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The stochastic dynamics, forecasting ability and risk factors in implied volatility 

 
 
 
 
 

ABSTRACT 
 
 

A new benchmark of volatility implicit in Nikkei 225 stock option prices 
is constructed and its stochastic dynamics are examined in comparison 
with the S&P implied volatility index. There is a tendency for the levels 
of implied volatility to move in tandem during the late 1990s despite the 
idiosyncrasies of the booming U.S. economy and Japanese recession. 
The long-term convergence dynamics of implied volatility are found to 
be similar but the convergence of the transitory component towards zero 
is inherently different across markets. There is evidence from the 
estimation of asymmetric GARCH models that useful information on 
leverage effects is embedded in implied volatility. Albeit upward biased, 
implied volatility is found to constitute a good approximate of future 
levels of realized volatility in the Japanese market. Based on a two-factor 
model of risk components consistent with the intertemporal CAPM 
theory, there is also evidence that implied volatility is function of 
stochastic changes in the investment opportunity set proxied by 
measures of uncertainty about the domestic real economy and the 
international financial economy. 

 
JEL Classification: C51, G13 

 
 
 
 
 
 
1. Introduction 

 

For plausible explanations of dramatic changes in stock market volatility, it is essential to understand 

how and why market volatility does ebb and flow. Given the widespread perception that option 

trading is akin to volatility trading, the empirical questions of whether the volatility implied in 

option prices is redundant, or whether it constitutes a substitute or complement to alternative 

measures of volatility, have gained in importance. In understanding the complexity of risk and the 

dynamics of risk hedging, there is no doubt that the contribution of theoretical and methodological 

advances in option pricing has been significant. But the limited empirical evidence on the 
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information content of implied volatility leaves large rooms for further analysis that may shed lights 

on the properties of financial market volatility and the economics and efficiency of options markets 

as well. 

The present study is an attempt to enrich the existing literature with new perspectives 

from alternative options markets and the construction of a new implied volatility index. In gathering 

information contained in the term structure of implied volatility and volatility smiles, this 

benchmark allows for the aggregation of short-term volatility expectations across option investors, 

hedgers and arbitrageurs. In contrast to the numerous indices of financial asset prices, volatility 

benchmarks are rather rare. The Chicago Board of Options Exchange uses the real-time OEX 

bid-ask quotes on S&P 100 American options to publish since 1993 the CBOE-VIX index of implied 

volatility. We construct a similar index of implied volatility on the Nikkei 225 stock index, which is 

the average price of representative stocks listed on the first section of Tokyo Stock Exchange. 

Despite the fact that the Nikkei 225 stock average is the underlying asset of financial derivatives 

traded on three major Asia-Pacific derivatives markets, albeit under different contract specifications, 

there is to the knowledge of the authors, no volatility benchmark for Japanese equity markets.1 

In constructing the implied volatility index from Nikkei 225 stock index options traded on 

the Osaka Stock Exchange, there is an attempt to provide a useful addition to the list of financial 

benchmarks, which can facilitate comparative analysis of volatility across international markets. 

The replication exercise provides also the opportunity to examine four core empirical issues 

addressed in sequence in the remainder of the paper, which is structured as follows. The next section 

presents a review of literature on option pricing as far as theoretical and empirical issues in implied 

volatility are concerned. Section 3 outlines the methodology underlying the construction of the 

implied volatility index and the measurement problems encountered in its implementation with 

respect to Japanese stock index options. The distributional and time-series properties of the implied 

volatility index are discussed in section 4. Section 5 examines its relationship with conditional 

volatility in asymmetric Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
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modeling of returns. It analyzes the information embedded on the asymmetric impacts of bad and 

good news, or leverage effects, which derive from the increased risk of holding stocks when prices 

are sharply decreasing, thereby discounting the value of equity relative to corporate debt and 

increasing corporate leverage. The analysis in Section 6 focuses on the ability of implied volatility to 

forecast the realized levels of market volatility over options expirations. A structural examination of 

its relation with risk factors related to the domestic real economy and the international financial 

economy is made in Section 7. Section 8 concludes the paper. 

 
2. Option pricing theory and implied volatility 

 
The underlying asset price S is generally assumed to follow the diffusion process described in 

equation (1) where the drift ),( tSµ and volatility ),( tSσ  terms is function of S  and time t  and 

where W is a standard Brownian motion. 

)()(),(),()( tdWtStSdttStdS σµ +=      (1) 

The theoretical value of an European call according to Black and Scholes (1973) option pricing 

model is function of the exercise price K , constant volatility σσ =),( tS  over the option’s life, and 

risk-free interest rate r in addition to the state variables, time to expiration τ  and the underlying 

asset price S . The option valuation model extended by Merton (1973a) to account for stochastic 

dividends at the anticipated continuous yield qcan be expressed as 
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Whereas the mathematical advances in option valuation by Black and Scholes (1973) 

spurred an extant theoretical literature on option pricing, the idea first introduced by Latane and 

Rendleman (1976) of extracting market volatility from option premium added another dimension to 
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the empirical research on derivatives markets. An estimate of the unobservable state variable market 

volatility σ can be derived as a function of the option price and remaining parameters using a 

numerical iterative process that reduces the error between the observed option price and its 

theoretical value. Convergence problems arise when equating the observed and model values fails. 

