
Econometrics I
(Tue., 8:50-10:20)

Room # 1 (法経講義棟)

1



• This class is based on Statistics (統計，『コア・テキスト　統計学』大屋幸輔著，
新世社) and Econometrics (計量経済，『計量経済学』山本拓著，新世社), which

are provided by Department of Economics,

and Basic Statistics (統計基礎，『コア・テキスト　統計学』大屋幸輔著，新世
社), provided by Graduate School of Economics.

Thus, Statistics and Econometrics of undergraduate level are prerequisites.

• Furthermore, Special Lectures in Economics (Statistical Analysis) or Statistical

Analysis (統計解析), provided by Graduate School of Economics, should be studied

with this class.

Or, do self-study using the lecture notes of

https://www2.econ.osaka-u.ac.jp/˜tanizaki/class/2012/econome1/index.htm

(The notes are written in English with Japanese translation for econometrics terms).
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TA Session:
TAs: Kaito Sakaguchi (坂口開人)

u190954f [at] ecs. osaka-u. ac. jp

Jukina Hatakeyama (畠山樹輝凪):
u868710a [at] ecs. osaka-u. ac. jp

Date: Thrs. 15:10-16:40

Place: Room #509 (509セミナー室)

Contents: Basic Statistics, Matrix Algebra, and etc.
Ask TAs directly in the TA session
if you have questions about class, homework and etc.
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• Download the lecture notes from the following websites:

http://www2.econ.osaka-u.ac.jp/˜tanizaki/class/2025/econome2/
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1 Maximum Likelihood Estimation (MLE,
さ い ゆ う最尤法)

−→ Review

1. The distribution function of {Xi}ni=1 is f (x; θ), where x = (x1, x2, · · · , xn).

θ is a vector or matrix of unknown parameters, e.g., θ = (µ,Σ), where µ = E(Xi)

and Σ = V(Xi).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).

Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.
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The maximum likelihood estimate (MLE) of θ is the θ such that:

max
θ

L(θ; x). ⇐⇒ max
θ

log L(θ; x).

Thus, MLE satisfies the following two conditions:

(a)
∂ log L(θ; x)
∂θ

= 0. =⇒ Solution of θ: θ̃ = θ̃(x)

(b)
∂2 log L(θ; x)
∂θ∂θ′

is a negative definite matrix.

2. x = (x1, x2, · · · , xn) are used as the observations (i.e., observed data).

X = (X1, X2, · · · , Xn) denote the random variables associated with the joint

distribution f (x; θ) =
∏n

i=1 f (xi; θ).
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3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of θ satisfies the following two conditions:

(a)
∂ log L(θ; X)
∂θ

= 0. =⇒ Solution of θ: θ̃ = θ̃(X)

(b)
∂2 log L(θ; X)
∂θ∂θ′

is a negative definite matrix.

4. Fisher’s information matrix (フィッシャーの情報行列) or simply informa-

tion matrix, denoted by I(θ), is given by:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′

)
,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′

)
= E

(∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(∂ log L(θ; X)
∂θ

)
Note that E(·) and V(·) are expected with respect to X.
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Proof of the above equality: ∫
L(θ; x)dx = 1

Take a derivative with respect to θ.∫
∂L(θ; x)
∂θ

dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative
∂L(θ; x)
∂θ

exists.)

(*) Differentiation of Composite Functions (合成関数の微分) or Chain rule

(連鎖律):

∂ log L(θ; x)
∂θ

=
∂ log L(θ; x)
∂L(θ; x)

∂L(θ; x)
∂θ

=
1

L(θ; x)
∂L(θ; x)
∂θ

i.e.,
∂L(θ; x)
∂θ

=
∂ log L(θ; x)
∂θ

L(θ; x)
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Rewriting the above equation, we obtain:∫
∂L(θ; x)
∂θ

dx =
∫
∂ log L(θ; x)
∂θ

L(θ; x)dx = 0,

i.e.,

E
(
∂ log L(θ; X)
∂θ

)
= 0.

Again, differentiating the above with respect to θ, we obtain:∫
∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +
∫
∂ log L(θ; x)
∂θ

∂L(θ; x)
∂′θ

dx

=

∫
∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +
∫
∂ log L(θ; x)
∂θ

∂ log L(θ; x)
∂θ′

L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′

)
+ E

(∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= 0.

