DISTURBANCE TERMS

In a field of research design, we often have the question about whether there is a relationship between an observed variable (say, \(y \)) and the other observed variables (say, \(x \)). To answer the question, we may construct the model in which \(y \) depends on \(x \). Because \(y \) is not necessarily explained only by \(x \) from some reasons discussed below, however, there always exists the discrepancy between the observed value of \(y \) and the predicted value of \(y \) obtained from the model. The discrepancy is taken as a disturbance term or an error term.

Suppose that \(n \) sets of data, \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), are observed, where \(y_i \) is a scalar and \(x_i \) is a vector (say, \(1 \times k \) vector). We assume that there is a relationship between \(x \) and \(y \), which is represented as the model: \(y = f(x) \), where \(f(x) \) is a function of \(x \). We say that \(y \) is explained by \(x \) or \(y \) is regressed on \(x \). \(y \) is called the dependent or explained variable and \(x \) is a vector of the independent or explanatory variables. Suppose that a vector of the unknown parameter (say, \(\beta \), which is a \(1 \times k \) vector) is included in \(f(x) \). Using the \(n \) sets of data, we consider estimating \(\beta \) in \(f(x) \). Adding a disturbance term (say, \(u \), which is also called an error term), the relationship between \(y \) and \(x \) is given by: \(y = f(x) + u \). The disturbance term \(u \) indicates the term that cannot be explained by \(x \) in \(y \). Usually, \(x \) is assumed to be nonstochastic. Note that \(x \) is said to be nonstochastic when it takes a fixed value. \(f(x) \) is deterministic, while \(u \) is stochastic. \(f(x) \) has to be specified by a researcher. Representatively, \(f(x) \) is often specified as the linear function: \(f(x) = x\beta \).

The reasons why we add the disturbance term \(u \) are as follows: (i) there are some unpredictable elements of randomness in human responses, (ii) an effect of a large number of omitted variables is contained in \(x \), (iii) there is a measurement error in \(y \), (iv) a functional form of \(f(x) \) is not known in general. More details are as follows. For (i), as an example, gross domestic product (GDP) data is observed as a result of human behavior, which is usually unpredictable and is thought of a source of randomness. For (ii), we cannot know all the explanatory variables that depend on \(y \). Most of the variables are omitted, and only the important variables needed for analysis are included in \(x \). The influence of the omitted variables is thought of a source of \(u \). For (iii), some kinds of errors are included in almost all the data, either because of data collection difficulties or because the explained variable is inherently unmeasurable and
a proxy variable has to be used in its stead. For (iv), conventionally we specify $f(x)$ as: $f(x) = x\beta$. However, there is no reason to specify the linear function. Exceptionally, we have the case where the functional form of $f(x)$ comes from the underlying theoretical aspect. Even in this case, however, $f(x)$ is derived from a very limited theoretical aspect, not every theoretical aspect.

For simplicity, hereafter, consider the linear regression model: $y_i = x_i\beta + u_i$, $i = 1, 2, ..., n$. When $u_1, u_2, ..., u_n$ are assumed to be mutually independent and identically distributed with mean zero and variance σ^2, the sum of squared residuals, $\sum_{i=1}^{n}(y_i - x_i\beta)^2$, is minimized with respect to β. Then, the estimator of β (say, $\hat{\beta}$) is: $\hat{\beta} = (\sum_{i=1}^{n}x_i'x_i)^{-1}\sum_{i=1}^{n}x_i'y_i$, which is called the ordinary least squares (OLS) estimator. $\hat{\beta}$ is known as the best linear unbiased estimator (BLUE). It is distributed as: $N(\beta, \sigma^2(\sum_{i=1}^{n}x_i'x_i)^{-1})$ under normality assumption on u_i, because $\hat{\beta}$ is rewritten as: $\hat{\beta} = \beta + (\sum_{i=1}^{n}x_i'x_i)^{-1}\sum_{i=1}^{n}x_i'u_i$. Note from the central limit theorem that $\sqrt{n}(\hat{\beta} - \beta)$ is asymptotically normally distributed with mean zero and variance $\sigma^2M_x^{-1}$ even when the disturbance term u_i is not normal, where we have to assume $(1/n)\sum_{i=1}^{n}x_i'x_i \to M_x$ as n goes to infinity, i.e., $n \to \infty$ ($a \to b$ indicates that a approaches b).

On the disturbance term u_i, we have assumed as follows: (i) $V(u_i) = \sigma^2$ for all i, (ii) $\text{Cov}(u_i, u_j) = 0$ for all $i \neq j$, and (iii) $\text{Cov}(u_i, x_j) = 0$ for all i and j. In the following, we examine $\hat{\beta}$ in the case where each assumption is violated.

