
We can estimate β∗∗ by MLE as in Example 1.

Example 3: Consider the questionnaire:

yi =


1, if the ith person answers YES,

0, if the ith person answers NO.

Consider estimating the following linear regression model:

yi = Xiβ + ui.

When E(ui) = 0, the expectation of yi is given by:

E(yi) = Xiβ.

Because of the linear function, Xiβ takes the value from −∞ to∞.
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However, E(yi) indicates the ratio of the people who answer YES out of all the people,

because of E(yi) = 1 × P(yi = 1) + 0 × P(yi = 0) = P(yi = 1).

That is, E(yi) has to be between zero and one.

Therefore, it is not appropriate that E(yi) is approximated as Xiβ.

The model is written as:

yi = P(yi = 1) + ui,

where ui is a discrete type of random variable, i.e., ui takes 1 − P(yi = 1) with

probability P(yi = 1) and −P(yi = 1) with probability 1 − P(yi = 1) = P(yi = 0).

Consider that P(yi = 1) is connected with the distribution function F(Xiβ) as follows:

P(yi = 1) = F(Xiβ),

47



where F(·) denotes a distribution function such as normal dist., logistic dist., and so

on. −→ probit model or logit model.

The probability function of yi is:

f (yi) = F(Xiβ)yi(1 − F(Xiβ))1−yi ≡ Fyi
i (1 − Fi)1−yi , yi = 0, 1.

The joint distribution of y1, y2, · · ·, yn is:

f (y1, y2, · · · , yn) =
n∏

i=1

f (yi) =
n∏

i=1

Fyi
i (1 − Fi)1−yi ≡ L(β),

which corresponds to the likelihood function. −→ MLE
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Example 4: Ordered probit or logit model:

Consider the regression model:

y∗i = Xiβ + ui, ui ∼ (0, 1), i = 1, 2, · · · , n,

where y∗i is unobserved, but yi is observed as 1, 2, · · · ,m, i.e.,

yi =



1, if −∞ < y∗i ≤ a1,

2, if a1 < y∗i ≤ a2,

...,

m, if am−1 < y∗i < ∞,

where a1, a2, · · ·, am−1 are assumed to be known.
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Consider the probability that yi takes 1, 2, · · ·, m, i.e.,

P(yi = 1) = P(y∗i ≤ a1) = P(ui ≤ a1 − Xiβ)

= F(a1 − Xiβ),

P(yi = 2) = P(a1 < y∗i ≤ a2) = P(a1 − Xiβ < ui ≤ a2 − Xiβ)

= F(a2 − Xiβ) − F(a1 − Xiβ),

P(yi = 3) = P(a2 < y∗i ≤ a3) = P(a2 − Xiβ < ui ≤ a3 − Xiβ)

= F(a3 − Xiβ) − F(a2 − Xiβ),

...

P(yi = m) = P(am−1 < y∗i ) = P(am−1 − Xiβ < ui)

= 1 − F(am−1 − Xiβ).
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Define the following indicator functions:

Ii1 =

1, if yi = 1,

0, otherwise.
Ii2 =

1, if yi = 2,

0, otherwise.
· · · Iim =

1, if yi = m,

0, otherwise.

More compactly,

P(yi = j) = F(a j − Xiβ) − F(a j−1 − Xiβ),

for j = 1, 2, · · · ,m, where a0 = −∞ and am = ∞.

Ii j =

1, if yi = j,

0, otherwise,

for j = 1, 2, · · · ,m.
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Then, the likelihood function is:

L(β) =
n∏

i=1

(
F(a1 − Xiβ)

)Ii1
(
F(a2 − Xiβ) − F(a1 − Xiβ)

)Ii2 · · ·
(
1 − F(am−1 − Xiβ)

)Iim

=

n∏
i=1

m∏
j=1

(
F(a j − Xiβ) − F(a j−1 − Xiβ)

)Ii j
,

where a0 = −∞ and am = ∞. Remember that F(−∞) = 0 and F(∞) = 1.

The log-likelihood function is:

log L(β) =
n∑

i=1

m∑
j=1

Ii j log
(
F(a j − Xiβ) − F(a j−1 − Xiβ)

)
.

The first derivative of log L(β) with respect to β is:

∂ log L(β)
∂β

=

n∑
i=1

m∑
j=1

−Ii jX′i
(

f (a j − Xiβ) − f (a j−1 − Xiβ)
)

F(a j − Xiβ) − F(a j−1 − Xiβ)
= 0.

Usually, normal distribution or logistic distribution is chosen for F(·).
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Example 5: Multinomial logit model:

The ith individual has m + 1 choices, i.e., j = 0, 1, · · · ,m.

P(yi = j) =
exp(Xiβ j)∑m
j=0 exp(Xiβ j)

≡ Pi j,

for β0 = 0. The case of m = 1 corresponds to the bivariate logit model (binary

choice).

Note that

log
Pi j

Pi0
= Xiβ j

The log-likelihood function is:

log L(β1, · · · , βm) =
n∑

i=1

m∑
j=0

di j ln Pi j,

where di j = 1 when the ith individual chooses jth choice, and di j = 0 otherwise.
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Example 6: Nested logit model:

(i) In the 1st step, choose YES or NO. Each probability is PY and PN = 1 − PY .

(ii) Stop if NO is chosen in the 1st step. Go to the next if YES is chosen in the 1st

step.

(iii) In the 2nd step, choose A or B if YES is chosen in the 1st step. Each probability

is PA|Y and PB|Y .

For simplicity, usually we assume the logistic distribution.

So, we call the nested logit model.

The probability that the ith individual chooses NO is:

PN,i =
1

1 + exp(Xiβ)
.

The probability that the ith individual chooses YES and A is:

PA|Y,iPY,i = PA|Y,i(1 − PN,i) =
exp(Ziα)

1 + exp(Ziα)
exp(Xiβ)

1 + exp(Xiβ)
.
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The probability that the ith individual chooses YES and B is:

PB|Y,iPY,i = (1 − PA|Y,i)(1 − PN,i) =
1

1 + exp(Ziα)
exp(Xiβ)

1 + exp(Xiβ)
.

In the 1st step, decide if the ith individual buys a car or not.

In the 2nd step, choose A or B.

Xi includes annual income, distance from the nearest station, and so on.

Zi are speed, fuel-efficiency, car company, color, and so on.

The likelihood function is:

L(α, β) =
n∏

i=1

PI1i
N,i

(
((1 − PN,i)PA|Y,i)I2i((1 − PN,i)(1 − PA|Y,i))1−I2i

)1−I1i

=

n∏
i=1

PI1i
N,i(1 − PN,i)1−I1i

(
PI2i

A|Y,i(1 − PA|Y,i)1−I2i
)1−I1i
,
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where

I1i =

1, if the ith individual decides not to buy a car in the 1st step,

0, if the ith individual decides to buy a car in the 1st step,

I2i =

1, if the ith individual chooses A in the 2nd step,

0, if the ith individual chooses B in the 2nd step,
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Remember that E(yi) = F(Xiβ
∗), where β∗ =

β

σ
.

Therefore, size of β∗ does not mean anything.

The marginal effect is given by:

∂E(yi)
∂Xi

= f (Xiβ
∗)β∗.

Thus, the marginal effect depends on the height of the density function f (Xiβ
∗).
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