The numerical difficulties stem in part from the fact that option pricing models do not typically 

provide closed-form solutions and that the volatility function cannot be reduced to a scalar.2 

The rich literature on volatility implicit in option premium seems to evolve around the 

numerical and estimation problems, distributional properties, informational content of implied 

volatility and the characterization of its relationship with conditional and realized volatilities. The 

empirical evidence, indisputable so far, is that daily estimates of implied volatility vary across 

exercise prices and exhibit a ‘volatility smile’ that is inconsistent with the theoretical foundations of 

the parsimonious Black-Scholes valuation model, which assumes volatility to be constant, 

independent of exercise prices and time-invariant. Volatility smiles are suggestive of Black-Scholes 

mispricing of deep in- and out-of-the-money options or options market inefficiency. They may 

represent de facto empirical violations of the underlying assumptions including the normal 

distribution of returns. Pena, Rubio and Serno (1999) attribute volatility smiles to transaction costs 

and find a significant inverse relationship between the degree of curvature and time to expiration. 

Even in the presence of ‘flat’ smile when Black-Scholes implied volatility is constant across exercise 

prices, the square of implied volatility is shown by Britten-Jones and Neuberger (2000) to be equal 

to the risk-neutral expectation of squared volatility and shown to be positively biased estimate of 

realized volatility. Unless volatility is constant, it can be shown using Jensen’s inequality,  
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that under risk-neutral probability distribution and continuous time, it is the square of volatility 

rather than volatility per se that is an unbiased estimate of realized volatility. 

The examination of the properties of implied volatility constitutes a joint test of options 
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pricing model and market efficiency. To mitigate inherent inconsistencies in Black-Scholes 

modeling, a wide array of competing approaches to recover unbiased estimates of implied volatility 

and alternative option pricing models has been advocated.3 At one end of the implied volatility 

spectrum, a “model-free” approach is advocated by Britten-Jones and Neuberger (2000) who adjust 

arbitrary volatility processes to option prices, drawing upon the standard practice of fitting interest 

rate processes to bond prices. Modeling the implied volatility function to depend on the exercise 

price includes studies using polynomials, interpolation or splines smoothing of the pricing function 

by Shimko (1993), Longstaff (1995), Malz (1997), and Ait-Sahalia and Lo (1998), inter alia.  

GARCH option pricing including Duan, Gauthier and Simonato (1999) and Ritchken and Trevor 

(1999) attempt to capture the path-dependence dynamics of volatility and the negative correlation 

between volatility and returns. 

The stochastic properties of volatility are also addressed in earlier studies by Hull and 

White (1987), Stein and Stein (1991) and Heston (1993) among others, who develop models where 

the constant volatility parameter is substituted with the entire joint probability distribution of returns 

and changes in volatility. Although Ball and Roma (1994) find the modeling of stochastic volatility 

to be consistent with implied volatility smiles, the approach is complicated with the estimation of the 

market price of volatility risk. Assuming volatility to be a deterministic function of the underlying 

asset price and time, as in models developed by Rubinstein (1994), Derman and Kani (1994) and 

Dupire (1997), is also inconsistent with the findings by Buraschi and Jackwerth (2001). The 

examination by Dumas, Fleming and Whaley (1998) of the predictive and hedging performances of 

the ad hoc Black-Scholes model and quadratic-form modeling of the deterministic volatility 

function ),( tKσ suggests that the latter outperforms the former on both accounts. There is evidence 

that the estimated deterministic function is itself unstable over time and Black-Scholes hedge-ratios 

are more reliable. As far as at-the-money options are concerned, there is also earlier evidence by 

Ledoit and Santa-Clara (1998) that as expiration draws near, Black-Scholes implied volatility 

converges to the asset’s instantaneous or stochastic volatility. 
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The final issue addressed in the literature concerns the informational content of implied 

volatility, where early empirical evidence by Day and Lewis (1992) suggests that volatility implied 

by S&P 100 index options is almost unbiased and constitutes an informative forecast but the 

conditional volatility based on GARCH modeling of returns does contain incremental information. 

The significance of the informational content for forecasting purposes is also supported by evidence 

from Lamoureux and Lastrapes (1993) using volatilities implicit in the price of individual stock 

options. Albeit upwardly biased, implied volatility is also found by Fleming (1998) to constitute a 

reliable forecast of ex post volatility, with forecast errors being orthogonal to parameters embedded 

in ARCH models. Further evidence provided by Christensen and Prabhala (1998) explains away part 

of the bias in implied volatility with regime shifts in the pricing of index options around the October 

1987 stock market crashes. More recent evidence from Blair, Poon and Taylor (2001) indicates that 

irrespective of data frequency and forecasting horizon, S&P 100 VIX index of implied volatility is 

more accurate for out-of-sample forecasting than realized volatility.4 In sharp conflict with this 

mounting evidence, Canina and Figlewski (1993) suggest that S&P 100 implied volatility is neither 

informative on realized volatility nor accurate in forecasting future volatility. 

An international perspective on the informational content of implied volatility is added to 

the empirical literature using the Nikkei 225 option prices and the parsimonious Black-Scholes 

model, which despite inherent inconsistencies, remains the cornerstone of theoretical and empirical 

studies in implied volatility. Before discussing the results of our findings, the methodology followed 

in the construction of the implied volatility benchmark is explained in the next section. 