(i) Violation of the Assumption: $V(u_i) = \sigma^2$ for all i

When the assumption on variance of u_i is changed to $V(u_i) = \sigma_i^2$, i.e., heteroscedastic disturbance term, the OLS estimator $\hat{\beta}$ is no longer BLUE. The
variance of $\hat{\beta}$ is given by:
$$V(\hat{\beta}) = (\sum_{i=1}^{n} x_i' x_i)^{-1} (\sum_{i=1}^{n} \sigma_i^2 x_i' x_i) (\sum_{i=1}^{n} x_i' x_i)^{-1}.$$
Let b be a solution of minimization of $\sum_{i=1}^{n} (y_i - x_i \beta)^2 / \sigma_i^2$ with respect to β. Then,
$$b = (\sum_{i=1}^{n} x_i' x_i / \sigma_i^2)^{-1} \sum_{i=1}^{n} x_i' y_i / \sigma_i^2$$
and $b \sim N(\beta, (\sum_{i=1}^{n} x_i' x_i / \sigma_i^2)^{-1})$ are derived under normality assumption on u_i. We have the result that $\hat{\beta}$ is not BLUE because of $V(b) \leq V(\hat{\beta})$. The equality holds only when $\sigma_i^2 = \sigma^2$ for all i. For estimation, σ_i^2 has to be specified, e.g., $\sigma_i = |z_i \gamma|$, where z_i represents a vector of the other exogenous variables.

(ii) Violation of the Assumption: $\text{Cov}(u_i, u_j) = 0$ for all $i \neq j$

The correlation between u_i and u_j is called the spatial correlation in the case of cross-section data and the autocorrelation or serial correlation in time series data. Let ρ_{ij} be the correlation coefficient between u_i and u_j, where $\rho_{ii} = 1$ for all $i = j$ and $\rho_{ij} = \rho_{ji}$ for all $i \neq j$. That is, we have $\text{Cov}(u_i, u_j) = \sigma^2 \rho_{ij}$. The matrix that the (i,j) th-element is ρ_{ij} should be positive definite. In this situation, the variance of $\hat{\beta}$ is:
$$V(\hat{\beta}) = \sigma^2 (\sum_{i=1}^{n} x_i' x_i)^{-1} (\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_i' x_j) (\sum_{i=1}^{n} x_i' x_i)^{-1}.$$
Let b^* be a solution of the minimization problem of
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} (y_i - x_i \beta)' (y_j - x_j \beta)$$
with respect to β, where ρ_{ij} denotes the (i,j)th-element of the inverse matrix of the matrix that the (i,j) th-element is ρ_{ij}. Then, under normality assumption on u_i, we obtain:
$$b^* = (\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_i' x_j)^{-1} (\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_i' y_j)$$
and $b^* \sim N(\beta, \sigma^2 (\sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_i' x_j)^{-1})$.

It can be verified that we obtain the following: $V(b^*) \leq V(\hat{\beta})$. The equality holds only when $\rho_{ij} = 1$ for all $i = j$ and $\rho_{ij} = 0$ for all $i \neq j$. For estimation, we need to
specify ρ_j. For an example, we may take the following specification: $\rho_j = \rho^{j-\delta}$, which corresponds to the first-order autocorrelation case (i.e., $u_i = \rho u_{i-1} + \varepsilon_i$, where ε_i is the independently distributed error term) in time series data. For another example, in the spatial correlation model we may take the form: $\rho_j = 1$ when i is in the neighborhood of j and $\rho_j = 0$ otherwise.

(iii) Violation of the Assumption: $\text{Cov}(u_i, x_j) = 0$ for all i and j

If u_i is correlated with x_j for some i and j, it is known that $\hat{\beta}$ is not an unbiased estimator of β, i.e., $E(\hat{\beta}) \neq \beta$, because of $E((\sum_{i=1}^{n} x_i' x_i)^{-1} \sum_{i=1}^{n} x_i' u_i) \neq 0$. In order to obtain a consistent estimator of β, we need the condition: $(1/n) \sum_{i=1}^{n} x_i' u_i \to 0$ as $n \to \infty$. However, we have the fact: $(1/n) \sum_{i=1}^{n} x_i' u_i \to 0$ as $n \to \infty$ in the case of $\text{Cov}(u_i, x_j) \neq 0$. Therefore, $\hat{\beta}$ is not a consistent estimator of β, i.e., $\hat{\beta} \not\to \beta$ as $n \to \infty$. To improve this inconsistency problem, we utilize the instrumental variable (say, z_j), which satisfies the properties: $(1/n) \sum_{i=1}^{n} z_i' u_i \to 0$ and $(1/n) \sum_{i=1}^{n} z_i' x_i \to 0$ as $n \to \infty$. Then, it is known that $b_{iv} = (\sum_{i=1}^{n} z_i' x_i)^{-1} \sum_{i=1}^{n} z_i' y_i$ is a consistent estimator of β, i.e., $b_{iv} \to \beta$ as $n \to \infty$. b_{iv} is called the instrumental variable (IV) estimator. It can be also shown that $\sqrt{n}(b_{iv} - \beta)$ is asymptotically normally distributed with mean zero and variance $\sigma^2 M_{xx}^{-1} M_{xz} M_{zz}^{-1}$, where

$(1/n) \sum_{i=1}^{n} z_i' x_i \to M_{zx}$, $(1/n) \sum_{i=1}^{n} z_i' z_i \to M_{zz}$ and $(1/n) \sum_{i=1}^{n} x_i' z_i \to M_{zx} = M_{zx}'$ as $n \to \infty$. As an example of z_j, we may choose $z_i = \hat{x}_i$, where \hat{x}_i indicates the predicted value of x_i when x_i is regressed upon the other exogenous variables associated with x_i, using OLS.

Hisashi Tanizaki
See also Autocorrelation, Central Limit Theorem, Regression, Serial Correlation, Unbiased Estimator.

FURTHER READINGS
