3.2.2 Random Effect Model (ランダム効果モデル)

Model:

$$y_{it} = X_{it}\beta + v_i + u_{it},$$
 $i = 1, 2, \dots, n,$ $t = 1, 2, \dots, T$

where *i* indicates individual and *t* denotes time.

The assumptions on the error terms v_i and u_{it} are:

$$E(v_i|X) = E(u_{it}|X) = 0 \text{ for all } i,$$

$$V(v_i|X) = \sigma_v^2 \text{ for all } i, \qquad V(u_{it}|X) = \sigma_u^2 \text{ for all } i \text{ and } t,$$

$$Cov(v_i, v_j|X) = 0 \text{ for } i \neq j, \qquad Cov(u_{it}, u_{js}|X) = 0 \text{ for } i \neq j \text{ and } t \neq s,$$

$$Cov(v_i, u_{it}|X) = 0 \text{ for all } i, j \text{ and } t.$$

Note that *X* includes X_{it} for $i = 1, 2, \dots, n$ and $t = 1, 2, \dots, T$.

In a matrix form with respect to $t = 1, 2, \dots, T$, we have the following:

$$y_i = X_i \beta + v_i 1_T + u_i, \qquad i = 1, 2, \dots, n,$$
where $y_i = \begin{pmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{pmatrix}, X_i = \begin{pmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{iT} \end{pmatrix} \text{ and } u_i = \begin{pmatrix} u_{i1} \\ u_{i2} \\ \vdots \\ u_{iT} \end{pmatrix} \text{ are } T \times 1, T \times k \text{ and } T \times 1, \text{ respectively.}$

$$u_i \sim N(0, \sigma_u^2 I_T)$$
 and $v_i 1_T \sim N(0, \sigma_v^2) \implies v_i 1_T + u_i \sim N(0, \sigma_v^2 1_T 1_T' + \sigma_u^2 I_T)$.

Again, in a matrix form with respect to i, we have the following:

where
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
, $X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$, $v = \begin{pmatrix} v_1 1_T \\ v_2 1_T \\ \vdots \\ v_n 1_T \end{pmatrix}$ and $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$ are $nT \times 1$, $nT \times k$, $nT \times 1$ and

 $nT \times 1$, respectively.

The distribution of u + v is given by:

$$v + u \sim N(0, I_n \otimes (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T))$$

The likelihood function is given by:

$$L(\beta, \sigma_{v}^{2}, \sigma_{u}^{2}) = (2\pi)^{-nT/2} \Big| I_{n} \otimes (\sigma_{v}^{2} 1_{T} 1_{T}' + \sigma_{u}^{2} I_{T}) \Big|^{-1/2}$$

$$\times \exp \Big(-\frac{1}{2} (y - X\beta)' \Big(I_{n} \otimes (\sigma_{v}^{2} 1_{T} 1_{T}' + \sigma_{u}^{2} I_{T}) \Big)^{-1} (y - X\beta) \Big).$$

Remember that $f(x) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right)$ when $X \sim N(\mu, \Sigma)$, where X denotes a k-variate random variable.

The estimators of β , σ_v^2 and σ_u^2 are given by maximizing the following log-likelihood function:

$$\begin{split} \log L(\beta,\sigma_v^2,\sigma_u^2) &= -\frac{nT}{2}\log(2\pi) - \frac{1}{2}\log\left|I_n\otimes(\sigma_v^21_T1_T' + \sigma_u^2I_T)\right| \\ &- \frac{1}{2}(y - X\beta)'\Big(I_n\otimes(\sigma_v^21_T1_T' + \sigma_u^2I_T)\Big)^{-1}(y - X\beta). \end{split}$$

MLE of β , denoted by $\tilde{\beta}$, is given by:

$$\tilde{\beta} = \left(X' \Big(I_n \otimes (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T) \Big)^{-1} X \Big)^{-1} X' \Big(I_n \otimes (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T) \Big)^{-1} y$$

$$= \Big(\sum_{i=1}^n X_i' (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T)^{-1} X_i \Big)^{-1} \Big(\sum_{i=1}^n X_i' (\sigma_v^2 1_T 1_T' + \sigma_u^2 I_T)^{-1} y_i \Big),$$

which is equivalent to GLS.

Note that $\tilde{\beta}$ is not operational, because $\hat{\beta}$ depends on σ_v^2 and σ_u^2 .

3.3 Hausman's Specification Error (特定化誤差) Test

Regression model:

$$y = X\beta + u$$
, $y : n \times 1$, $X : n \times k$, $\beta : k \times 1$, $u : n \times 1$.

Suppose that *X* is stochastic.

If
$$E(u|X) = 0$$
, OLSE $\hat{\beta}$ is unbiased because of $\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u$ and $E((X'X)^{-1}X'u) = 0$.

However, If $E(u|X) \neq 0$, OLSE $\hat{\beta}$ is biased and inconsistent.

Therefore, we need to check if *X* is correlated with *u* or not.

⇒ Hausman's Specification Error Test

The null and alternative hypotheses are:

- H_0 : X and u are independent, i.e., Cov(X, u) = 0,
- H_1 : X and u are not independent.