 
3. Implied volatility index: data and methodological issues 

 
The volatility implicit in the daily closing prices of European options on Nikkei 225 stock index is 

estimated using the theoretical call valuation equation (2) and put price derived from put-call parity. 

The Japanese index options expire on the second Friday of the contract month, covering a period of 

144 maturities starting from the inception of options trading on OSE in June 1989 through June 2001. 
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The risk-free interest rate is approximated by the continuous yield on the three-month or one-month 

Certificate of Deposit with the closest maturity to the expiration date. The dividend yield is 

estimated as a fraction of current stock index level, using the annual average yield on all stocks listed 

on TSE. To facilitate comparison across international markets, we use the daily closes of S&P 100 

implied volatility index based on average bid-ask option quotes, which are obtained from Thomson 

Financial Datastream database. There are discrepancies in the sample sizes across markets due to 

differences in trading holidays and focus is made on the newly constructed index of implied 

volatility in the Japanese market. 

 The construction of the implied volatility index can be viewed as another variant of 

implied volatility weighting schemes.5 The calculus of VIX, which is described in further detail in 

Whaley (2000), involves a series of averaging and interpolation exercises and takes into account 

both the term structure of implied volatility and volatility smiles and sneers. Theoretically, the index 

measures the market volatility implied by the price of a hypothetical option with 30 calendar days to 

expiration and with exercise price exactly equal to the underlying asset price. The VIX benchmark is 

constructed as a weighted average of volatilities implied by the prices of options in the at-the-money 

neighborhood and nearest maturities. The implied volatility is calculated using the remaining time to 

maturity expressed in calendar days cτ , and subsequently approximated using ττ ctt vv = into 

volatility over )7/int(2 cc τττ −=  trading days.6 

To mitigate measurement problems deriving from short-lived options which are usually 

associated with extreme values of implied volatility, options with less than eight calendar days to 

expiration  (i.e., approximately six trading days) are eliminated. Focus is made also on 

near-the-money options, which are theoretically most sensitive to changes in volatility and unlike 

deep in- or deep-out-of-the-money, they are associated with higher time premium. Upon identifying 

the upper UK =  and lower LK =  exercise prices immediately above and below the daily stock 

index price, the selection of the corresponding nearest-maturity 1=m  call ),( 11 LU CC  and put 
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),( 11 LU PP  options together with the second near-maturity 2=m  call ),( 22 LU CC and put 

),( 22 LU PP  options results in eight estimates that differ across option types, maturities and exercise 

prices. 

These volatility measures ),( mKvt with exercise price LUK ,=  and maturity 2,1=m  

need to be averaged at each of the three levels to construct the VIX index. First, the simple averaging 

2/)},,(),,({),( mKPvmKCvmKv ttt += deals away with call and put notations. The remaining 

two couples of implied volatilities from the nearest-maturity )]1,(),1,([ LvUv tt and 

second-nearest-maturity option )]2,(),2,([ LvUv tt  are also used in the interpolation process 

described by equation (4), which is aimed at adjusting for differences between the current stock 

index level and exercise prices. This process results in the approximation of the implied volatility of 

the hypothetical at-the-money option for each expiration month. 

.2,1for          ),(),()( =
−
−

+
−
−

= m
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LSmLv
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Finally, an extrapolation process is required to adjust for differences in periods of time 1nτ  

and 2nτ remaining to the expiration of the nearby and second-nearest maturity options, respectively. 

The implied volatility index is made to reflect the volatility implicit in the price of a single 

theoretical option with 22 trading-days (approximately 30 calendar days or a month) remaining to 

expiration. 
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Apart from Black-Scholes misspecification and usual problems of non-synchronous 

pricing of stock and options, the implementation of this methodology using data on the Japanese 

options market poses some difficulties. The tendency for daily trading on the European-style Nikkei 

225 stock index options on OSE to concentrate on near-maturity, second- and third-month 

expirations should actually facilitate the implementation of VIX calculation. But, the likelihood of 



 10

non-convergence for the near-maturity near-the-money options is found to be higher with respect to 

early periods of thin trading of Nikkei 225 options on OSE. The problem of non-convergence of 

implied volatility numerical calculations, which may be attributed to option mispricing and 

error-in-variables problems, can further complicate the implementation of VIX methodology by 

undermining either the averaging or interpolation process. 

The methodology does not allow for the upper or lower level of exercise prices on a given 

trading day to differ across call and put options. In reconstructing the volatility index, it remains 

silent on the appropriate way to deal with cases where no put option can be found to match exactly 

the exercise price of calls at either the upper or lower levels. Substituting the non-converging option 

price with that of the next-near-the-money option effectively compromises the simple averaging 

across option types because of the discrepancy in exercise price boundaries across call and put 

options. To minimize the loss of information, we adopt the simpler approach of referring in turn to 

the opening, highest or lowest price when numerical convergence is achieved with respect to closing 

prices.7 In the case where 0)1( =tv (or 0)2( =tv ), the value of VIX is approximated on the basis of 

equation (5) and under the usual underlying assumption that volatility is related to the square root of 

time, with the point estimate 22)2( 2τtt vv =  (or 22)1( 1τtt vv = ). The resulting time-series of 

daily estimates of the implied volatility index provides an ex ante estimate of short-term volatility. 

