• Coefficient of Determination R^2 :

Define e as $e = y - X\hat{\beta}$. The coefficient of determinant, R^2 , is

$$R^2 = 1 - \frac{e'e}{y'My},$$

where $M = I_n - \frac{1}{n}ii'$, I_n is a $n \times n$ identity matrix and i is a $n \times 1$ vector consisting of 1, i.e., $i = (1, 1, \dots, 1)'$.

$$Me = My - MX\hat{\beta}.$$

When
$$X = (i \quad X_2)$$
 and $\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$,

$$Me = e$$
,

because i'e = 0 from the first-order condition: $X'(y - X\hat{\beta}) = 0$, i.e., $(i \ X_2)'e = 0$, i.e., $i'e = X_2'e = 0$ and

$$MX = M(i \quad X_2) = (Mi \quad MX_2) = (0 \quad MX_2),$$

because Mi = 0.

$$MX\hat{\beta} = (0 \quad MX_2) {\beta_1 \choose \hat{\beta}_2} = MX_2\hat{\beta}_2.$$

Thus,

$$My = MX\hat{\beta} + Me$$
 \Longrightarrow $My = MX_2\hat{\beta}_2 + e$.

y'My is given by:

$$y'My = (My)'My$$

$$= (MX_2\hat{\beta}_2 + e)'(MX_2\hat{\beta}_2 + e)$$

$$= \hat{\beta}'X_2'M'MX_2\hat{\beta} + e'MX_2\hat{\beta}_2 + \hat{\beta}'X_2'M'e + e'e$$

$$= \hat{\beta}'_2X_2'MX_2\hat{\beta}_2 + e'e$$

i.e., $y'My = \hat{\beta}_2'X_2'MX_2\hat{\beta}_2 + e'e$, because $X_2'e = 0$ and M'e = Me = e.

The coefficient of determinant, R^2 , is rewritten as:

$$R^{2} = 1 - \frac{e'e}{y'My} \implies e'e = (1 - R^{2})y'My,$$

$$R^{2} = \frac{y'My - e'e}{y'My} = \frac{\hat{\beta}_{2}'X_{2}'MX_{2}\hat{\beta}_{2}}{y'My} \implies \hat{\beta}_{2}'X_{2}'MX_{2}\hat{\beta}_{2} = R^{2}y'My.$$

Therefore,

$$\frac{\hat{\beta}_2' X_2' M X_2 \hat{\beta}_2 / (k-1)}{e'e / (n-k)} = \frac{R^2 y' M y / (k-1)}{(1-R^2) y' M y / (n-k)} = \frac{R^2 / (k-1)}{(1-R^2) / (n-k)} \sim F(k-1, n-k).$$

Thus, using R^2 , the null hypothesis H_0 : $\beta_2 = 0$ is easily tested.

5 Restricted OLS (制約付き最小二乗法)

1. Let $\tilde{\beta}$ be the restricted estimator.

Consider the linear restriction: $R\beta = r$.

2. Minimize $(y - X\tilde{\beta})'(y - X\tilde{\beta})$ subject to $R\tilde{\beta} = r$.

Let *L* be the Lagrangian for the minimization problem.

$$L = (y - X\tilde{\beta})'(y - X\tilde{\beta}) - 2\tilde{\lambda}'(R\tilde{\beta} - r)$$

Let $\tilde{\beta}$ and $\tilde{\lambda}$ be the solutions of β and λ in the optimization problem shown above.

That is, $\tilde{\beta}$ and $\tilde{\lambda}$ minimize the Lagrangian L.

Therefore, we solve the following equations:

$$\frac{\partial L}{\partial \tilde{\beta}} = -2X'(y - X\tilde{\beta}) - 2R'\tilde{\lambda} = 0$$
$$\frac{\partial L}{\partial \tilde{\lambda}} = -2(R\tilde{\beta} - r) = 0.$$

(*) Remember that
$$\frac{\partial a'x}{\partial x} = a$$
 and $\frac{\partial x'Ax}{\partial x} = (A + A')x$.