Suppose that we have two estimators $\hat{\beta}_0$ and $\hat{\beta}_1$, which have the following properties:

- $\hat{\beta}_0$ is consistent and efficient under H_0 , but is not consistent under H_1 ,
- $\hat{\beta}_1$ is consistent under both H_0 and H_1 , but is not efficient under H_0 .

Under the conditions above, we have the following test statistic:

$$(\hat{\beta}_1 - \hat{\beta}_0)' \left(\mathbf{V}(\hat{\beta}_1) - \mathbf{V}(\hat{\beta}_0) \right)^{-1} (\hat{\beta}_1 - \hat{\beta}_0) \longrightarrow \chi^2(k).$$

Example: $\hat{\beta}_0$ is OLS, while $\hat{\beta}_1$ is IV such as 2SLS.

Hausman, J.A. (1978) "Specification Tests in Econometrics," *Econometrica*, Vol.46, No.6, pp.1251–1271.

3.4 Choice of Fixed Effect Model or Random Effect Model

3.4.1 The Case where X is Correlated with u — Review

The standard regression model is given by:

$$y = X\beta + u,$$
 $u \sim N(0, \sigma^2 I_n)$

OLS is:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'u.$$

If *X* is not correlated with *u*, i.e., E(X'u) = 0, we have the result: $E(\hat{\beta}) = \beta$.

However, if *X* is correlated with *u*, i.e., $E(X'u) \neq 0$, we have the result: $E(\hat{\beta}) \neq \beta$. $\implies \hat{\beta}$ is biased.

Assume that in the limit we have the followings:

$$(\frac{1}{n}X'X)^{-1} \longrightarrow M_{xx}^{-1},$$

$$\frac{1}{n}X'u \longrightarrow M_{xu} \neq 0 \text{ when } X \text{ is correlated with } u.$$

Therefore, even in the limit,

$$\operatorname{plim} \hat{\beta} = \beta + M_{xx}^{-1} M_{xu} \neq \beta,$$

which implies that $\hat{\beta}$ is not a consistent estimator of β .

Thus, in the case where X is correlated with u, OLSE $\hat{\beta}$ is neither unbiased nor consistent.

3.4.2 Fixed Effect Model or Random Effect Model

Usually, in the random effect model, we can consider that v_i is correlated with X_{it} .

[Reason:]

 v_i includes the unobserved variables in the *i*th individual, i.e., ability, intelligence, and so on.

 X_{it} represents the observed variables in the *i*th individual, i.e., income, assets, and so on.

The unobserved variables v_i are related to the observed variables X_{it} .

Therefore, we consider that v_i is correlated with X_{it} .

Thus, in the case of the random effect model, usually we cannot use OLS or GLS.

In order to use the random effect model, we need to test whether v_i is uncorrelated with X_{it} .

Apply Hausman's test.

- H_0 : X_{it} and e_{it} are independent (\longrightarrow Use the random effect model),
- $H_1: X_{it}$ and e_{it} are not independent (\longrightarrow Use the fixed effect model),

where $e_{it} = v_i + u_{it}$.

Note that:

- We can use the random effect model under H_0 , but not under H_1 .
- We can use the fixed effect model under both H_0 and H_1 .
- The random effect model is more efficient than the fixed effect model under H_0 .

Therefore, under H_0 we should use the random effect model, rather than the fixed effect model.

3.5 Applications

Example of Panel Data in Section 3: Production Function of Prefectures from

2001 to 2010.

pref: 都道府県(通し番号 1~47)

year: 年度(2001~2010年)

y : 県内総生産(支出側、実質: 固定基準年方式), 出所: 県民経済計算(平成 13 年度 - 平成 24 年度)(93SNA, 平成 17 年基準計数)

k : 都道府県別民間資本ストック(平成12暦年価格,年度末,国民経済計 算ベース 平成23年3月時点)一期前(2000~2009年)

1 : 県内就業者数, 出所: 県民経済計算(平成13年度-平成24年度)(93SNA, 平成17年基準計数)

. tsset pref year

panel variable: pref (strongly balanced)

time variable: year, 2001 to 2010

delta: 1 unit

. gen ly=log(y)

. gen lk=log(k)

. gen 11=log(1)

. reg ly lk ll

Source	SS	df	MS		Number of obs = $F(2, 467) = 19374$	470 05
Model Residual	316.479302 3.81409572		239651 3167229		Prob > F = 0.00 R-squared = 0.98 Adj R-squared = 0.98	000 381
Total	320.293398	469 .682	928354		Root MSE = $.090$	037
ly	Coef.	Std. Err.	t	P> t	[95% Conf. Interva	al]
lk 11 _cons	.0941587 .9976399 .5970719	.0081273 .0102641 .0773137	11.59 97.20 7.72	0.000 0.000 0.000	.0781881 .11012 .9774703 1.0178 .4451461 .74899	309