The next sections assess the distributional properties and usefulness of implied volatility in 

forecasting realized volatility. 

 
4. Distributional and stochastic properties of implied volatility 
 

This section examines the behavior of daily Nikkei 225 and S&P 100 VIX indices, as well as their 

distributional characteristics over monthly options expirations. Figure 1 exhibits the daily volatility 

series, which reflect two distinct trends, apart from the short period following the inception of option 

trading on OSE, during which implied volatility has been lower in the Japanese than in US options 

markets. This period of rising stock prices and lower volatility precedes the burst of the Japanese 
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stock market bubble by the end of the 1980s. The first pattern, which is obvious over the period 

extending into the mid-1990s, reflects episodic surges and falls in Japanese market volatility, which 

are in sharp contrast with the smoother and constant path of implied volatility in US markets. This 

trend is reversed however when implied volatility in the US market increased and the alignment of 

volatility paths in both markets persisted until the end of the sample period. This parity in the 

implied volatility levels is interesting is maintained despite the respective booms and slumps in the 

US and Japanese economies. 

From the distributional moments of price, return and implied volatility in both markets are 

reported in Panel A of Table 1, there is evidence that implied volatility is on average higher and more 

volatile in Japanese stock markets than US markets. Upon conversion of annual implied volatility to 

daily basis (dividing by the square root of 250), the median of Nikkei 225 implied volatility equal to 

1.67% is found to be comparable to the sample standard deviation of returns 1.48%. The evidence, 

which applies also to the US markets, suggests that implied volatility can constitute a good proxy of 

realized volatility. 

Before examining the time series properties, determinants and forecasting ability of 

implied volatility, it is noted from unit root test results, that with the exception of stock prices, all 

daily and monthly return and volatility series are stationary. Judging from the distributional 

moments and behavior of implied volatility over time, it seems that shocks to volatility are likely to 

persist. The stochastic dynamics of the implied volatility series can be examined using the class of 

GARCH econometric models 

t
n

k ktkt evv ++= ∑ = −10 ϑϑ      (6) 
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As with the parsimonious GARCH(1,1) process, when the roots of 111 βαφ +=  lie outside the unit 

circle (i.e.,), the conditional variance of the implied volatility index converges towards the long run 

unconditional variance. By redefining the constant in the conditional variance equation in the 
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GARCH(1,1) process as function of the unconditional variance )1( 10 φϖα −= , equation (8a) can 

be rewritten as 
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It is possible to allow for reversion to a long-term time varying tω instead of a constant mean ϖ by 

expressing the conditional variance in the component GARCH(1,1) model as 
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In this nested setting, the long run component tω defined in the second part of the system of 

equations (7c) converges to ϖ with powers of δ  while the transitory component tt ωχ −2 described 

in the first equation converges to zero with powers of 1φ . The estimation results of the component 

GARCH modeling of implied volatility in Japanese and US markets are reported in Panel A of Table 

2. The diagnostic tests indicate that these models are not associated with serial correlation in the 

squared standardized residuals and that there are no traces of ARCH effects. There is evidence that 

the value ϖ  towards which the time-varying long-run volatility of the Japanese implied volatility 

index converges is contrary to evidence from US markets, statistically insignificant. In both markets, 

convergence takes place at a slow rate determined with powers of δ , which is found to be typically 

close to unity. 

From the transitory equation, the insignificance of 1α estimate for the Japanese market 

suggests that differences between innovations in volatility and the permanent component do not 

affect the short run movements of implied volatility. The influential force behind the convergence of 

the transitory component towards zero lies in past levels of implied volatility. In contrast, both past 

levels of volatility and past innovations in US implied volatility constitute significant determinants 

of the transitory component. Judging from the magnitude of the transitory coefficients, the dynamics 

of short-term convergence towards zero are inherently different across these markets. The reversion 
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of the transitory component towards zero via powers of 1φ , tends to occur in the US market at faster 

rates than in the Japanese market. The evidence is important for international portfolio hedging 

purposes as it aids in understanding options investors’ formation of expectations about long-term 

levels and short-term movements in stock market volatility. 

 
5. Conditional variance, implied volatility and leverage effects 
 

In light of reported evidence reported on the stochastic properties of implied volatility, it is important 

to explore its relationship with alternative estimates of asset volatility. Judging from the comparative 

behavior of daily returns and implied volatility estimates illustrated in Figure 2, it is likely that 

periods of increased implied volatility coincide with episodes of higher variability of returns. This 

adds to the graphical evidence from Figure 1 that these periods are also associated with declining 

stock prices. To examine this stylized tendency for the volatility of equity returns to cluster and 

persist and its asymmetric behavior during bullish and bearish markets, two variants of asymmetric 

GARCH modeling are considered. The first variant represented by the threshold ARCH (TARCH) 

model developed by Zakoian (1994), accounts for asymmetric shocks to volatility and describes the 

mean equation and conditional variance function respectively as 

t
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where tψ are normally distributed errors. The dummy variable tq is equal to unity in the case of good 

news )0( >tψ and zero otherwise. The news impact on volatility is function of the sign and 

magnitude of γ .  The impact is limited to α  in the case of good news and amounts to γα + with 

respect to bad news. There is evidence of asymmetries when 0≠γ  and of leverage effects when 

0>γ . When the leverage effect is assumed to be exponential, an alternative modeling of 

non-asymmetric responses to shocks is considered. The exponential GARCH (EGARCH) model 
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proposed by Nelson (1991) expresses the variance equation as 
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In this exponential mapping, the increase in volatility associated with bad news is higher than that 

generated by good news when γ is negative and significant. Table 2 panel B reports Model I 

estimates, which result from TARCH and EGARCH modeling of Japanese and US stock market 

returns. Independent of the asymmetric GARCH variant, there is evidence of volatility persistence. 

