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1 Maximum Likelihood Estimation (MLE, B5E)
—> Review

1. The distribution function of {X;}?_, is f(x;0), where x = (x1, X2, - -, X,).

6 is a vector or matrix of unknown parameters, e.g., 0 = (u, ), where u = E(X;)
and £ = V(X).
Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(6; x) = f(x; ).

Note that f(x;0) = [], f(x;;6) when X;, X5, -+, X,, are mutually indepen-

dently and identically distributed.



The maximum likelihood estimate (MLE) of 6 is the 0 such that:

max L(0; x). = max log L(6; x).
6 0

Thus, MLE satisfies the following two conditions:

0log L(6; . .~
(a) % =0. = Solution of 8: 8 = 6(x)
0% log L(6; x) . . . .
(b) % is a negative definite matrix.
2. x = (xy1,x,--+,Xx,) are used as the observations (i.e., observed data).
X = (X1,X,,--+,X,) denote the random variables associated with the joint

distribution f(x;60) = [, f(xi; 0).
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3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of 6 satisfies the following two conditions:

Olog L(0; X . ~
(a) % —0. = Solutionof §: 8 = B(X)
0*log L(6; X
(b) —Oﬁge 82’ ) is a negative definite matrix.

4. Fisher’s information matrix (7 1+ > ¥ —D1E#H1T) or simply informa-
tion matrix, denoted by /(6), is given by:
0% log L(6; X)
10) = -E| —F—————
O =g )
where we have the following equality:

0% log L(6; X) _ (0log L(6; X) dlog L(0; X)\ ,,0log L(0; X)
—E( 9600’ )=E( 90 o6 )=V 90 )

Note that E(-) and V(-) are expected with respect to X.
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Proof of the above equality:

f L@;x)dx =1

Take a derivative with respect to 6.

f OL(0; x) dr=0

00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(0; x)

06

exists.)

(*) Differentiation of Composite Functions (& EZ D %3) or Chain rule
(EEHEB):
dlog L(0;x) _ dlog L(6;x)0L(O;x) 1  OL(6;x)
90 - 0L®:;x) 00  L#;x) 00

1.e.,
O0L(; x) _ dlog L(6; x)
/0 90

L(6; x)
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Rewriting the above equation, we obtain:

0L(6; x) f 0log L(6; x)
= —L . =
f 50 dx 50 (0; x)dx =0,

1.e.,

00

Again, differentiating the above with respect to 6, we obtain:

& logL(;x) dlog L(6; x) OL(6; x)
f 2000 L(6; x)dx + f 50 50 dx

#logL(O;x) dlog L(6; x) 0 log L(; x)
- f doap HO0dxE f 06 o0
0% log L(6; X) dlog L(6; X) dlog L(6; X)
=E E
(000 ) +E 2 o6

E(W) _0,

L(6; x)dx

)=0.

Therefore, we can derive the following equality:

B 0% log L(6; X) _E dlog L(6; X) dlog L(6; X) _v dlog L(6; X)
0006’ B 90 o0’ B 90 ’
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dlog L(0; X))
goem ) <.
00

. Cramer-Rao inequality (7 5 X—JL « 54 DFREFR) is given by:

where the second equality utilizes E (

V(s(X)) > (1(6),
where s(X) denotes an unbiased estimator of 6.

(1(0))7! is called Cramer-Rao Lower Bound (7 5 X—IJL + S A DTFIR).

Proof:

The expectation of s(X) is:

E(s(X)) = f s(x)L(0; x)dx.

Differentiating the above with respect to 6,
OE(s(X)) OL(9; x) f 0log L(6; x)
_—— _— = —L :
50 f s(x) 50 dx s(x) 50 (6; x)dx
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- ov[s, Z2240:)

For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlog L6; X)\\ dlog L(6; X)
( 50 ) = (COV (s(X), T)) =pV(s(X)V (T)
< V(X)) V (—a log aLe(e; X)) :

Olog L(6; X) .
—= 1 ‘e

where p denotes the correlation coefficient between s(X) and 50

Cov (s(X), dlog L(6; X))

00

p:

W\/ alogL(e X))

Note that |o| < 1.
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Therefore, we have the following inequality:

SE(s(X))\’ dlog L(6; X)
(T) < V(s(X)) V(T) ,
1.e.,
(6E<s<X>>)2
V(s(X)) >

00
Especially, when E(s(X)) = 6, i.e., when s(X) is an unbiased estimator of 6, the

- (810g Lo, X))

numerator of the right-hand side leads to one.

