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abstract

In this paper, we propose a new methodology of modeling dynamic segmentation.

A probability that one belongs to a segment is defined as a markov process, and a

probability that one chooses a brand is defined as a multinomial logit model. The

estimation of such model has been difficult because of the complicated calculation of

log likelihood. UsingMarkov-switching model, we can estimate the model parameters

and latent states (=segments) at each purchase occasion.

In the empirical study of using scanner panel data, We have estimated an in-

stability of segment in the instant coffee category. We assumed that there are two

preference structures, one is under the influence of loyalty and the other is not. The

empirical result showed that there are some people that change their own segment

within data period.

keywords: dynamic segmentation, Markov-switching model, state space model,

choice models



Introduction

In the marketing literature, the stability of a segment is one of the most important

criteria. Most probabilistic choice models in the marketing area assume the stability

of preference and/or choice processes. However, if the preference and/or choice

processes change over time, we will fail to identify the segment using a model based

on the assumption of stability. Modeling the instability of segment is necessary for

the description of the change of structure.

There are two major approaches to take into account the instability of segment.

One approach is manifest change, and the other is latent change(Wedel and Ka-

makura 1998 p.159). In the manifest change, the segment membership is stable, but

changes may occur in the preference or choice structure of customers in a segment

over time. In the latent change, the preference structure of segments is stable, but

changes may occur in segment size and/or the segment membership of consumers

over time.

In this paper, we will take into account not only that individuals differ in their

preferences but also that they change a segment which they belong to. So, latent

change is proper for our application.

In a latent class model, mixture components are used as a prior of the segment

size, and assumed that mixture components may change over a time. There are two

main approaches in this class of models, based on different reparameterizations of

the priors for the mixture components(Wedel and Kamakura 1998 p.168). One is

concomitant variable model, and the other is latent Markov model.

The concomitant variable models assume that latent class probabilities depend

on observable variables(Wedel and Kamakura 1998 p.168; Yang and Allenby 2000).
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These models need observable variables to define segment change.

The latent Markov models assume that latent class probabilities depend on

markov-switching, so we do not need concomitant variables to define segment change

(Poulsen 1990; Böckenholt and Langeheine 1996; Ramaswamy 1997). However, if

the number of finite time period increased, multiple integral is necessary to obtain

the likelihood of the latent Markov model. Those latent Markov models are not

sufficient to express the change if the number of fixed time period increases.

To solve this problems, We adopt a non-Gaussian state-space modeling of nonsta-

tionary time series (Kitagawa 1987). When the state-space is represented as Markov

process in the state-space model, it is called Markov-switching model(Hamilton

1989). We present our proposed model at the next section.

1 Model

1.1 Modelling Markov-Switching process

Suppose that the hth household in the panel (h = 1, 2, . . . ,N) is faced with a choice

of M brands at the tth purchase occasion (t = 1, 2, . . . , Th). Following the finite

mixture formulation of Kamakura and Russell(1989), we also assume that there

exist S market segments. Segment s(= 1, 2, . . . , S) contains households who have

relatively similar preference and responses to marketing mix variables.

Let Sht denote the random variable that takes a value s, and Sht = s when hth

household belongs to segment s at purchase occasion t. Let yht = m denote the event

that household h chooses brand m at purchase occasion t , and ψht = (yh1, . . . , yht).

We assume that evolution of Sht depends upon Sh,t−1, in which case the process

of St is named as first order Markov-switching process.
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Denote the element of transition matrix from state i to statej by pij, and let

Pr(Sht = j|Sh,t−1 = i, ψh,t−1) = Pr(Sht = j|Sh,t−1 = i) = pij (1)

0 ≤ pij ≤ 1,
S∑

j=1

pij = 1.

1.2 Modeling Brand choice

We assume that choice of a brand in the segment s is governed by a multinomial logit

model. Let xhtm denote the vector of attributes. Then the conditional probability

that brand m is chosen, given Sht = s, is specified as

Pr(yht = m|Sht = s) =
exp(x′

htmβs)∑M
i=1 exp(x′

htmβs)
. (2)

where βs is a parameter vector in segment s.

The unconditional probability is given by the weighted sum of segment proba-

bilities.