The results indicate also the existence of leverage effects as γ  is found to be positive and significant 

for TARCH models and negative and significant for EGARCH models. This constitutes evidence 

that bad news is likely to generate a larger increase in market volatility than good news. 

To examine its informational content of implicit volatility, Day and Lewis (1992) and 

Lamoureux and Lastrapes (1993) propose its inclusion as an exogenous variable in the conditional 

variance equation. Instead of the GARCH in mean modeling used in the above studies, testing the 

hypothesis that implied volatility does not contain information beyond that implied by realized 

returns is performed using TARCH and EGARCH variance equations (10a) and (10b), respectively. 
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The significance of the coefficient associated with implied volatilityξ constitutes evidence 

that this variable contains incremental information content on return volatility. Judging from the 

estimates of Model II reported in Table 2 Panel B, this coefficient is found to be positive and 

significant in both markets and irrespective of the TARCH or EGARCH modeling. As far as the US 

market is concerned, the significance of ξ  is accompanied by a significant change in the sign of 

GARCH terms 1β . Though the significance of leverage effects measured by the news impact 

coefficient γ fades away, neither quadratic nor exponential estimates do change in sign. The log 
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likelihood ratio tests suggest that irrespective of the market under examination, the inclusion of 

implied volatility results in a significant improvement in model estimation. This is evidence that 

implied volatility impounds useful information on the persistence of return volatility as well as on its 

asymmetric response to bad and good news. 

It is possible to visualize the leverage effect using the news impact curve, which reflects 

the sensitivity of the conditional variance to innovations standardized by market volatility σψ / , 

estimated around the median of the conditional variance. Figure 3 illustrates the impact functions of 

the exponential modeling of Japanese and US market volatility with and without implied volatility. It 

appears that increases in volatility differ in magnitude across markets, with the stronger impact 

associated with Japanese market volatility. The slope of the curves with respect to bad news is 

steeper than for good news. Modeling using implied volatility as regressor in the conditional 

variance equation aids in explaining part of the impact of bad news on Japanese volatility and the 

entire impact on US market volatility. Expectations of market declines may generate a buying 

pressure on puts, thereby driving their prices up and increasing the level of implied volatility. The 

evidence is important in understanding the important aspects of the relationship between implied 

volatility and realized volatility, which is the subject of the next section. 

 
6. Realized volatility and the forecasting ability of implied volatility 

 

Having assessed the distributional properties and stochastic dynamics of the implied volatility, it is 

the usefulness of this forward-looking measure of volatility in forecasting realized volatility that can 

be now examined. The standard deviation of log returns provides an ex post estimate of realized 

volatility at the end of the option maturity month m as  
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1 is the mean of spot returns over the maturity month and mτ refers to the 
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number of remaining days to expiration. It is possible to test as in Christensen and Prabhala (1998), 

the significance of the relationship between implied and realized volatilities using the following 

regression model. 

mmv
h
m uv ++= λλσ 0 ,      (12) 

where h
mσ denotes historical volatility defined in equation (12) and mv is the annual implied volatility 

estimated at the beginning of the expiration month (thirty calendar days before maturity). The 

residuals mu are white noise when implied volatility constitutes an efficient estimate of observed 

volatility. From Figure 4, it appears that there is a strong tendency for Nikkei 225 implied volatility 

index to constitute an upper boundary for realized volatility on the spot market. The evidence is 

consistent with results from Fleming (1998) that implied volatility is an upward biased volatility 

forecast. Because implied volatility is shown by Jensen’s inequality (3) to be an upward biased 

estimate of actual volatility, the intercept is likely to be also upwardly biased but the estimate of the 

slope coefficient does not necessarily suffer from such a bias. The slope of the estimated regression 

model reported in Table 3 (Model I) is found to be positive and significant suggesting that useful 

information on the future variability of returns is embedded in actual option prices. 

Additional information is conveyed by the difference between lagged estimates of implied 

volatility and realized volatility over the preceding expiration month. Model II reports the negative 

and significant coefficient associated with this differential, which if viewed as the forecasting error, 

suggests that changes in implied volatility are embedded in an ongoing adaptive process towards the 

observed variability of returns. As suggested by the additional coefficient estimate in Model III, 

actual volatility is also negatively related with average spot returns, indicating a tendency to increase 

during periods of falling prices and increasing returns. This result is consistent with evidence on 

leverage effects analyzed in Section 5. Whereas the relation between market conditions and realized 

volatility is found to be sample-independent, past deviations of implied volatility from historical 

levels have become irrelevant as they decreased in magnitude over the late 1990s. Neither the sign 
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nor the significance of the implied volatility index in forecasting the future level of market volatility 

seems to be altered. This evidence is inconsistent with results by Canina and Figlewski (1993) but in 

line with the conclusions by Day and Lewis (1992) and Lamoureux and Lastrapes (1993), 

suggesting that implied volatility is significantly informative on the future variability of returns. 

