2.2 Limited Dependent Variable Model (IRt BZEETIL)

Truncated Regression Model:  Consider the following model:

vi = X8+ u;, u; ~ N(0, 0?) when y; > a, where a is a constant,

fori=1,2,---,n.

Consider the case of y; > a (i.e., in the case of y; < a, y; is not observed).

E(I/l,lX,ﬁ'Ful>a)—ja\_xﬁull_F(a—X,’ﬁ) u

Suppose that u; ~ N(0,2), i.e., 2 ~ N(0, 1).
(02

Using the following standard normal density and distribution functions:

P(x) = 2n)? eXP(—%XZ),
D(x) = f (2ﬂ)‘1/2eXP(—%z2)dz= f ¢(2)dz,
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f(x) and F(x) are given by:

Fx) = Qro?) ' exp(_sz) = las(f),
F(x) = f Qro?)” 1/2exp( z)dz-d)( )

[Review — Mean of Truncated Normal Random Variable:]
Let X be a normal random variable with mean u and variance 0.
Consider E(X|X > a), where a is known.

The truncated distribution of X given X > a is:

Qro

R

fGlx > a) = — 1 = 7
fa Qro)~1? exp(—fﬂ(x - /J)Z)dx 1-o
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f ) xQro?)~1? exp( (x ) )dx

f(zm) V2 exp(—5 e )

o) + ( o) oetE)
_ — o _ 0'_ + a0,
1 - o Y

E(X|X > a) foo xf(x|x > a)dx =

which are shown below. The denominator is:

0 1 . 1
f (2n0) 2 expl—5 5 (x = w))dx = f @m) P exp(-32)dz

v 1
=1- f 2n)~1? exp(—izz)dz

—1-d&

. . X — X — a—
where x 18 transformed into z = —'u. X>a = z= H > ,u.

g g o
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In the 3rd equality, note as follows:

O(x) = f )"V exp(- z)dz

The numerator is:

foo xQ2nro?)~1? exp(——(x wWdx

00

-1/2

o, (T2 Q) exp(- Z ?)dz

o

=0 f 2(27m) % exp(~ z 2)dz + p f Qn)~'? exp( P )dz
=0 f ) Q)2 exp(-1)dt + ,u(l - cD(—))
l(ﬂ)2 (o
= oo(—E) + (1 - (=0,
g g
1, a—pu 1, la-pu

where z is transformed into t = =z°. 7> = t==7 > —(—)2-
2 o 2 2 o
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In the 4th equality, note as foolws:

o0
X

foo exp(—t)dr = [— exp(—t)] = exp(—x)

o(2ry 12 f " exp(=)dt = on) 1 exp(—l(u)z) = op(2—H
1wy 2 o o

o

[End of Review]

Therefore, the conditional expectation of u; given X;8 + u; > a is:

U;
PR e I - -
E(u,| X8+ u; > a) = fa_Xiﬁu,l —F(a—Xi,B)du‘ =] a—Xp du;

KT - o(—)
g
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Accordingly, the conditional expectation of y; given y; > a is given by:

E(ilyi > a) = EQilXiB + u; > a) = E(X;B + wil X8 + u; > a)

a— X
od( - )
= X8+ Ewi|X8+u; > a) = X8+ — Y.
T Y.L
o
# X
fori=1,2,---,n
Estimation:
MLE:
o Xp) o ¢(l(r,ﬁ)
L(B g ) - 1_[ 1 = n p

1

Fla-Xp) 1| O'I_q)(a—Xiﬁ)
o

is maximized with respect to 3 and o~°.
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Some Examples:

1. Buying a Car:

vi = x;8 + u;, where y; denotes expenditure for a car, and x; includes income,

price of the car, etc.
Data on people who bought a car are observed.

People who did not buy a car are ignored.

2. Working-hours of Wife:

y; represents working-hours of wife, and x; includes the number of children,

age, education, income of husband, etc.

3. Stochastic Frontier Model:
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vi = f(K;, L;) + u;, where y; denotes production, K; is stock, and L; is amount

of labor.
We always have y; < f(K;, L)), 1.e., u; < 0.

f(K;, L;) is a maximum value when we input K; and L;.
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Censored Regression Model or Tobit Model:

Xiﬁ + Uu;, lfy, > a,
yi =
a, otherwise.

The probability which y; takes a is given by:

P(yi = a) = P(y < a) = F(a) = f " fody,

where f(-) and F(-) denote the density function and cumulative distribution function

of y;, respectively.
Therefore, the likelihood function is:
L(ﬁ, 0-2) = 1—[ F(a)l(w:u) x f(yi)l_’(”:“),
i=1

where /(y; = a) denotes the indicator function which takes one when y; = a or zero

otherwise.
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When u; ~ N(0, 0%), the likelihood function is:

n

Lo =]](| @ro)y ”2exp(— —0i -
i=1 -

X((@no?) ™2 exp(—5 (yl

which is maximized with respect to 8 and 0.
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2.3 Count Data Model Gt 7—42ETIL)

Poisson distribution:
e 2*
P(X =x) = f(x) =

forx=0,1,2,---
In the case of Poisson random variable X, the expectation of X is:
o —/lﬁx—l o

e o e - e e
X) = Z Z x! — (x-=1! );) x'!

x=0 ! x=1

Remember that ), f(x) = 1, i.e., X0 e 1% /x! = 1.
Therefore, the probability function of the count data y; is taken as the Poisson distri-

bution with parameter A;.

In the case where the explained variable y; takes 0, 1, 2, --- (discrete numbers),

assuming that the distribution of y; is Poisson, the logarithm of A; is specified as a
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linear function, i.e.,
E(y;)) = 4; = exp(X;).

Note that 4; should be positive.

Therefore, it is better to avoid the specification: 1 = X;.

The joint distribution of yy, y,, - - -, y, is:

n —/ll' Yi

fouyseam = [ [ fo0 = | [ =16,
i=1 ’

i=1 !

where A; = exp(X;53).

The log-likelihood function is:

log L(B) = —Zn:/l,- + Zn:yilog/l,- — anlogyi!
i=1 i=1 i=1

= - Zn: exp(XiB) + an yiXi — Zn: log y;!.
P pay i1
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The first-order condition is:

dlog L(B) - D
BN,

— Nonlinear optimization procedure

[Review] Nonlinear Optimization Procedures:

Note that the Newton-Raphson method (one of the nonlinear optimization proce-

dures) is:

BUD = i) _ 9 log LBV)\ " dlog L(BY)
0Bop’ oB ’
which comes from the first-order Taylor series expansion around 8 = 8*:
dlogL(B) dlogL(B*) &°log L(B")
= ~ +
B B OB’
and 8 and B* are replaced by SV and B, respectively.

0

B=B)
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An alternative nonlinear optimization procedure is known as the method of scoring,

which is shown as:

B0 = g _ (E(02 log L(B(’))))_l dlog L(BY)

oBop’ oB
0% log L(BY)) . 0% log L(BY)
h _— 1 E(———————|.
where ( B ) is replaced by ( B )
[End of Review]

In this case, we have the following iterative procedure:

n -l u -
AU = g (_ Z XIX, exp(Xi,B(j))) (_ Z X exp(X;8Y) + Z X,-/Yi] .
i=1 i=1 !

The Newton-Raphson method is equivalent to the scoring method in this count model,

because any random variable is not included in the expectation.
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