Therefore, we obtain:

1 P
V(s(X)) > NGTTIA O
002
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Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) = (1O) 7,

where 1(60) is defined as:
0% log L(6; X)
10)=-E| ————
© ( 0006’ )
0log L(6; X) 0log L(6; X) dlog L(8; X)
=E =V|————=|.
06 0o 00

The variance of any unbiased estimator of  is larger than or equal to (1(6))~'.

Thus, (1(6))~! results in the lower bound of the variance of any unbiased esti-

mator of 6.
. Asymptotic Normality of MLE:

Let 8 be MLE of 6.

17



As n goes to infinity, we have the following result:

-1
Vn@é -6 — N[O, 1im(@) ]

n—oo n

n—o\ n

10
where it is assumed that lim (2) converges.

— The proof will be shown later.

That is, when 7 is large, 6 is approximately distributed as follows:

6~N (9, (1(9))—‘) .

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (/ (9))_1.
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7. Optimization (Fi#E1b):
MLE of 6 results in the following maximization problem:

max log L(6; x).
0

We often have the case where the solution of 6 is not derived in closed form.

= Optimization procedure
0= dlog L(0;x) _ dlog L(6"; x) . 8% log L(6"; x)
I 06 0606

@—6).

Solving the above equation with respect to 6, we approximately obtain the

following:

0o & log L(9"; x)\ ' dlog L(6"; x)
- 0606’ 00

Replace the variables as follows:
6 — gD g — ¥
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Then, we have:

. )\ 7! 0.
2D _ g _ (62 log L(9<>,x)) 9log L(H”: x)

06000’ a0

— Newton-Raphson method (Za2— k> « STV Vi)

0% log L(6Y; x) 0% log L(6Y; x)
Replacing ——— by E| ———
eplacing 0000’ 0000’
timization algorithm:

), we obtain the following op-

gi+h — g (E (62 log L(6D; x) ))—1 dlog L(OD; x)

06000’ 00
-1 dlog L(67; x)

= 0 + (1(6")) =

= Method of Scoring (X J77%)

Convergence speed might be improved, compared with Newton-Raphson method.
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1. Central Limit Theorem: Let X;, X5, ---, X,, be mutually independently dis-
tributed random variables with mean E(X;) = u and variance V(X;) = 0 < oo

fori=1,2,---,n.
Define X = (1/n) Y2, X;.
Then, the central limit theorem is given by:
X-EX) X-pu
\/@ ~o/\n

Note that E(X) = u and V(X) = o%/n.

— N(0,1).

That is,
_ 1 <&
) = — 1) — N(0,0?).
V(X - p) \/ﬁ;:l(Xl 1) 0,0°)

Note that E(X) = u and nV(X) = o2
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In the case where X; is a vector of random variable with mean u and variance

X < oo, the central limit theorem is given by:
— 1 <
VaX ) = —= > (X;=p) — NO.%).
"=

Note that E(X) = u and nV(X) = .

. Central Limit Theorem II: Let X;, X;, ---, X,, be mutually independently
distributed random variables with mean E(X;) = u and variance V(X;) = 0'12 for

i=1,2,---,n.

Assume:

(3]
p—
N

Define X = (1/n) Y1, X;.
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Then, the central limit theorem is given by:
X-EX) X-pu

\/\%_U/Vﬁ

=K — N,
i=1

— N, D),

1.e.,

V(X — p) = P

Note that E(X) = u and nV(X) — o>

In the case where X; is a vector of random variable with mean u and variance

%, the central limit theorem is given by:

_ 1 &
VX — ) = 7 ;0@ — ) — NQ©,3),

1
where ¥ = lim — Y < o0,

n—oo N
i=1
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Note that E(X) = p and nV(X) — X.

[Review of Asymptotic Theories]

e Convergence in Probability (FEZIYER) X, — a, i.e., X converges in

probability to a, where a is a fixed number.

¢ Convergence in Distribution (53 %UX3R) X, — X, i.e., X converges in
distribution to X. The distribution of X,, converges to the distribution of X as n

goes to infinity.

Some Formulas

X, and Y, : Convergence in Probability
Z, . Convergence in Distribution

o If X, — a,then f(X,) — f(a).

24



e IfX, — aandY, — b,then f(X,Y,) — f(ab).

e If X, — aandZ, — Z, then X,,Z, — aZ, i.e., aZ is distributed with

mean E(aZ) = aE(Z) and variance V(aZ) = a*V(2).

[End of Review]

W35
. Weak Law of Large Numbers (K& D §57%8!]) — Review:

Suppose that X;, X, - - -, X, are distributed.