Therefore, we can derive the following equality:

−E
(
∂2 log L(θ; X)
∂θ∂θ′

)
= E

(
∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)
∂θ

)
,
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where the second equality utilizes E
(
∂ log L(θ; X)
∂θ

)
= 0.

5. Cramer-Rao inequality (クラメール・ラオの不等式) is given by:

V(s(X)) ≥ (I(θ))−1,

where s(X) denotes an unbiased estimator of θ.

(I(θ))−1 is called Cramer-Rao Lower Bound (クラメール・ラオの下限).

Proof:

The expectation of s(X) is:

E(s(X)) =
∫

s(x)L(θ; x)dx.

Differentiating the above with respect to θ,

∂E(s(X))
∂θ

=

∫
s(x)
∂L(θ; x)
∂θ

dx =
∫

s(x)
∂ log L(θ; x)
∂θ

L(θ; x)dx
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= Cov
(
s(X),

∂ log L(θ; X)
∂θ

)
For simplicity, let s(X) and θ be scalars.

Then,(
∂E(s(X))
∂θ

)2

=

(
Cov

(
s(X),

∂ log L(θ; X)
∂θ

))2

= ρ2V (s(X)) V
(
∂ log L(θ; X)
∂θ

)
≤ V (s(X)) V

(
∂ log L(θ; X)
∂θ

)
,

where ρ denotes the correlation coefficient between s(X) and
∂ log L(θ; X)
∂θ

, i.e.,

ρ =

Cov
(
s(X),

∂ log L(θ; X)
∂θ

)
√

V (s(X))

√
V

(
∂ log L(θ; X)
∂θ

) .
Note that |ρ| ≤ 1.
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Therefore, we have the following inequality:(
∂E(s(X))
∂θ

)2

≤ V(s(X)) V
(
∂ log L(θ; X)
∂θ

)
,

i.e.,

V(s(X)) ≥

(
∂E(s(X))
∂θ

)2

V
(
∂ log L(θ; X)
∂θ

)
Especially, when E(s(X)) = θ, i.e., when s(X) is an unbiased estimator of θ, the

numerator of the right-hand side leads to one.

Therefore, we obtain:

V(s(X)) ≥ 1

−E
(
∂2 log L(θ; X)
∂θ2

) = (I(θ))−1.
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Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) ≥ (I(θ))−1,

where I(θ) is defined as:

I(θ) = −E
(
∂2 log L(θ; X)
∂θ∂θ′

)
= E

(
∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)
∂θ

)
.

The variance of any unbiased estimator of θ is larger than or equal to (I(θ))−1.

Thus, (I(θ))−1 results in the lower bound of the variance of any unbiased esti-

mator of θ.

6. Asymptotic Normality of MLE:

Let θ̃ be MLE of θ.
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As n goes to infinity, we have the following result:

√
n(θ̃ − θ) −→ N

0, lim
n→∞

(
I(θ)
n

)−1 ,
where it is assumed that lim

n→∞

(
I(θ)
n

)
converges.

−→ The proof will be shown later.

That is, when n is large, θ̃ is approximately distributed as follows:

θ̃ ∼ N
(
θ, (I(θ))−1

)
.

Suppose that s(X) = θ̃.

When n is large, V(s(X)) is approximately equal to (I(θ))−1.
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7. Optimization (最適化):

MLE of θ results in the following maximization problem:

max
θ

log L(θ; x).

We often have the case where the solution of θ is not derived in closed form.

=⇒ Optimization procedure

0 =
∂ log L(θ; x)
∂θ

≈ ∂ log L(θ∗; x)
∂θ

+
∂2 log L(θ∗; x)
∂θ∂θ′

(θ − θ∗).

Solving the above equation with respect to θ, we approximately obtain the

following:

θ = θ∗ −
(
∂2 log L(θ∗; x)
∂θ∂θ′

)−1
∂ log L(θ∗; x)

∂θ
.

Replace the variables as follows:

θ −→ θ(i+1) θ∗ −→ θ(i)
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Then, we have:

θ(i+1) = θ(i) −
(
∂2 log L(θ(i); x)
∂θ∂θ′

)−1
∂ log L(θ(i); x)

∂θ
.

