
Under normality assumption on the error term u, it is known that the distribution of

β̂ is given by:

β̂ ∼ N(β, σ2(X′X)−1).

Proof:

First, when X ∼ N(µ,Σ), the moment-generating function, i.e., ϕ(θ), is given by:

ϕ(θ) ≡ E
(
exp(θ′X)

)
= exp

(
θ′µ +

1
2
θ′Σθ
)

θ: k × 1, u: n × 1, β̂: k × 1

The moment-generating function of u, i.e., ϕu(θ), is:

ϕu(θ) ≡ E
(
exp(θ′u)

)
= exp

(σ2

2
θ′θ
)
,

which is N(0, σ2In).
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The moment-generating function of β̂, i.e., ϕβ(θ), is:

ϕβ(θ) ≡ E
(
exp(θ′β̂)

)
= E
(
exp(θ′β + θ′(X′X)−1X′u)

)
= exp(θ′β)E

(
exp(θ′(X′X)−1X′u)

)
= exp(θ′β)ϕu

(
θ′(X′X)−1X′

)
= exp(θ′β) exp

(σ2

2
θ′(X′X)−1θ

)
= exp

(
θ′β +

σ2

2
θ′(X′X)−1θ

)
,

which is equivalent to the normal distribution with mean β and variance σ2(X′X)−1.

Note that θ is replaced by X(X′X)−1θ. QED
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Taking the jth element of β̂, its distribution is given by:

β̂ j ∼ N(β j, σ
2a j j), i.e.,

β̂ j − β j

σ
√a j j

∼ N(0, 1),

where a j j denotes the jth diagonal element of (X′X)−1.

Replacing σ2 by its estimator s2, we have the following t distribution:

β̂ j − β j

s√a j j
∼ t(n − k),

where t(n − k) denotes the t distribution with n − k degrees of freedom.
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[Review] Trace (トレース):

1. A: n× n, tr(A) =
∑n

i=1 aii, where ai j denotes an element in the ith row and the

jth column of a matrix A.

2. a: scalar (1 × 1), tr(a) = a

3. A: n × k, B: k × n, tr(AB) = tr(BA)

4. tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

5. When X is a square matrix of random variables, E(tr(AX)) = tr(AE(X))

End of Review
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s2 is taken as follows:

s2 =
1

n − k

n∑
i=1

e2
i =

1
n − k

e′e =
1

n − k
(y − Xβ̂)′(y − Xβ̂),

which leads to an unbiased estimator of σ2.

Proof:

Substitute y = Xβ + u and β̂ = β + (X′X)−1X′u into e = y − Xβ̂.

e = y − Xβ̂ = Xβ + u − X(β + (X′X)−1X′u)

= u − X(X′X)−1X′u = (In − X(X′X)−1X′)u

In − X(X′X)−1X′ is idempotent and symmetric, because we have:

(In − X(X′X)−1X′)(In − X(X′X)−1X′) = In − X(X′X)−1X′,

(In − X(X′X)−1X′)′ = In − X(X′X)−1X′.
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s2 is rewritten as follows:

s2 =
1

n − k
e′e =

1
n − k

((In − X(X′X)−1X′)u)′(In − X(X′X)−1X′)u

=
1

n − k
u′(In − X(X′X)−1X′)′(In − X(X′X)−1X′)u

=
1

n − k
u′(In − X(X′X)−1X′)u

Take the expectation of u′(In − X(X′X)−1X′)u and note that tr(a) = a for a scalar a.

E(s2) =
1

n − k
E
(
tr
(
u′(In − X(X′X)−1X′)u

))
=

1
n − k

E
(
tr
(
(In − X(X′X)−1X′)uu′

))
=

1
n − k

tr
(
(In − X(X′X)−1X′)E(uu′)

)
=

1
n − k

σ2tr
(
(In − X(X′X)−1X′)In

)
=

1
n − k

σ2tr(In − X(X′X)−1X′) =
1

n − k
σ2(tr(In) − tr(X(X′X)−1X′))

=
1

n − k
σ2(tr(In) − tr((X′X)−1X′X)) =

1
n − k

σ2(tr(In) − tr(Ik))

=
1

n − k
σ2(n − k) = σ2
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−→ s2 is an unbiased estimator of σ2.