Pr(yht = m|ψh,t−1) =
S∑

s=1

Pr(Sht = s|ψh,t−1)Pr(yht = m|Sht = s). (3)

1.3 Estimation

For parameter and state estimation, we need to evaluate Pr(Sht|ψht), the conditional

probability of Sht = s given observations ψht(= yh1, . . . , yht). Recursive formulas for

obtaining the One Step Ahead Prediction, Filtering, Smoothing are as follows:

One Step Ahead Prediction:

Calculate the Pr(Sht = j|ψh,t−1) using ψh,t−1 and equation(1),

Pr(Sht = j|ψh,t−1) =
S∑

i=1

Pr(Sht = j, Sh,t−1 = i|ψh,t−1).

=
S∑

i=1

Pr(Sht = j|Sh,t−1 = i, ψh,t−1)Pr(Sh,t−1 = i|ψh,t−1)

=
S∑

i=1

pijPr(Sh,t−1 = i|ψh,t−1). (4)
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Filtering:

Update the Pr(Sht = j|ψht) using Bayes’ law,

Pr(Sht = j|ψht) = Pr(Sht = j|yht, ψh,t−1)

=
p(yht|Sht = j, ψh,t−1)Pr(Sht = j|ψh,t−1)

Pr(yht|ψh,t−1)
. (5)

where

p(yht|ψh,t−1) =
S∑

j=1

p(yht|Sht = j, ψh,t−1)Pr(Sht = j|ψh,t−1). (6)

Smoothing:

After parameters of the model are estimated, we can make inference on Sht using all

information (=ψhTh
) in the sample. Pr(Sht = j|ψhTh

) is the smoothed probability.

Oppositely, Pr(Sht = j|ψht) is the filtered probability.

Calculate the joint probability of Sht = j and Sh,t+1 = k based on ψhTh
:

Pr(Sht = j, Sh,t+1 = k|ψhTh
)

= Pr(Sh,t+1 = k|ψhTh
)Pr(Sh,t = j|Sh,t+1 = k, ψhTh

)

= Pr(Sh,t+1 = k|ψhTh
)Pr(Sh,t = j|Sh,t+1 = k, ψht)

=
Pr(Sh,t+1 = k|ψhTh

)Pr(Sh,t = j, Sh,t+1 = k|ψht)
Pr(Sh,t+1 = k|ψht)

=
Pr(Sh,t+1 = k|ψhTh

)Pr(Sh,t = j|ψht)Pr(Sh,t+1 = k|Sht = j)
Pr(Sh,t+1 = k|ψht)

. (7)

and Pr(Sht = j|ψhTh
) is

Pr(Sht = j|ψhTh
) =

S∑
k=1

Pr(Sht = j, Sh,t+1 = k|ψhTh
). (8)

Begin with p(Sh,Th−1 = j|ψh,Th
), we can calculate p(Sh,Th−2 = j|ψh,Th

), . . . , p(Sh,1 =
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j|ψh,Th
). The validity of going from the second line to the third line of equation (7)

is in Appendix:A

1.4 Model Identification

The log likelihood function for h is given by

lnLh =
Th∑
t=1

ln p(yht|ψh,t−1). (9)

And the log likelihood function for all households is given by

lnL =
H∑

h=1

lnLh. (10)

We can Estimate the parameter by maximizing the lnL numerically. In this

approach, Akaike’s information criterion(AIC) is

AIC = −2max lnL+ 2(number of free parameters). (11)

and other infromation criterion are obtained in the same way as AIC.

1.5 Advantage of Using Markov-Switching Model

If we could not use the Markov-switching Model, the log likelihood of household h

is

lnLh = ln{
∑
Sh1

∑
Sh2

. . .
∑
ShTh

p(Sh1)p(yh1|Sh1)
Th∏
t=2

p(Sht|Sh,t−1)p(yht|Sht)}. (12)

Compared with (9), (12) is so difficult to find the parameters which maximize log

likelihood. Markov-switching model has advantage of simplicity at the calculation

of the log likelihood.
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2 APPLICATION

In this section we estimate the model using scanner panel data set1.

2.1 Data

The data analyzed here consist of 52 weeks scanner panel records of households in the

Tokyo metropolitan area, during the year 1993. The number of 97 households who

purchased instant coffee between 12 and 24 times during this period was selected.

To keep the model estimation manageable, we chose four top-selling brands(BrandA–

BrandD), and the rest was gathered to one brand(Brand E 2).

