing the Hypothesis ({RE1&E):

Suppose that X, X, - - -, X, are iid with mean u and variance o2,
X - 1+ -

From CLT, —& — N(0,1), where §? = —— > '(X; — X)?, which is known as
S/+n n—14

the unbiased estimator of 0.
e The null hypothesis Hy : u = uo, where py is a fixed number.
e The alternative hypothesis H; : u # uo

Under the null hypothesis, in large sample we have the following distribution:

X = Mo

S/ n

~ N(0,1).

X = Mo
andNO,l .

Replacing X and S2 by X and s?, compare

A~ Ho
s/ \n

H, is rejected at significance level 0.05 when ’ ‘ > 1.96.

[End of Review]
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In the case of OLS, the hypotheses are as follows:

e The null hypothesis Hy : 5, = f5;
e The alternative hypothesis H; : 3, # 3,

Under H), in large sample,

B - B
s/ Z?=1(xi - X)?

~ N(0, 1).

Replacing 3, and s? by the observed data, compare P - £ and N(@,1).
s/ V2t (= X%)?
ﬁZ _Bz | > 1

D=1 (x; = X)?

H, is rejected at significance level 0.05 when ‘
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Exact Distribution of 32: We have shown asymptotic normality of vVn(B, — 5,),
which is one of the large sample properties.

Now, we discuss the small sample properties of /3,.

In order to obtain the distribution of ﬁz in small sample, the distribution of the error
term has to be assumed.

Therefore, the extra assumption is that u; ~ N(0, o2).

Writing (13), again, /3, is represented as:
Br=pr+ Z Wilt;.
i=1

First, we obtain the distribution of the second term in the above equation.
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[Review] Content of Special Lectures in Economics (Statistical Analysis)

Note that the moment-generating function (FRRRRIEL, MGF) is given by M(6)
E(exp(6X)) = exp(ufl + 1026%) when X ~ N(u, o).

X1, X5, --+, X, are mutually independently distributed as X; ~ N (/Ji,O'l-z) for i
1,2,---,n.
MGF of X; is M;(6) = E(exp(6X;)) = exp(u;0 + 3076%).

Consider the distribution of Y = Y} | (a; + b;X;), where a; and b; are constant.

M, (6) = E(exp(6Y)) = E(exp(0 21, (a; + b;X))))
= [1}=; exp(6a;)E(exp(6b; X)) = [1;=; exp(fa;)Mi(6b;)
= [T, exp(6a;) exp(u;0b;i+3072(6b)*) = exp(0 L1 (a;+ b)) +36% YL, blo?),
which implies that Y ~ N (a; + by, Yoy bro?).
[End of Review]
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Substitute a; = 0, ; = 0, b; = w; and o7 = 0.

Then, using the moment-generating function, )\, w;u; is distributed as:

i wit; ~ N0, o2 Zn: w?).
i=1 i=1

Therefore, /3’2 is distributed as:
n n
Br=pBo+ ) witti ~ NBs, 0 ) w}),
i=1 i=1
or equivalently,

Bo=Pr B2 =P ~ N 1),

o JZ?:I wiz o/ ‘VZ?:I(xi - X)?

for any n.
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[Review 1] ¢ Distribution:
Z~N@O,1),V~ )(Z(k), and Z is independent of V.  Then,
[End of Review 1]

z
~ 1(k).
N 1(k)

[Review 2] ¢ Distribution:
Suppose that Xi, X;. - - -, X,, are mutually independently, identically and normally dis-
tributed with mean y and variance o

u
~ N0, 1).
o/ v 0, 1)
1 & -
Define S = — Z(Xi — X)?, which is an unbiased estimator of 2.
n—

i=1

(n—1)S?
12

X ~ N(u,0%/n), ie.,

It is known that ~ )(z(n — 1) and X is independent of S2. (The proof is

skipped.)
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X-u

Then, we obtain e T)/S \z/ﬁ = S/_\/l% ~tn-1).
T (n—=1)

: X—u
As a result, replacing o by S 2, ~tn-1).
placing y S/ Vi ( )
[End of Review 2]

42



Back to OLS:
Replacing o by its estimator s?> defined in (17), it is known that we have:
B2 - B>
s/ N iz (xi = %)?

where #(n — 2) denotes ¢ distribution with n — 2 degrees of freedom.

~tn-2),

Thus, under normality assumption on the error term u;, the #(n — 2) distribution is

used for the confidence interval and the testing hypothesis in small sample.

Or, taking the square on both sides,
( B2 - B>
s/ N i (xi = X)?

which will be proved later.

) ~ Fl,n-2),

Before going to multiple regression model (E[Q])EE T L),
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