Note that we do not need normality assumption for unbiasedness of s2.

[Review]

• X′X ∼ χ2(n) for X ∼ N(0, In).

• (X − µ)′Σ−1(X − µ) ∼ χ2(n) for X ∼ N(µ,Σ).

• X′X
σ2 ∼ χ

2(n) for X ∼ N(0, σ2In).

• X′AX
σ2 ∼ χ2(G), where X ∼ N(0, σ2In) and A is a symmetric idempotent n × n

matrix of rank G ≤ n.

Remember that G = Rank(A) = tr(A) when A is symmetric and idempotent.

[End of Review]
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Under normality assumption for u, the distribution of s2 is:

(n − k)s2

σ2 =
u′(In − X(X′X)−1X′)u

σ2 ∼ χ2(tr(In − X(X′X)−1X′))

Note that tr(In − X(X′X)−1X′) = n − k, because

tr(In) = n

tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k
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Asymptotic Normality (without normality assumption on u): Using the central

limit theorem, without normality assumption we can show that as n −→ ∞, under the

condition of
1
n

X′X −→ M we have the following result:

β̂ j − β j

s√a j j
−→ N(0, 1),

where M denotes a k × k constant matrix.

Thus, we can construct the confidence interval and the testing procedure, using the

t distribution under the normality assumption or the normal distribution without the

normality assumption.
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4 Properties of OLSE

1. Properties of β̂ : BLUE (best linear unbiased estimator，最良線形不偏推
定量), i.e., minimum variance within the class of linear unbiased estimators

(Gauss-Markov theorem，ガウス・マルコフの定理)

Proof:

Consider another linear unbiased estimator, which is denoted by β̃ = Cy.

β̃ = Cy = C(Xβ + u) = CXβ +Cu,

where C is a k × n matrix.

Taking the expectation of β̃, we obtain:

E(β̃) = CXβ +CE(u) = CXβ

Because we have assumed that β̃ = Cy is unbiased, E(β̃) = β holds.

68



That is, we need the condition: CX = Ik.

Next, we obtain the variance of β̃ = Cy.

β̃ = C(Xβ + u) = β +Cu.

Therefore, we have:

V(β̃) = E((β̃ − β)(β̃ − β)′) = E(Cuu′C′) = σ2CC′

Defining C = D + (X′X)−1X′, V(β̃) is rewritten as:

V(β̃) = σ2CC′ = σ2(D + (X′X)−1X′)(D + (X′X)−1X′)′.

Moreover, because β̂ is unbiased, we have the following:

CX = Ik = (D + (X′X)−1X′)X = DX + Ik.
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Therefore, we have the following condition:

DX = 0.

Accordingly, V(β̃) is rewritten as:

V(β̃) = σ2CC′ = σ2(D + (X′X)−1X′)(D + (X′X)−1X′)′

= σ2(X′X)−1 + σ2DD′ = V(β̂) + σ2DD′

Thus, V(β̃) − V(β̂) is a positive definite matrix.

=⇒ V(β̃i) − V(β̂i) > 0

=⇒ β̂ is a minimum variance (i.e., best) linear unbiased estimator of β.
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Note as follows:

=⇒ A is positive definite when d′Ad > 0 except d = 0.

=⇒ The ith diagonal element of A, i.e., aii, is positive (choose d such that the

ith element of d is one and the other elements are zeros).

[Review] F Distribution:

Suppose that U ∼ χ(n), V ∼ χ(m), and U is independent of V .

Then,
U/n
V/m

∼ F(n,m).

[End of Review]
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F Distribution (H0 : β = 0): Final Result in this Section:

(β̂ − β)′X′X(β̂ − β)/k
e′e/(n − k)

∼ F(k, n − k).

Consider the numerator and the denominator, separately.

1. If u ∼ N(0, σ2In), then β̂ ∼ N(β, σ2(X′X)−1) .

Therefore,
(β̂ − β)′X′X(β̂ − β)

σ2 ∼ χ2(k).