From $\frac{\partial L}{\partial \tilde{\beta}} = 0$, we obtain:

$$\tilde{\beta} = (X'X)^{-1}X'y + (X'X)^{-1}R'\tilde{\lambda} = \hat{\beta} + (X'X)^{-1}R'\tilde{\lambda}.$$

Multiplying *R* from the left, we have:

$$R\tilde{\beta} = R\hat{\beta} + R(X'X)^{-1}R'\tilde{\lambda}.$$

Because $R\tilde{\beta} = r$ has to be satisfied, we have the following expression:

$$r = R\hat{\beta} + R(X'X)^{-1}R'\tilde{\lambda}.$$

Therefore, solving the above equation with respect to $\tilde{\lambda}$, we obtain:

$$\tilde{\lambda} = \left(R(X'X)^{-1}R' \right)^{-1} (r - R\hat{\beta})$$

Substituting $\tilde{\lambda}$ into $\tilde{\beta} = \hat{\beta} + (X'X)^{-1}R'\tilde{\lambda}$, the restricted OLSE is given by:

$$\tilde{\beta} = \hat{\beta} + (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(r - R\hat{\beta}).$$

(a) The expectation of $\tilde{\beta}$ is:

$$E(\tilde{\beta}) = E(\hat{\beta}) + (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(r - RE(\hat{\beta}))$$

$$= \beta + (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(r - R\beta)$$

$$= \beta,$$

because of $R\beta = r$.

Thus, it is shown that $\tilde{\beta}$ is unbiased.

(b) The variance of $\tilde{\beta}$ is as follows.

First, rewrite as follows:

$$\begin{split} (\tilde{\beta} - \beta) &= (\hat{\beta} - \beta) + (X'X)^{-1}R' \left(R(X'X)^{-1}R' \right)^{-1} (R\beta - R\hat{\beta}) \\ &= (\hat{\beta} - \beta) - (X'X)^{-1}R' \left(R(X'X)^{-1}R' \right)^{-1} (R\hat{\beta} - R\beta) \\ &= (\hat{\beta} - \beta) - (X'X)^{-1}R' \left(R(X'X)^{-1}R' \right)^{-1} R(\hat{\beta} - \beta) \\ &= \left(I_k - (X'X)^{-1}R' \left(R(X'X)^{-1}R' \right)^{-1} R \right) (\hat{\beta} - \beta) \\ &= W(\hat{\beta} - \beta), \end{split}$$

where $W \equiv I_k - (X'X)^{-1}R' \left(R(X'X)^{-1}R'\right)^{-1}R$.

Then, we obtain the following variance:

$$\begin{split} \mathbf{V}(\tilde{\boldsymbol{\beta}}) &\equiv \mathbf{E}((\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})') = \mathbf{E}(\boldsymbol{W}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\boldsymbol{W}') \\ &= \boldsymbol{W} \mathbf{E}((\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})') \boldsymbol{W}' = \boldsymbol{W} \mathbf{V}(\hat{\boldsymbol{\beta}}) \boldsymbol{W}' = \sigma^2 \boldsymbol{W}(\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{W}' \\ &= \sigma^2 \Big(\boldsymbol{I} - (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}' \left(\boldsymbol{R}(\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}'\right)^{-1} \boldsymbol{R} \right) (\boldsymbol{X}'\boldsymbol{X})^{-1} \\ &\qquad \qquad \times \Big(\boldsymbol{I} - (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}' \left(\boldsymbol{R}(\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}'\right)^{-1} \boldsymbol{R} \Big)' \\ &= \sigma^2 (\boldsymbol{X}'\boldsymbol{X})^{-1} - \sigma^2 (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}' \left(\boldsymbol{R}(\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}'\right)^{-1} \boldsymbol{R}(\boldsymbol{X}'\boldsymbol{X})^{-1} \\ &= \mathbf{V}(\hat{\boldsymbol{\beta}}) - \sigma^2 (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}' \left(\boldsymbol{R}(\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}'\right)^{-1} \boldsymbol{R}(\boldsymbol{X}'\boldsymbol{X})^{-1} \end{split}$$

