Let § be the maximum likelihood estimator.

Note that the MLE 8 satisfies:

dlog L(6) = dlog f(X;;0)
— = — = =0.
=
dlog L(6 3
Linearizing Oag—e() around 0 = 6, we obtain:
1 OdlogL(0 1 dlog L(# 1 *logL(H) ~
o L 0logl® _ 1 dlogl) 1 Flogl®);

N N N

where the rest of terms (i.e., the second-order term, the third-order term, ...) are ig-

1 Odlog L(6
nored, which implies that the distribution of 7%() is asymptotically equiva-
n
1 &log L) -
lent to that of —L()(H - 0).
\n 0600
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1 dlogL(#
We have already known the distribution of _L Jlog L(®) as follows:

N

2 2
1 dlogL® 1 &log L(Q)(é o) = (_18 log L(6)

vno 00 T\ 0000 0606’ )‘/’7(9—9) — N(O,3).

Note as follows:

1 PlogL®) 0 (EE(— 9 log L(6) L(Q))) - lim(%l(e)) =3

n 0000’ n—oo \ 11 0000 n—oco
1 6% log L(# ~ ~
Thus, (—— %9,()) \/n(6—0) asymptotically has the same distribution as X v/n(6—
n
0).
Therefore,

V(EVn@ - 6) = ZV(Vn(d - 0))Y — .
Note that £ = X’. Thus, we have the asymptotic variance of /(8 — ) as follows:
V(Vn@-6) — 'y =31
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Finally, we obtain:

V@ —-60) — N(@,T7.
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2 Qualitative Dependent Variable (BRIt EBZE)

1. Discrete Choice Model (BE0EIRETIL)
2. Limited Dependent Variable Model (FIFRREBZHETIL)

3. Count Data Model GtH#¥{7—42ETJL)

Usually, the regression model is given by:
yi:Xiﬁ+Mi, ui~N(0’O-2)’ i:192""’n7
where y; is a continuous type of random variable within the interval from —oco to co.

When y; is discrete or truncated, what happens?
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2.1 Discrete Choice Model (B{BLEIRETIL)
2.1.1 Binary Choice Model (—{EEIRET /L)

Example 1: Consider the regression model:

Vi=XBrw,  w~ 0,00, i=12

where y is unobserved, but y; is observed as O or 1, i.e.,

1, ify: >0,
Yi =
0, ify? <0.

Consider the probability that y; takes 1, i.e.,

P(y; = 1) = P(y; > 0) = P(w; > =X,8) = P(u; > -X;B") = 1 - P(u]

< -XiB")

=1-F(Xf) = F(X;8"), (f the dist. of u; is symmetric.),
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u.
where uf = =, and p* = B are defined.
o o
(*) B* can be estimated, but 8 and o cannot be estimated separately (i.e., 8 and o

are not identified).
The distribution function of u; is given by F(x) = f f(2)dz.

If u; is standard normal, i.e., u} ~ N(0, 1), we call probit model.

o= f o exp<—%zz>dz, Fx) = o) exp(%xz).

If u is logistic, we call logit model.

F(x) = ) = — 2P

1 +exp(=x)’ (1 +exp(—=x))?

We can consider the other distribution function for u;.
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Likelihood Function: y; is the following Bernoulli distribution:
S = (PO = DY'(P(y; = 0)' ™" = (FXB)"(1 = FXB)'™,  y=0,L

[Review — Bernoulli Distribution (XJL X - 93%5)]
Suppose that X is a Bernoulli random variable. the distribution of X, denoted by f(x),
is:

S =p1-p', x=0,1.