2. Proof:

Using β̂ − β = (X′X)−1X′u, we obtain:

(β̂ − β)′X′X(β̂ − β) = ((X′X)−1X′u)′X′X(X′X)−1X′u

= u′X(X′X)−1X′X(X′X)−1X′u = u′X(X′X)−1X′u
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Note that X(X′X)−1X′ is symmetric and idempotent, i.e., A′A = A.

u′X(X′X)−1X′u
σ2 ∼ χ2

(
tr(X(X′X)−1X′)

)
The degree of freedom is given by:

tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

Therefore, we obtain:
u′X(X′X)−1X′u

σ2 ∼ χ2(k)

3. (*) Formula:

Suppose that X ∼ N(0, Ik).

If A is symmetric and idempotent, i.e., A′A = A, then X′AX ∼ χ2(tr(A)).

Here, X =
1
σ

u ∼ N(0, In) from u ∼ N(0, σ2In), and A = X(X′X)−1X′.
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4. Sum of Residuals: e is rewritten as:

e = (In − X(X′X)−1X′)u.

Therefore, the sum of residuals is given by:

e′e = u′(In − X(X′X)−1X′)u.

Note that In − X(X′X)−1X′ is symmetric and idempotent.

We obtain the following result:

e′e
σ2 =

u′(In − X(X′X)−1X′)u
σ2 ∼ χ2

(
tr(In − X(X′X)−1X′)

)
,

where the trace is:

tr(In − X(X′X)−1X′) = n − k.
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Therefore, we have the following result:

e′e
σ2 =

(n − k)s2

σ2 ∼ χ2(n − k),

where

s2 =
1

n − k
e′e.

5. We show that β̂ is independent of e.

Proof:

Because u ∼ N(0, σ2In), we show that Cov(e, β̂) = 0.

Cov(e, β̂) = E(e(β̂ − β)′) = E
(
(In − X(X′X)−1X′)u((X′X)−1X′u)′

)
= E
(
(In − X(X′X)−1X′)uu′X(X′X)−1

)
= (In − X(X′X)−1X′)E(uu′)X(X′X)−1

= (In − X(X′X)−1X′)(σ2In)X(X′X)−1 = σ2(In − X(X′X)−1X′)X(X′X)−1

= σ2(X(X′X)−1 − X(X′X)−1X′X(X′X)−1) = σ2(X(X′X)−1 − X(X′X)−1) = 0.
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β̂ is independent of e, because of normality assumption on u

[Review]

• Suppose that X is independent of Y . Then, Cov(X,Y) = 0. However,

Cov(X,Y) = 0 does not mean in general that X is independent of Y .

• In the case where X and Y are normal, Cov(X,Y) = 0 indicates that X is

independent of Y .

[End of Review]
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[Review] Formulas — F Distribution:

• U/n
V/m

∼ F(n,m) when U

simχ2(n), V ∼ χ2(m), and U is independent of V .

• When X ∼ N(0, In), A and B are n × n symmetric idempotent matrices,

Rank(A) = tr(A) = G, Rank(B) = tr(B) = K and AB = 0, then
X′AX/G
X′BX/K

∼

F(G,K).

Note that the covariance of AX and BX is zero, which implies that AX is inde-

pendent of BX under normality of X.

[End of Review]
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6. Therefore, we obtain the following distribution:

(β̂ − β)′X′X(β̂ − β)
σ2 =

u′X(X′X)−1X′u
σ2 ∼ χ2(k),

e′e
σ2 =

u′(In − X(X′X)−1X′)u
σ2 ∼ χ2(n − k)

β̂ is independent of e, because X(X′X)−1X′(In − X(X′X)−1X′) = 0.

Accordingly, we can derive:

(β̂ − β)′X′X(β̂ − β)
σ2

/
k

e′e
σ2

/
(n − k)

=
(β̂ − β)′X′X(β̂ − β)/k

s2 ∼ F(k, n − k)

Under the null hypothesis H0 : β = 0,
β̂′X′Xβ̂/k

s2 ∼ F(k, n − k).

Given data,
β̂′X′Xβ̂/k

s2 is compared with F(k, n − k).

If
β̂′X′Xβ̂/k

s2 is in the tail of the F distribution, the null hypothesis is rejected.
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