That is,

$$V(\hat{\beta}) - V(\tilde{\beta}) = \sigma^{2} (X'X)^{-1} R' \left(R(X'X)^{-1} R' \right)^{-1} R(X'X)^{-1}$$

Thus, $V(\hat{\beta}) - V(\tilde{\beta})$ is positive definite.

If X'X is positive definite,

 \implies then $(X'X)^{-1}$ is also positive definite,

 \implies then $R(X'X)^{-1}R'$ is also positive definite,

 \implies then $(R(X'X)^{-1}R')^{-1}$ is also positive definite,

 \implies then $(X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}R(X'X)^{-1}$ is also positive definite,

Let a be a $k \times 1$ vector.

Defining z = Xa, which is a $n \times 1$ vector, construct the sum of squared elements $z'z = \sum_{i=1}^{n} z_i^2 > 0$ for $z \neq 0$.

Therefore, we obtain: z'z = (Xa)'(Xa) = a'X'Xa > 0 for $z = Xa \neq 0$.

Thus, X'X is positive definite.

3. Another solution:

Again, write the first-order condition for minimization:

$$\frac{\partial L}{\partial \tilde{\beta}} = -2X'(y - X\tilde{\beta}) - 2R'\tilde{\lambda} = 0,$$

$$\frac{\partial L}{\partial \tilde{\lambda}} = -2(R\tilde{\beta} - r) = 0,$$

which can be written as:

$$X'X\tilde{\beta} - R'\tilde{\lambda} = X'y,$$

$$R\tilde{\beta} = r.$$

Using the matrix form:

$$\begin{pmatrix} X'X & R' \\ R & 0 \end{pmatrix} \begin{pmatrix} \tilde{\beta} \\ -\tilde{\lambda} \end{pmatrix} = \begin{pmatrix} X'y \\ r \end{pmatrix}.$$

The solutions of $\tilde{\beta}$ and $-\tilde{\lambda}$ are given by:

$$\begin{pmatrix} \tilde{\beta} \\ -\tilde{\lambda} \end{pmatrix} = \begin{pmatrix} X'X & R' \\ R & 0 \end{pmatrix}^{-1} \begin{pmatrix} X'y \\ r \end{pmatrix}.$$

(*) Formula to the inverse matrix:

$$\begin{pmatrix} A & B \\ B' & D \end{pmatrix}^{-1} = \begin{pmatrix} E & F \\ F' & G \end{pmatrix},$$

where E, F and G are given by:

$$E = (A - BD^{-1}B')^{-1} = A^{-1} + A^{-1}B(D - B'A^{-1}B)^{-1}B'A^{-1}$$

$$F = -(A - BD^{-1}B')^{-1}BD^{-1} = -A^{-1}B(D - B'A^{-1}B)^{-1}$$

$$G = (D - B'A^{-1}B)^{-1} = D^{-1} + D^{-1}B'(A - BD^{-1}B')^{-1}BD^{-1}$$

In this case, E and F correspond to:

$$E = (X'X)^{-1} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}R(X'X)^{-1}$$
$$F = (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}.$$

Therefore, $\tilde{\beta}$ is derived as follows:

$$\tilde{\beta} = EX'y + Fr$$

$$= \hat{\beta} + (X'X)^{-1}R' \Big(R(X'X)^{-1}R' \Big)^{-1} (r - R\hat{\beta}).$$

The variance is:

$$V\begin{pmatrix} \tilde{\beta} \\ -\tilde{\lambda} \end{pmatrix} = \sigma^2 \begin{pmatrix} X'X & R' \\ R & 0 \end{pmatrix}^{-1}.$$

Therefore, $V(\tilde{\beta})$ is:

$$V(\tilde{\beta}) = \sigma^2 E = \sigma^2 \Big((X'X)^{-1} - (X'X)^{-1} R' \Big(R(X'X)^{-1} R' \Big)^{-1} R(X'X)^{-1} \Big)$$

Under the restriction: $R\beta = r$,

$$V(\hat{\beta}) - V(\tilde{\beta}) = \sigma^{2}(X'X)^{-1}R' \Big(R(X'X)^{-1}R' \Big)^{-1} R(X'X)^{-1}$$

is positive definite.