 
7. Risk factors and the predictability of implied volatility 

 

In light of evidence on the stochastic dynamics of implied volatility and its relationship with 

leverage effects, it is important to examine the issue of whether changes in implied volatility are 

predictable. Based on regression analysis, there is evidence by Harvey and Whaley (1992) that there 

are predictable variations in daily fluctuations of implied volatility, the statistical significance of 

which does not translate into economically profitable trading strategies. When predictability can be 

assessed on the basis of its relationship with various risk factors, a structural analysis of implied 

volatility can be made drawing upon Merton’s (1973b) approach to intertemporal portfolio theory 

and the intertemporal capital asset pricing model. In pricing securities in the dynamic market 

framework, there are additional sources of risk stemming from uncertainties caused by shifts in the 

investment opportunity set. Equity risk is function of the stochastic investment opportunity set, i.e., 

changes in expected returns and covariance of returns related to state variables such as the expected 

inflation rate, the expected productivity of capital and proxies of the level of uncertainty about 

economic activity. 

Assuming that the state variables describing the instantaneous investment opportunities 

follow a vector H of Markov diffusion process with drift Hµ and volatility Hσ vector components 

HHH dzdtdH σµ += ,      (13) 

with Hdz denoting the standard Wiener process. The dynamics of the pricing kernel k such 

that 0)]([ =kSdE , can also be described by a diffusion process that is a linear function of the state 

variables dynamics 
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kf dzHHrkdk )()( ζ−−= ,     (14) 

where )(Hrf is the instantaneously riskless rate, )(Hζ is the risk premium per unit of covariance 

with the pricing kernel. Recognizing the asset volatility as Sσ  and the correlation with the pricing 

kernel according to kSSk dzdzdt =ρ , the expected returns can be expressed as8 

[ ] dtHdtHrdtSdSE SSkfS σρζµ )()( +=≡     (15) 

When the pricing kernel is perfectly correlated with the market portfolio returns, the simple CAPM 

ensues. The ICAPM derives from the expression of the pricing kernel innovations as a linear 

function of market returns and stochastic changes in the opportunity set so that covariances with the 

state variables also matter in the definition of systematic risk. Risk premia are thus determined 

according to a multi-beta intertemporal capital asset-pricing model. As noted by Harvey and Whaley 

(1992), when implied volatility follows a random walk, its stochastic changes should be orthogonal 

to any set of information variables, which includes innovations in the state variables under the 

present intertemporal setting.9 Whether fluctuations in implied volatility account for changes in the 

stochastic investment opportunity set is essentially an empirical issue. Consistent with the 

assumptions underlying the ICAPM, implied volatility can be expressed as a function of the vector 

of stochastic state variables 

)(Hvv ≡    (16) 

The vector of state variables includes in the present study, proxies for uncertainty in the 

domestic real economy and the international financial economy. The leading diffusion index D , 

which is compiled by the Economic and Social Research Institute in the Japanese Cabinet Office 

aggregates in percentage terms, the directions of change in a selection of economic time series to 

anticipate turning points in the business cycle. It assesses the extent to which business fluctuations 

spread across the economic sectors, generally approaching zero to signal recessions and 100 to 

anticipate economic recoveries. As a measure of the dispersion of change across economic 

indicators, it is widely believed to contain useful information on future structural changes in the real 
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economy. It averages a value of 50 (no turning points) over the sample period but as exhibited in 

Figure 5, its behavior over time reflects cyclical patterns of anticipated fluctuations in business 

conditions. Its decline in the early 1990s is consistent with the beginning of the prolonged economic 

recession as it indicates the predominance of declining industries. Judging from the observed 

patterns, the leading diffusion index is likely to be negatively correlated with estimates of implied 

volatility. 

The variations in the international financial investment opportunity set are, as noted by 

Brennan, Wang and Xia (2001), not necessarily related to changes in the domestic output. 

Uncertainty relates to unanticipated fluctuations in exchange rates, monetary and fiscal impulses, 

and inflationary and deflationary pressures, among others. These additional sources of risk in the 

international financial economy are assessed hereafter using the volatility of the Morgan Stanley 

Capital International world price index. An increase in the volatility of the international equity index 

can signal investors’ perceptions of higher levels of uncertainty in international financial markets 

that translates into an increase in implied volatility. The graphical evidence from Figure 5 suggests 

that implied volatility tends to move in tandem with the usually lower levels of MSCI world index 

volatility. 

To the extent that the relation between implied volatility in the Japanese options market 

and the stochastic dynamics of these state variables is linear, the implied volatility function 

expressed by equation (16) in an intertemporal setting is amenable to econometric estimation 

according to a two-factor model of risk components10 

mmMMmDm uDv +++= −− 1,10 σπππ ,   (17) 

where v  is the ex ante estimate of implied volatility with one-month remaining to maturity, whereas 

u represents measurement and estimation errors. Whereas the implied volatility index is represented 

by the point estimate at the beginning of expiration months, the standard deviation of MSCI world 

index is calculated using log returns until maturity. The test results of regression model (17) reported 

in Table 4 Model I indicate that the estimates of uncertainty underlying the real and financial 
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economic conditions contain useful information on investors’ expectations of implied volatility. The 

slope coefficients take the expected signs and are statistically significant, thereby confirming the 

evidence from the scatter diagrams and simple regression lines in Figure 5. There is evidence that 

future levels of implied volatility are negatively related to the leading diffusion index level signaling 

shifts in the prospects about the domestic real economy. Implied volatility is also found to increase 

significantly with rising levels of volatility in international equity markets. 