The mean and variance are:
1

p=EX) =) xf(x)=0x(1-p)+1xp=p,
x=0

1

o =VX) =B(X -p?) = Z(x - w’f(x) = (0= p)*(1 = p)+ (1 - p)’p = p(l - p).
x=0

[End of Review]
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The likelihood function is given by:

n

L") = fO1,y2, . y0) = nf(y,-) = H(F(Xiﬁ*))y"(l — F(X,8)'™,
i=1

i=1
The log-likelihood function is:

n

log L") = > (vilog F(X,") + (1 - y) log(1 = F(X8"))),

i=1
Solving the maximization problem of log L(5*) with respect to 5, the first order
condition is:
dlog L(B") _ i(YiX;f(Xiﬂ*) _da —yi)X,-’f(Xi,B*))
B it F(XiB) 1 = F(XiB")

_ Z X fXB)0i = FXB)) _ Z X/ fivi— F) _
&P -FXB)) & Fa-F)

where f; = f(X;8") and F; = F(X;8"). Remember that f(x) = diiX)-
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The second order condition is:

af; , O(fi — F)
P log LB) < X’@,B N n Xl B
opopr & F(-F) i Fi(l - Fy)
AFi(1 - F))~!
+ZXf(y, F)( (ﬁ )~
_ Xifi i = F) X < \ Xifi(1 = 2F)
Z F(l - F;) F(l—F)+ZXf’(’_ T(FA(1 - Fy))?

is a negative definite matrix.

For maximization, the method of scoring is given by:

BUD = g0 _E(az log L(B*(”)) ! 9log L(B'Y)
BB B

po [Z XXy )“ % X £ = FY)
- + . _ Ly
SEA-FD) S OFPA-FD)
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where FY = F(X,8*?) and f = f(X,8D). Note that

E(02 log L(ﬁ*)) ~ Z X/ X f?

ST T Ay ()

because of E(y;) = F

It is known that

0% log L(B")
VB - — N[O ,}Lw( nE(W)) ]

where 3* = lim 8 denotes MLE of j*.

]—)00

Practically, we use the following normal distribution:

B~ NI,

9% log L(,@*)) - _XiXif lf:z

Thus, the significance test for 8 and the confidence interval for 5* can be constructed.

where I(3*) = —E( ﬁ f(X,8") and F; = F(X;8").
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Another Interpretation: = This maximization problem is equivalent to the nonlin-

ear least squares estimation problem from the following regression model:
yi = F(XiB") + w;,

where u; = y; — F; takes u; = 1 — F; with probability P(y; = 1) = F(X;8") = F; and
u; = —F; with probability P(y; =0) =1 - F(X;8)=1-F,.
Therefore, the mean and variance of u; are:

E(u) = -F)F; +(-F)(1-F;) =0,

o7 = V() = B@) = (Bw))* = (1 = F)’F; + (=F)*(1 = F;) = Fi(1 = F)).

The weighted least squares method solves the following minimization problem:

0;

B i - PGB
min Zl e
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The first order condition is:

$: MIKEI0 PR _ 0 Xifion F)
—FO)

p o P

F(1-F)

which is equivalent to the first order condition of MLE.

Thus, the binary choice model is interpreted as the nonlinear least squares.

Prediction: E(y)=0x(-F;))+1xF; =F; = F(X;8).
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Example 2: Consider the two utility functions: U,; = X;8,+¢€; and U,; = X;5,+6;.
A linear utility function is problematic, but we consider the linear function for sim-
plicity of discussion.

We purchase a good when U,; > U,; and do not purchase it when Uy; < Uy;.

We can observe y; = 1 when we purchase the good, i.e., when U;; > U,;, and y; = 0

otherwise.

P(y; =1)=PU,; > Uy) = P(Xi(B1 — B2) > —€1; + &)
= P(-X,8" < El*) = P(-X,8" < El**) =1-F(-X;8") = F(X;,87)

B i
where 8 =81 -2, € =€;—€y, [ = = and € = oi*

We can estimate 5™, but we cannot estimate € and o, separately.

Mean and variance of €/ are normalized to be zero and one, respectively.

If the distribution of € is symmetric, the last equality holds.

45