Brand Market Average
share Discount Rate

A 0.286 0.794
B 0.171 0.777
C 0.133 0.747
D 0.078 0.835
E 0.331 0.734

The purpose of this analysis is to know whether people change their preference

structure. The effect of loyalty( last purchased brand) to the utility may differ over

the person. Will s/he be also stable all over the time? If not, when did s/he change

preference structure? This information will be very important when we plan the

relationship marketing( ex. electronic couponing) .

2.2 Model Variables

We begin by specifying the functional form of the choice model. The deterministic

component of utility for brand m at time t, given that household h is a member of
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segment s, is

x′
htmβs = βs,pricePRICEmt + βs,displayDISPLAY mt + βs,lbpLBPmt + βs,int,m. (13)

where:

PRICEmt = (actual shelf price of brandm at time t)

÷(highest shelf price of brandm during the period).

DISPLAY mt = 1 if brandm was displayed at time t for h ,

and 0 otherwise.

LBPh
mt = 1 if brand m was purchased by household h

at time t− 1, and 0 otherwise.

βs,price, βs,display, βs,lbp = parameters to be estimated.

βs,int,m = constant for brandm, segment s, to be estimated.

In this application, our interest is in the dynamics of the influence of loyalty to

the utility. So we consider two segments, Segment1 is under the influence of loyalty

(β1,lbp �= 0, to be estimated) and Segment2 is not (set β2,lbp = 0 a priori).

2.3 Steady-State Probability

To start the Filtering, we have to define the start probability Sh0. We employ the

steady-state probability as Sh0 (Kim and Nelson 1999 p.66). Derivation of Steady-

State Probability is stated in Appendix B. When Segment Size was determined to

be two,

Pr(Sh0 = 1) =
1− p22

2− p11 − p22
. (14)

Pr(Sh0 = 2) =
1− p11

2− p11 − p22
. (15)
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2.4 Estimation Results

Model Comparison

Before the estimation, we set three comparison models.

Model 1: Logit model with Markov-switching

This model assumes that there are two segments and household will switch the

segment.

Lh =
T∏

t=1

[
S∑

j=1

Pr(Sht = j|ψh,t−1)p(yht|Sht = j)]. (16)

Model 2: Logit model with latent segment

This model assumes that there are two segments and any household does not switch

segment.

Lh =
S∑

j=1

[πj

T∏
t=1

p(yht|Sht = j)]. (17)

where πj is size of segment j.

Model 3: Normal logit model

This model assumes that there is only one segment.

Lh =
T∏

t=1

[p(yht)]. (18)

The information criteria of the models are shown in Table 1. AIC , BIC and

CAIC are smallest at the Model1. We can say that Model1 is fitest for the data.
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Feature of the segment

The estimated parameters of the Model1 are shown in Table 2. We have set

β2,lbp = 0 a priori, and β1,lbp is estimated positive. The influence of loyalty is

positive in Segment1. Comparison of price parameters and display parameters,

β2,price > β1,price and β2,display > β1,display, so we can also say that Segmen2 is a

promotion sensitive segment. As shown in Table 2, switching probability p11 and

p22, which is recurrent probability, are close to 1. The switching probability between

Segment1 and Segment2 is very small.

Dynamics of Segmentation

The example of dynamics of segmentation are shown in Fig 1 and Fig 2). The

household#1 suddenly changes segment at purchase occasion 9. On the other hand,

the household#2 is stable over the time. As we intended, the dynamics of segmen-

tation was estimated.

3 Discussion

In this study, we demonstrated a methodology for modeling the latent change be-

tween the segments in a short period. A probability that one belongs to a segment is

defined as a markov process, and a probability that one chooses a brand is defined as

a multinomial logit model. The estimation of such model has been difficult because

of the complicated calculation of log likelihood. Using Markov-switching model, we

can estimate the model parameters and latent states at each purchase occasion. In

the empirical study, We have estimated an instability of segment in the instant cof-

fee category. We assumed that there are two preference structures, one is under the
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influence of loyalty and the other is not. The empirical result showed that there are

some people that change their own segment within data period.

The main limitation of our model is that the parameters of transition proba-

bility are dependent on an unobservable state variable (Sht), that is an outcome of

an unobservable Markov process. This means that inference of ShT is based on a

conditional distribution, not on a joint distribution. Another limitation is that the

likelihood function of the parameters is still not presented in simple form. MCMC (

Markov chain Monte Carlo ) approach will enable us to solve these problems. Albert

and Chib (1993) have made MCMC analysis of Markov-switching model.