There are however signs of serial correlation in the residuals suggesting that implied 

volatility is not fully reflective of the dynamics of the stochastic investment opportunity set 

described by these proxies of uncertainty in the real and financial economy. The estimation of an 

autoregressive AR(1) model using nonlinear regression techniques implies Model II results, which 

satisfy the stationarity condition as the inverted roots lie inside the unit circle. The expected signs 

and statistical significance of the regression coefficients are confirmed. As a test of model stability, 

the AR model is estimated with respect to two non-overlapping sample periods. There is evidence of 

an increasing sensitivity of implied volatility to perceptions of uncertainty over the Japanese real 

economic conditions. The prospects over the international financial economy continue to play a 

significant role irrespective of sample periods. These results constitute evidence that expectations of 

volatility in options markets are not only function of perceptions of uncertainty about the domestic 

economy but over the international financial economy as well. 

 
8. Conclusions 

 

This study made an attempt to examine the relationship between market volatility and its estimates 

implicit in options prices and provides new evidence on many issues. First, a new benchmark of 

implied volatility in the Japanese market was constructed following the methodology of the S&P 

100 implied volatility index. The Nikkei 225 implied volatility index allows for the comparison of 

the level of implied volatility across international markets. There is a tendency for closer alignment 

of implied volatility levels over the late 1990s despite sharp contrasts between the booming US 
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economy and slumping Japanese economy. Second, the new evidence on the stochastic dynamics of 

implied volatility sheds lights on options investors’ formation of expectations about long-term levels 

and short-term movements in stock market volatility. Convergence towards the time-varying 

long-run volatility component occurs at slow rates in both the US and Japanese markets. But the 

dynamics of short-term convergence of implied volatility’s transitory component towards zero are 

inherently different across markets as it tends to occur in the US market at faster rates than in the 

Japanese market. 

Third, it is shown that using implied volatility in modeling the asymmetric behavior and 

clustering properties of market volatility implies significant improvements in model estimation. 

Implied volatility adds useful insights into the leverage effects as its inclusion into the conditional 

models of volatility explains part of the impact of bad news in Japanese markets and the entire 

impact in US markets. Fourth, there is evidence that though upwardly biased, ex ante implied 

volatility estimates contain useful information on future levels of realized volatility in the Japanese 

market. Fifth, the results indicate that volatility expectations in the Japanese options markets are 

function of uncertainty about the domestic real economy and international financial economy. 

Implied volatility is found to be an increasing function of the level of volatility in international 

equity markets and to be sensitive to potential shifts in the business cycle signaled by economic 

indicators of dispersion of changes such as the leading diffusion index. These results add an 

international perspective to the limited literature on the informational content of implied volatility in 

US markets. Whereas investors’ beliefs about future volatility are not necessarily based solely on the 

price history, further analyses of the importance of market sentiment, and the impact of 

non-quantifiable news on changing patterns of implied volatility are thus warranted. 
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Tables 
 

 
Table 1. Summary statistics and unit root test results 

Descriptive Statistics Unit root tests  
Mean Median Std. Dev. Skewness Kurtosis ADF 

statistic
Lag 

order 
LB(1)  LB(k)

Panel A Daily observations 
Nikkei 225 Price  20214.40 18975.10 5451.99  1.5490  5.1406 -2.156b 2 0.0055 

(0.941) 
0.6755
(0.984)

- Return -0.0003 -0.0004  0.0148  0.3494  6.8814 -41.531c 1 0.0000 
(0.995) 

0.9392
(0.967)

- Volatility index  0.2718  0.2633  0.0907  0.5750  4.1256 -6.548b 2 0.0123 
(0.912) 

6.458
(0.264)

S&P 100   Price  359.08  255.65  209.74  0.8354  2.2288 -1.917a 3 0.0019 
(0.965) 

1.4425
(0.920)

- Return  0.0005  0.0003  0.0101 -0.3711  8.0955 -39.485c 1 0.0288 
(0.865) 

5.0802
(0.406)

- Volatility index  0.1973  0.1863  0.0637  0.8300  3.7624 -4.167a 7 0.0007 
(0.978) 

0.0401
(1.000)

Panel B Monthly expirations 
VIX  -30-day Forward 0.2754  0.2654  0.0919  0.6724  3.6646 -4.405b 3 0.0198 

(0.888) 
5.9433
(0.919)

- Average  0.2722  0.2631  0.0833  0.2439  2.9852 -4.102b 0 0.8936 
(0.344) 

6.9319
(0.862)

Std. Dev. - Nikkei Spot  0.2166  0.1950  0.0949  1.2150  5.1522 -6.902b 0 0.0476 
(0.827) 

4.0825
(0.982)

- MSCI world index 0.1123 0.1003 0.0482 1.2493 4.8342 -4.811b 1 0.0174 
(0.895) 

13.091
(0.362)

