3.2 Panel Model Basic

Model:

$$y_{it} = X_{it}\beta + v_i + u_{it},$$
 $i = 1, 2, \dots, n,$ $t = 1, 2, \dots, T$

where i indicates individual and t denotes time.

There are n observations for each t.

 u_{it} indicates the error term, assuming that $E(u_{it}) = 0$, $V(u_{it}) = \sigma_u^2$ and $Cov(u_{it}, u_{js}) = 0$ for $i \neq j$ and $t \neq s$.

 v_i denotes the individual effect, which is fixed or random.

3.2.1 Fixed Effect Model (固定効果モデル)

In the case where v_i is fixed, the case of $v_i = z_i \alpha$ is included.

$$y_{it} = X_{it}\beta + v_i + u_{it}, \qquad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T,$$

$$\overline{y}_i = \overline{X}_i\beta + v_i + \overline{u}_i, \qquad i = 1, 2, \dots, n,$$

$$\text{where } \overline{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}, \, \overline{X}_i = \frac{1}{T} \sum_{t=1}^T X_{it}, \, \text{and } \overline{u}_i = \frac{1}{T} \sum_{t=1}^T u_{it}.$$

$$(y_{it} - \overline{y}_i) = (X_{it} - \overline{X}_i)\beta + (u_{it} - \overline{u}_i), \qquad i = 1, 2, \dots, n, \quad t = 1, 2, \dots, T,$$

Taking an example of y, the left-hand side of the above equation is rewritten as:

$$y_{it} - \overline{y}_i = y_{it} - \frac{1}{T} \mathbf{1}_T' y_i,$$

where
$$1_T = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
, which is a $T \times 1$ vector, and $y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{pmatrix}$.

$$\begin{pmatrix} y_{i1} - \overline{y}_{i} \\ y_{i2} - \overline{y}_{i} \\ \vdots \\ y_{iT} - \overline{y}_{i} \end{pmatrix} = I_{T}y_{i} - 1_{T}\overline{y}_{i} = I_{T}y_{i} - \frac{1}{T}1_{T}1_{T}'y_{i} = (I_{T} - \frac{1}{T}1_{T}1_{T}')y_{i}$$

Thus,

$$\begin{pmatrix} y_{i1} - y_i \\ y_{i2} - \overline{y}_i \\ \vdots \\ y_{iT} - \overline{y}_i \end{pmatrix} = \begin{pmatrix} X_{i1} - X_i \\ X_{i2} - \overline{X}_i \\ \vdots \\ X_{iT} - \overline{X}_i \end{pmatrix} \beta + \begin{pmatrix} u_{i1} - u_i \\ u_{i2} - \overline{u}_i \\ \vdots \\ u_{iT} - \overline{u}_i \end{pmatrix}, \qquad i = 1, 2, \dots, n,$$

which is re-written as:

$$(I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T') y_i = (I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T') X_i \beta + (I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T') u_i, \qquad i = 1, 2, \dots, n,$$

i.e.,

$$D_T y_i = D_T X_i \beta + D_T u_i, \qquad i = 1, 2, \dots, n,$$

where $D_T = (I_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T')$, which is a $T \times T$ matrix.

Note that $D_T D_T' = D_T$, i.e., D_T is a symmetric and idempotent matrix.

Using the matrix form for $i = 1, 2, \dots, n$, we have:

$$\begin{pmatrix} D_T y_1 \\ D_T y_2 \\ \vdots \\ D_T y_n \end{pmatrix} = \begin{pmatrix} D_T X_1 \\ D_T X_2 \\ \vdots \\ D_T X_n \end{pmatrix} \beta + \begin{pmatrix} D_T u_1 \\ D_T u_2 \\ \vdots \\ D_T u_n \end{pmatrix},$$

i.e.,

$$\begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} y = \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} X\beta + \begin{pmatrix} D_T & 0 & \cdots & 0 \\ 0 & D_T & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D_T \end{pmatrix} u,$$

where
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, X \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$$
, and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$, which are $Tn \times 1$, $Tn \times k$ and $Tn \times 1$ matrices,

respectively

Using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u$$

where $(I_n \otimes D_T)$, y, X, and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Kronecker Product — Review:

1.
$$A: n \times m$$
, $B: T \times k$

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1m}B \\ a_{21}B & a_{22}B & \cdots & a_{2m}B \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nm}B \end{pmatrix}, \text{ which is a } nT \times mk \text{ matrix.}$$

2. A:
$$n \times n$$
, B: $m \times m$

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}, \qquad |A \otimes B| = |A|^m |B|^n,$$

 $(A \otimes B)' = A' \otimes B', \qquad \operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B).$

3. For A, B, C and D such that the products are defined,

$$(A \otimes B)(C \otimes D) = AC \otimes BD.$$

End of Review

Going back to the previous slide, using the Kronecker product, we obtain the following expression:

$$(I_n \otimes D_T)y = (I_n \otimes D_T)X\beta + (I_n \otimes D_T)u,$$

where $(I_n \otimes D_T)$, y, X, and u are $nT \times nT$, $nT \times 1$, $nT \times k$, and $nT \times 1$, respectively.

Apply OLS to the above regression model.

$$\hat{\beta} = \left(((I_n \otimes D_T)X)'(I_n \otimes D_T)X \right)^{-1} ((I_n \otimes D_T)X)'(I_n \otimes D_T)y$$

$$= \left(X'(I_n \otimes D_T'D_T)X \right)^{-1} X'(I_n \otimes D_T'D_T)y$$

$$= \left(X'(I_n \otimes D_T)X \right)^{-1} X'(I_n \otimes D_T)y.$$

Note that the inverse matrix of D_T is not available, because the rank of D_T is T-1, not T (full rank).

The rank of a symmetric and idempotent matrix is equal to its trace.

The fixed effect v_i is estimated as:

$$\hat{\mathbf{v}}_i = \overline{\mathbf{y}}_i - \overline{X}_i \hat{\boldsymbol{\beta}}.$$

Possibly, we can estimate the following regression:

$$\hat{v}_i = Z_i \alpha + \epsilon_i,$$

where it is assumed that the individual-specific effect depends on Z_i .

The estimator of σ_u^2 is given by:

$$\hat{\sigma}_{u}^{2} = \frac{1}{nT - k - n} \sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - X_{it}\hat{\beta} - \hat{v}_{i})^{2}.$$

[Remark]

More than ten years ago, "fixed" indicates that v_i is nonstochastic.

Recently, however, "fixed" does not mean anything.

"fixed" indicates that OLS is applied and that v_i may be correlated with X_{it} .

Possibly, $E(v_i|X) = \alpha_i(X)$, where $\alpha_i(X)$ is a function of X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$, and it is normalized to $\sum_{i=1}^{n} \alpha_i(X) = 0$.