Asn — o0, X — lim E(X) under lim nV(X) < oo, which is called the

n—oo

weak law of large numbers.
— Convergence in probability

— Proved by Chebyshev’s inequality
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®

(ii)

Suppose that X;, X, ---, X, are assumed to be mutually independently
and identically distributed with E(X;) = u and V(X;) = 02 < o0.

_ 1<
Consider X = - ) X,.
onsiaer n;

Then, X —> pasn — oo,

Note that E(X) = u and nV(X) = o2

Suppoose that X;, X, - -+, X,, are assumed to be mutually independently
distributed with E(X;) = y; and V(X;) = o77.
Assume that

_ 1 <& _
(a) EX) = ‘Z“i —> u,ie., lim E(X) = x4, and
n P n—oo

_ 1 <& _
(b) nV(X) = - § or — 07 <, ie., lim nV(X) = 0% < 0.
n n—oo
i=1
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Then,)_( —> pasn —> o9,

N — 1,
Note that E(X) = ;; ; and nV(X) = Z;ai.

(iii) Suppose that X, X,, ---, X,, are assumed to be serially correlated with
E(X;) = y; and Cov(X;, X;) = 07;.
Assume that
(a) E(X) = %Z pi — e, lim E(X) = u, and

i=1
n

_ 1 1 _
b) nV(X) = - i ? < 00, ie., lim nV(X) = 0 < co.
(b) nV(X) HZZUJHU o, ie., lim nV(X) = o < e

i=1 j=1

Then, X — pasn — oo,

- 1 n - 1 n n
Nt thtEX = - i d VX = - iie
ote that E(X) n;,uann() HZZO'J

i=1 j=1
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4. Some Formulas of Expectaion and Variance in Multivariate Cases

— Review:
A vector of randam variavle X: E(X) =pand VIX) = E(X - )X -w)) =X

Then, E(AX) = Au and V(AX) = AXA’.

Proof:
E(AX) = AE(X) = Au

V(AX) = E(AX = Au)(AX = Aw)’) = E(A(X = i)(A(X = ))’)
= E(A(X — p)(X — p)y'A’) = AE((X — i)(X — ) )A” = AV(X)A" = ALA’

28



MLE: Asymptotic Properties
1. Xi,X5,- -+, X, are random variables with density function f(x; 6).
Let 8, be a maximum likelihood estimator of 6.

Then, under some regularity conditions. 6, is a consistent estimator of 6 and

the asymptotic distribution of vn(# — 0) is given by:

-1
V@ -6) — N(O, lim (@) )

n—oo n

2. Regularity Conditions:

(a) The domain of X; does not depend on 6.

(b) There exists at least third-order derivative of f(x; 8) with respect to 6, and

their derivatives are finite.
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3. Thus, MLE is

(i) consistent,
(i1) asymptotically normal, and

(ii1) asymptotically efficient.
Proof: The log-likelihood function is given by:
log L(6) = log [ | £X:0) = log f(X;:0
i=1 i=1
X; 1s a random variable.

Consider the distribution of

lalogL(G) _ 1 Z": dlog f(X;;0)

n 00 Zi 90

dlog f(X;; 6)

We have to obtain mean and variance of 50
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Suppose that X; is a continuous type of random variable.
f(x;; 0) denotes the density function.

Therefore, we have:
ff(xi;g)dxi =1

Taking the derivative with respect to 6 on both sides, we obtain:

_(Of@0) ([ dlogfGxi8), . dlog f(X;;0)
0= f T dxi—f S )dx, = E( G )

Again, take the derivative with respect to 6 on both sides as follows:

olog f(x;;0) 0f (x;;0) dx

_ 9 log f(x;; 0) .
0= f P AL Y P
_ (& log f(xi36) . dlog f(x;;6) dlog f(x;;6)
= fwf(xi, Q)dxi + f 90 o0 f(xi, H)dxi
_ (8 log f(Xi;6) dlog f(X;; 0) dlog f(X;; 0)
B E( 0600 ) " E( 00 00 )
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1.e.,
& log f(X;; )’ _ (Olog f(X;;0) dlog f(X;;0)\  _ 0log f(X;;0)
_E( 9600 )‘E( 96 o6’ )_V( 96

dlog f(X;;0) .
00

)=

Thus, is distributed with mean O and variance X,.

Note as follows:

B & log L)\ 0% log f(X,,@)
1= (TGen®) = YRR = o,

Using the central limit theorem (generalization) shown above, asymptotically we ob-

tain the following distribution:

1 dlog L(6) dlog f(X,, 0)
A TR D, Z = T 5 NO,3),

where X = lim(lI(Q)).

n—oo\n
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