Application of our model to another marketing area is also an interesting. We

have not investigated why s/he switches her/his segment. If we use the concomitant

variable( Kamakura, Wedel and Agrawal 1994) to the Markov-switching probability,

we will be able to account for this problem. This analysis is also important from

managerial perspective. The future research is expected.

Appendix A

The validity of going from the second line to the third line of equation (7) is given

by Kim and Nelson(1988 p.68).

Define f̃h,t+1,Th
= (yh,t+1, yh,t+2, . . . , yhTh

)′, for Th > t. That is, f̃h,t+1,Th
is the

vector of observations from date t+ 1 to Th. Then we have

Pr(Sht = j|Sh,t+1 = k, ψhTh
)

= Pr(Sht = j|Sh,t+1 = k, f̃h,t+1,Th
, ψht)

=
g(Sht = j, f̃h,t+1,Th

|St+1 = k, ψht)
g(f̃h,t+1,Th

|St+1 = k, ψht)
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=
Pr(Sht = j|Sh,t+1 = k, ψht)g(f̃h,t+1,Th

|Sh,t+1 = k, Sht = j, ψht)
g(f̃h,t+1,Th

|Sh,t+1 = k, ψht)

= Pr(Sht = j|Sh,t+1 = k, ψht) (19)

The above holds as g(f̃h,t+1,Th
|Sh,t+1 = k, Sht = j, ψht) = g(f̃h,t+1,Th

|Sh,t+1 =

k, ψht), which suggests that if Sh,t+1 were somehow known, then yh,t+1 would contain

no information about Sht beyond that contained in Sh,t+1 and ψh,t.

Appendix B

Derivation of Steady-State Probability Used to Start the Filter is below(Kim and

Nelson 1999 p.70).

P ∗ =




p11 p21 · · · pS1

p12 p22 · · · pS2

...
...

. . .
...

p1S p2S · · · pSS




(20)

where i′SP
∗ = i′S with iS = [1 1 . . . 1]′. If we let πt be a vector of S × 1

steady-state probabilities, we have

πt =




Pr(St = 1)

Pr(St = 2)

· · ·

Pr(St = S)




=




π1t

π2t

· · ·

πSt




(21)

i′Sπt = 1. (22)

Then according to the definition of steady state probabilities, we have πt+1 = P∗πt
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and πt+1 = πt, and thus

πt = P ∗πt =⇒ (IS − P ∗)πt = 0S . (23)

where 0S is an S × 1 matrix of zeros. Combining equations(22)and(23) ,we have



IS − P ∗

i′S


 πt =



0S

1


 , or Aπt =



0S

1


 . (24)

Multiply both sides of the above equation by (A′A)−1A′. Then,

πt = (A′A)−1A′



0S

1


 (25)

That is, the matrix of steady-state probabilities, πt, is the last column of the matrix

(A′A)−1A′.
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Notes

1. Scanner panel data was offered from one of the Japanese supermarket. The name

of supermarket is secret because of the duty to protect privileged information. This

data set is same as Moriguchi and Mori(1995).

2. The Value of Price and Display of Brand E was computed as following.

• If one choose one of BrandE, the price and the promotion of Brand E is this

chosen Brand.

• Otherwise, the price is set to the largest discount rate and the promotion is

set to 1 if at least one of Brand E is promoted.
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Table 1: Model Comparison

Model 1 Model 2 Model 3
LL −1268.54 −1352.09 −1387.24
AIC 2567.08 2732.18 2788.48
BIC 2643.68 2803.68 2824.23
CAIC 2643.70 2803.69 2824.23

Table 2: Estimation Results

Segment1 Segment2
β1price −2.540 β2price −12.206

(−4.45)a (−8.25)
β1display 0.467 β2display 0.984

(3.17) (6.38)
β1lbp 1.977 β2lbp 0b

(18.49)
β1int1 −0.346 β2bint1 1.425

(−2.12) (6.33)
β1int2 −0.037 β2int2 −1.261

(−0.28) (−3.81)
β1int3 −1.378 β2int3 0.291

(−5.58) (1.64)
β1int4 −0.694 β2int4 −1.112

(−3.98) (−3.59)
p11 0.961 p22 0.954

(10.35) (10.00)
a Asymptotic t-statistics in parenthese.
b Set to 0 a priori.
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Figure 1: The dynamics of state probability in household#1

Figure 2: The dynamics of state probability in household#2
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