6 F Distribution (Restricted and Unrestricted OLSs)

1. As mentioned above, under the null hypothesis $H_0: R\beta = r$,

$$\frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/G}{(y - X\hat{\beta})'(y - X\hat{\beta})/(n - k)} \sim F(G, n - k),$$

where G = Rank(R).

Using $\tilde{\beta} = \hat{\beta} + (X'X)^{-1}R' \left(R(X'X)^{-1}R'\right)^{-1} (r - R\hat{\beta})$, the numerator is rewritten as follows:

$$(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r) = (\hat{\beta} - \tilde{\beta})'X'X(\hat{\beta} - \tilde{\beta}).$$

Moreover, the numerator is represented as follows:

$$(y - X\tilde{\beta})'(y - X\tilde{\beta}) = (y - X\hat{\beta} - X(\tilde{\beta} - \hat{\beta}))'(y - X\hat{\beta} - X(\tilde{\beta} - \hat{\beta}))$$
$$= (y - X\hat{\beta})'(y - X\hat{\beta}) + (\tilde{\beta} - \hat{\beta})'X'X(\tilde{\beta} - \hat{\beta})$$

$$-(y - X\hat{\beta})'X(\tilde{\beta} - \hat{\beta}) - (\tilde{\beta} - \hat{\beta})'X'(y - X\hat{\beta})$$
$$= (y - X\hat{\beta})'(y - X\hat{\beta}) + (\tilde{\beta} - \hat{\beta})'X'X(\tilde{\beta} - \hat{\beta}).$$

 $X'(y - X\hat{\beta}) = X'e = 0$ is utilized.

Summarizing, we have following representation:

$$(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r) = (\tilde{\beta} - \hat{\beta})'X'X(\tilde{\beta} - \hat{\beta})$$

$$= (y - X\tilde{\beta})'(y - X\tilde{\beta}) - (y - X\hat{\beta})'(y - X\hat{\beta})$$

$$= \tilde{u}'\tilde{u} - e'e,$$

where e and \tilde{u} are the restricted residual and the unrestricted residual, i.e., $e = v - X\hat{\beta}$ and $\tilde{u} = v - X\tilde{\beta}$.

Therefore, we obtain the following result:

$$\frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/G}{(y - X\hat{\beta})'(y - X\hat{\beta})/(n - k)} = \frac{(\tilde{u}'\tilde{u} - e'e)/G}{e'e/(n - k)} \sim F(G, n - k).$$

2. Moreover, let \hat{R}^2 and \tilde{R}^2 be the unrestricted R^2 (i.e., the coefficient of determination) and the restricted R^2 .

Note that
$$\hat{R}^2 = 1 - \frac{e'e}{y'My}$$
 and $\tilde{R}^2 = 1 - \frac{\tilde{u}'\tilde{u}}{y'My}$, where $M = I_n - \frac{1}{n}ii'$ and $i = (1, 1, \dots, 1)'$.

$$\frac{(\tilde{u}'\tilde{u} - e'e)/G}{e'e/(n-k)} = \frac{(\hat{R}^2 - \tilde{R}^2)/G}{(1-\hat{R}^2)/(n-k)} \sim F(G, n-k).$$

$$e'e = (1 - \hat{R}^2)y'My$$
 and $\tilde{u}'\tilde{u} = (1 - \tilde{R}^2)y'My$ are substituted.