=⇒ Newton-Raphson method (ニュートン・ラプソン法)

Replacing
∂2 log L(θ(i); x)
∂θ∂θ′

by E
(
∂2 log L(θ(i); x)
∂θ∂θ′

)
, we obtain the following op-

timization algorithm:

θ(i+1) = θ(i) −
(
E

(
∂2 log L(θ(i); x)
∂θ∂θ′

))−1
∂ log L(θ(i); x)

∂θ

= θ(i) +
(
I(θ(i))

)−1 ∂ log L(θ(i); x)
∂θ

=⇒Method of Scoring (スコア法)

Convergence speed might be improved, compared with Newton-Raphson method.
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1. Central Limit Theorem: Let X1, X2, · · ·, Xn be mutually independently dis-

tributed random variables with mean E(Xi) = µ and variance V(Xi) = σ2 < ∞

for i = 1, 2, · · · , n.

Define X = (1/n)
∑n

i=1 Xi.

Then, the central limit theorem is given by:

X − E(X)√
V(X)

=
X − µ
σ/
√

n
−→ N(0, 1).

Note that E(X) = µ and V(X) = σ2/n.

That is,
√

n(X − µ) = 1
√

n

n∑
i=1

(Xi − µ) −→ N(0, σ2).

Note that E(X) = µ and nV(X) = σ2.
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In the case where Xi is a vector of random variable with mean µ and variance

Σ < ∞, the central limit theorem is given by:

√
n(X − µ) = 1

√
n

n∑
i=1

(Xi − µ) −→ N(0,Σ).

Note that E(X) = µ and nV(X) = Σ.

2. Central Limit Theorem II: Let X1, X2, · · ·, Xn be mutually independently

distributed random variables with mean E(Xi) = µ and variance V(Xi) = σ2
i for

i = 1, 2, · · · , n.

Assume:

σ2 = lim
n→∞

1
n

n∑
i=1

σ2
i < ∞.

Define X = (1/n)
∑n

i=1 Xi.
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Then, the central limit theorem is given by:

X − E(X)√
V(X)

=
X − µ
σ/
√

n
−→ N(0, 1),

i.e.,
√

n(X − µ) = 1
√

n

n∑
i=1

(Xi − µ) −→ N(0, σ2).

Note that E(X) = µ and nV(X) −→ σ2.

In the case where Xi is a vector of random variable with mean µ and variance

Σi, the central limit theorem is given by:

√
n(X − µ) = 1

√
n

n∑
i=1

(Xi − µ) −→ N(0,Σ),

where Σ = lim
n→∞

1
n

n∑
i=1

Σi < ∞.
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Note that E(X) = µ and nV(X) −→ Σ.

[Review of Asymptotic Theories]

• Convergence in Probability (確率収束) Xn −→ a, i.e., X converges in

probability to a, where a is a fixed number.

• Convergence in Distribution (分布収束) Xn −→ X, i.e., X converges in

distribution to X. The distribution of Xn converges to the distribution of X as n

goes to infinity.

Some Formulas

Xn and Yn : Convergence in Probability

Zn : Convergence in Distribution

• If Xn −→ a, then f (Xn) −→ f (a).
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• If Xn −→ a and Yn −→ b, then f (XnYn) −→ f (ab).

• If Xn −→ a and Zn −→ Z, then XnZn −→ aZ, i.e., aZ is distributed with

mean E(aZ) = aE(Z) and variance V(aZ) = a2V(Z).

[End of Review]

3. Weak Law of Large Numbers (
たいすう
大数の弱法則) — Review:

Suppose that X1, X2, · · ·, Xn are distributed.

As n −→ ∞, X −→ lim
n→∞

E(X) under lim
n→∞

nV(X) < ∞, which is called the

weak law of large numbers.

−→ Convergence in probability

−→ Proved by Chebyshev’s inequality
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(i) Suppose that X1, X2, · · ·, Xn are assumed to be mutually independently

and identically distributed with E(Xi) = µ and V(Xi) = σ2 < ∞.

Consider X =
1
n

n∑
i=1

Xi.

Then, X −→ µ as n −→ ∞.

Note that E(X) = µ and nV(X) = σ2.

(ii) Suppoose that X1, X2, · · ·, Xn are assumed to be mutually independently

distributed with E(Xi) = µi and V(Xi) = σ2
i .

Assume that

(a) E(X) =
1
n

n∑
i=1

µi −→ µ, i.e., lim
n→∞

E(X) = µ, and

(b) nV(X) =
1
n

n∑
i=1

σ2
i −→ σ2 < ∞, ie., lim

n→∞
nV(X) = σ2 < ∞.
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Then, X −→ µ as n −→ ∞,

Note that E(X) =
1
n

n∑
i=1

µi and nV(X) =
1
n

n∑
i=1

σ2
i .

