マクロの消費関数の推定

● 古い消費関数(1970年代以前)

$$C_t = \alpha + \beta Y_t$$

 C_t : 消費(ここでは,民間最終消費支出)

 Y_t : 所得(ここでは,国民所得)

 α, β : $\beta > \beta > \beta$

データ: 『日本統計年鑑』(第七十四,令和7年版)

https://www.stat.go.jp/data/nenkan/74nenkan/index.html

の「主要指標」の Excel ファイル(y743100000. xlsx)

国内総生産(支出側)(名目) ---> H 列 民間最終消費支出 ---> I 列 国内総生産(支出側)(実質) ---> N 列 国民所得(要素費用表示) ---> P 列

習慣効果を考慮に入れて,

$$C_t = \alpha + \beta Y_t + \gamma C_{t-1}$$

● 比較的新しい消費関数 (1980~90 年代)

効用関数を2次関数と仮定すると

$$C_t = \alpha + \beta \frac{c_{t-1}}{1 + r_{t-1}} + \gamma \frac{1}{1 + r_{t-1}}$$

を推定する。

データ: 『日本統計年鑑』(第七十四,令和7年版)

https://www.stat.go.jp/data/nenkan/74nenkan/index.html

の「主要指標」の Excel ファイル(y743100000. xlsx)

先ほどのデータに加えて, 金利(全国銀行平均約定金利) ---> BT 列

```
? genr C=NC/(NGDP/RGDP)
系列 C (ID 5) を作成しました
? genr CR=C/(1+r/100)
系列 CR (ID 6) を作成しました
? genr R1=1/(1+r/100)
系列 R1 (ID 7) を作成しました
? ols C const CR(-1) R1(-1)
```

モデル 2: 最小二乗法(OLS), 観測: 1996-2022 (T = 27)

従属変数: C

	係数	標準誤差	t値 	p 値
const	-201867	402994	-0. 5009	0. 6210
CR_1	0. 806883	0. 111351	7. 246	1. 74e-07 ***
R1_1	266149	437056	0.6090	0. 5483

Mea	n dependent var	283116. 6	S.D. dependent var	18931. 09
Sum	squared resid	7. 08e+08	回帰の標準誤差	5430. 644
R−s	quared	0. 924039	Adjusted R-squared	0. 917709
F (2	2, 24)	145. 9764	P-value (F)	3. 69e-14
Log	-likelihood	– 268. 9162	Akaike criterion	543. 8324
Sch	warz criterion	547. 7199	Hannan-Quinn	544. 9884
rho		0. 197456	Durbin-Watson	1. 521586

対数関数の効用関数を仮定すると,

$$C_t = \alpha + \beta (1 + r_{t-1})C_{t-1}$$

となる。

理論的には、 $\alpha = 0$ で、 $\beta < 1$ となる(β は割引率)。

? genr CR2=(1+r/100)*C 系列 CR2 (ID 10) を作成しました ? ols C const CR2(-1)

モデル 3: 最小二乗法(OLS), 観測: 1996-2022 (T = 27)

従属変数: C

	係数 	標準誤差 	t 値 	p 値
const	12149. 2	16629. 3	0. 7306	0. 4718
CR2_1	0. 950060	0. 0581806	16. 33	7.59e-015 ***

283116.6	S.D. dependent var	18931. 09
7. 99e+08	回帰の標準誤差	5652. 354
0. 914282	Adjusted R-squared	0. 910853
266. 6528	P-value (F)	7. 59e-15
−270. 5477	Akaike criterion	545. 0954
547. 6871	Hannan-Quinn	545. 8660
0. 110050	Durbin-Watson	1. 584703
	7. 99e+08 0. 914282 266. 6528 -270. 5477 547. 6871	7.99e+08 回帰の標準誤差 0.914282 Adjusted R-squared 266.6528 P-value(F) -270.5477 Akaike criterion 547.6871 Hannan-Quinn