. xtreg ly lk ll,fe

```
Fixed-effects (within) regression
                                        Number of obs =
                                                               470
                                        Number of groups =
Group variable: pref
                                                              47
R-sq: within = 0.1721
                                        Obs per group: min = 10
                                                    avg = 10.0
     between = 0.9456
     overall = 0.9439
                                                              10
                                                    max =
                                        F(2,421)
                                                   = 43.77
= 0.0000
corr(u i. Xb) = 0.8803
                                        Prob > F
       ly | Coef. Std. Err. t P>|t| [95% Conf. Interval]
        lk | .2329208 .0252321 9.23 0.000 .1833242 .2825175
        11 | .3268537 .0810662 4.03 0.000 .1675088 .4861987
     cons | 7.691145 1.376677 5.59 0.000 4.985128 10.39716
    sigma_u | .41045507
    sigma_e | .03561437
       rho | .99252757
                       (fraction of variance due to u i)
F test that all u_i=0: F(46, 421) = 56.22 Prob > F = 0.0000
. est store fixed
```

. xtreg ly lk ll,re

Random-effects GLS regression Number of obs = 470 Group variable: pref Number of groups = 47

```
R-sq: within = 0.1058
                                                           Obs per group: min = 10
        between = 0.9805
                                                                             avg = 10.0
        overall = 0.9787
                                                                             max =
                                                                                            10
                                                          Wald chi2(2) = 3875.75
Prob > chi2 = 0.0000
corr(u_i, X) = 0  (assumed)
            ly | Coef. Std. Err. z P>|z| [95% Conf. Interval]

    1k |
    .2457767
    .0153094
    16.05
    0.000
    .2157708
    .2757827

    11 |
    .8105099
    .0220256
    36.80
    0.000
    .7673406
    .8536793

    ons |
    .8332015
    .2411141
    3.46
    0.001
    .3606265
    1.305776

        _cons |
      sigma_u | .081609
      sigma_e | .03561437
         rho | .8400205 (fraction of variance due to u_i)
. hausman fixed
                     ---- Coefficients ----
                                                    (b-B) sqrt(diag(V_b-V_B))
                       fixed
                                                       Difference
                   .2329208 .2457767
            lk I
                                                  -.0128559
                      .3268537
                                 .8105099
                                                      -.4836562
```

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

$$chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)$$

= 144.66

Prob>chi2 = 0.0000

4 Introduction to <u>Causal Inference</u> (因果推論) — Micro-econometrics —

Notations:

- i: ith individual,
- Y_i^1 : Output of the *i*th individual for State 1,
- Y_i^0 : Output of the *i*th individual for State 0,
- X_i: Explanatory variables of the ith indvidual (i.e., individual information such as sex, age, region, occupation, income, and etc.),
- D_i : Dummy variable, i.e., $D_i = 1$ for State 1 and $D_i = 0$ for State 0,

for $i = 1, 2, \dots, n$.

Example:

- What is cause of wage gap? Is undergraduate school graduation a big factor?
- Is the policy effective?

. . .

. . .

. . .

Special Words in this Field:

Treatment group or Experimental group (処置群,実験群) → Output 1
Control group (対照群, 比較群) → Output 0

Problem:

We want to know $Y_i^1 - Y_i^0$ for all i, which is called the **treatment effect** (処置効果).

However, we can observe either Y_i^1 or Y_i^0 .

Therefore, we cannot obtain $Y_i^1 - Y_i^0$.

 Y_i^1 and Y_i^0 are assumed to be identically distributed.

Instead, consider estimating $E(Y_i^1 - Y_i^0) = E(Y^1 - Y^0)$, which is called the **average treatment effect (ATE, 平均処置効果)**.

● Note 1:

Using Y_i^1 , Y_i^0 and D_i , the output of the *i*th individual is given by:

$$Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0.$$

● Note 2:

 D_i is a discrete random variable.

 D_i takes 1 or 0.

The probability of $D_i = 1$ given X_i is denoted by $P(D_i = 1|X_i)$, and that of $D_i = 0$ given X_i is represented by $P(D_i = 0|X_i)$.

The conditional expectation of D_i given X_i is:

$$E(D_i|X_i) = 1 \times P(D_i = 1|X_i) + 0 \times P(D_i = 0|X_i) = P(D_i = 1|X_i),$$

which is derived from the definition of expectation in the case of the discrete random variable.

Therefore, $E(D_i|X_i)$ is between 0 and 1.

Consider that $E(D_i|X_i) = P(D_i = 1|X_i)$ is related to the distribution function $\pi(X_i)$, i.e., $P(D_i = 1|X_i) = \pi(X_i)$.

 $\pi(X_i)$ is called the **propensity score** (傾向スコア).

Example of $\pi(\cdot)$ **:**

F(x) is denoted by a distribution function, where $F(-\infty) = 0$ and $F(\infty) = 1$. The relationship between $\pi(X_i)$ and $F(X_i\beta)$ is as follows:

$$\pi(X_i) = F(X_i\beta),$$

where β denotes the parameter to be estimated, and F(x) often takes one of the following two distribution functions:

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}t^2) dt \longrightarrow \frac{\text{Standard normal distribution}}{(\textbf{Probit model})}$$
or
$$F(x) = \frac{1}{1 + \exp(-x)} \longrightarrow \frac{\text{Logistic distribution}}{(\textbf{Logit model})}.$$