(iii) Suppose that X1, X2, · · ·, Xn are assumed to be serially correlated with

E(Xi) = µi and Cov(Xi, X j) = σi j.

Assume that

(a) E(X) =
1
n

n∑
i=1

µi −→ µ, i.e., lim
n→∞

E(X) = µ, and

(b) nV(X) =
1
n

n∑
i=1

n∑
j=1

σi j −→ σ2 < ∞, ie., lim
n→∞

nV(X) = σ2 < ∞.

Then, X −→ µ as n −→ ∞,

Note that E(X) =
1
n

n∑
i=1

µi and nV(X) =
1
n

n∑
i=1

n∑
j=1

σi j.
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4. Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:

A vector of randam variavle X: E(X) = µ and V(X) ≡ E((X − µ)(X − µ)′) = Σ

Then, E(AX) = Aµ and V(AX) = AΣA′.

Proof:

E(AX) = AE(X) = Aµ

V(AX) = E((AX − Aµ)(AX − Aµ)′) = E(A(X − µ)(A(X − µ))′)

= E(A(X − µ)(X − µ)′A′) = AE((X − µ)(X − µ)′)A′ = AV(X)A′ = AΣA′
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MLE: Asymptotic Properties

1. X1, X2, · · · , Xn are random variables with density function f (x; θ).

Let θ̂n be a maximum likelihood estimator of θ.

Then, under some regularity conditions. θ̂n is a consistent estimator of θ and

the asymptotic distribution of
√

n(θ̂ − θ) is given by:

√
n(θ̂ − θ) −→ N

0, lim
n→∞

(
I(θ)
n

)−1
2. Regularity Conditions:

(a) The domain of Xi does not depend on θ.

(b) There exists at least third-order derivative of f (x; θ) with respect to θ, and

their derivatives are finite.
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3. Thus, MLE is

(i) consistent，
(ii) asymptotically normal，and

(iii) asymptotically efficient.

Proof: The log-likelihood function is given by:

log L(θ) = log
n∏

i=1

f (Xi; θ) =
n∑

i=1

log f (Xi; θ)

Xi is a random variable.

Consider the distribution of

1
n
∂ log L(θ)
∂θ

=
1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

.

We have to obtain mean and variance of
∂ log f (Xi; θ)

∂θ
.
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Suppose that Xi is a continuous type of random variable.

f (xi; θ) denotes the density function.

Therefore, we have: ∫
f (xi; θ)dxi = 1

Taking the derivative with respect to θ on both sides, we obtain:

0 =
∫
∂ f (xi; θ)
∂θ

dxi =

∫
∂ log f (xi; θ)

∂θ
f (xi; θ)dxi = E

(∂ log f (Xi; θ)
∂θ

)
Again, take the derivative with respect to θ on both sides as follows:

0 =
∫
∂2 log f (xi; θ)
∂θ∂θ′

f (xi; θ) +
∂ log f (xi; θ)

∂θ

∂ f (xi; θ)
∂θ′

dxi

=

∫
∂2 log f (xi; θ)
∂θ∂θ′

f (xi; θ)dxi +

∫
∂ log f (xi; θ)

∂θ

∂ log f (xi; θ)
∂θ′

f (xi; θ)dxi

= E
(∂2 log f (Xi; θ)

∂θ∂θ

′)
+ E

(∂ log f (Xi; θ)
∂θ

∂ log f (Xi; θ)
∂θ′

)
,
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i.e.,

−E
(∂2 log f (Xi; θ)

∂θ∂θ

′)
= E

(∂ log f (Xi; θ)
∂θ

∂ log f (Xi; θ)
∂θ′

)
= V

(∂ log f (Xi; θ)
∂θ

)
= Σi

Thus,
∂ log f (Xi; θ)

∂θ
is distributed with mean 0 and variance Σi.

Note as follows:

I(θ) = −E
(∂2 log L(θ)
∂θ∂θ′

)
= −

n∑
i=1

E
(∂2 log f (Xi; θ)

∂θ∂θ′

)
=

n∑
i=1

Σi.

Using the central limit theorem (generalization) shown above, asymptotically we ob-

tain the following distribution:

1
√

n
∂ log L(θ)
∂θ

=
1
√

n

n∑
i=1

∂ log f (Xi; θ)
∂θ

−→ N(0,Σ),

where Σ = lim
n→∞

(1
n

I(θ)
)
.
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