Diffusion index 3.7778 3.9551 0.6140 -2.2172 12.0367 -4.270b 1 0.0005 
(0.981) 

11.217
(0.510)

Notes: The number of daily and monthly observations is 2953 and 144, respectively. ADF statistics refer to 

the augmented Dickey-Fuller results for unit root tests. The appropriate lag order is determined using 

Schwarz information criterion and additional lags are included to eliminate ARCH effects in the 

residuals. For level tests of daily series, MacKinnon 1% critical values for rejection of the unit root 

hypothesis are (a)  –3.967 for tests with intercept and trend terms, (b) –3.436 for tests with intercept, and 
(c) –2.567 for tests with neither term. For level tests of monthly series with intercept, MacKinnon 1, 5 

and 10% critical values for rejection of the unit root hypothesis are 3.477, -2.882 and –2.577, 

respectively. LB(k) refers to Ljung-Box test of serial correlation in the residuals. LM(k) is the 

Lagrange-multiplier test of heteroskedasticity up to order k. The tests are distributed as χ2(k) on the 

null, with k equal to 5 and 12 for daily and monthly series, respectively. Statistics between brackets 

represent probability values. For monthly expirations, standard deviations of returns on the Nikkei 225 

spot and MSCI world price index are annualized statistics. The leading diffusion index is expressed in 

logarithm. 
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 Table 2. Stochastic dynamics of implied volatility and leverage effects 
Panel A Component GARCH modeling of implied volatility 
 

0ϑ  1ϑ  ϖ  δ  γ  
1α  1β  

LB(10) LM(10) Adj. R2

Nikkei 225 0.003 
(0.047)

0.800 
(0.000) 

0.015 
(0.935)

0.998 
(0.000)

0.214 
(0.000)

-0.030
(0.161)

-0.857
(0.000)

8.163 
(0.613) 

0.311 
(0.979) 

0.863 

S&P 100 0.003 
(0.000)

0.867 
(0.000) 

0.000 
(0.003)

0.978 
(0.000)

0.053 
(0.209)

0.142 
(0.019)

0.687 
(0.000)

7.745 
(0.654) 

0.093 
(1.000) 

0.954 

Panel B Asymmetric GARCH modeling of return volatility 
TARCH 
models 0µ  0υ  1α  2α  1β  1γ  ξ  LB(12) LM(12) LogL 

Model I  
Nikkei 225 0.000 

(0.388)
0.000 

(0.000) 
0.023 

(0.057)
 0.901 

(0.000)
0.134 

(0.000)
 8.779 

(0.722) 
0.395 

(0.966) 
8579.09

S&P 100 0.000 
(0.027)

0.000 
(0.000) 

-0.053
(0.007)

0.064 
(0.006)

0.905 
(0.000)

0.129 
(0.000)

 19.309 
(0.081) 

0.602 
(0.842) 

9729.22

Model II  
Nikkei 225 0.000 

(0.962)
0.000 

(0.239) 
-0.037
(0.000)

 0.334 
(0.077)

0.165 
(0.000)

0.370 
(0.001)

8.357 
(0.757) 

0.966 
(0.479) 

8668.31

S&P 100a 0.001 
(0.000)

0.000 
(0.001) 

-0.029
(0.121)

0.039 
(0.068)

-0.359
(0.183)

0.056 
(0.123)

0.808 
(0.000)

19.636 
(0.074) 

0.816 
(0.634) 

9906.74

EGARCH 
models 0µ  0υ  1α  

 
1β  1γ  ξ  LB(12) LM(12) LogL 

Model I  
Nikkei 225 0.000 

(0.263)
-0.318 
(0.000) 

0.153 
(0.000)

 0.977 
(0.000)

-0.099
(0.000)

 9.453 
(0.664) 

0.471 
(0.933) 

8594.71

S&P 100 0.001 
(0.022)

-0.282 
(0.000) 

0.116 
(0.000)

 0.979 
(0.000)

-0.084
(0.000)

 19.188 
(0.084) 

0.539 
(0.890) 

9738.41

Model II  
Nikkei 225 0.000 

(0.367)
-0.432 
(0.005) 

0.133 
(0.000)

 0.797 
(0.000)

-0.146
(0.000)

0.174 
(0.070)

9.895 
(0.625) 

0.809 
(0.641) 

8630.49

S&P 100b 0.001 
(0.000)

2.808 
(0.000) 

-0.063
(0.153)

 -0.523
(0.042)

-0.028
(0.471)

1.954 
(0.000)

20.128 
(0.065) 

0.736 
(0.717) 

9924.12

Notes: Component GARCH(1,1) model estimation using Bollerslev-Wooldrige robust standard errors and 

covariance with lag order (7) determined using Schwartz information criterion. Model I refers to 

equations (9a) and (9b) which do not include implied volatility as independent variable in the 

conditional variance of TARCH ad EGARCH models, respectively. Model II includes implied 

volatility as regressor in the conditional variance equations (10a) and (10b). Model estimation using 

maximum likelihood ARCH (Marquardt) method and Bollerslev-Wooldridge robust standard errors & 

covariance. Model selection is based on the Schwartz information criterion and additional lags 

included in the mean equation to eliminate ARCH effects. a (b) Lag order of three (four) in the mean 

equation. LB(k) refers to Ljung-Box test of serial correlation in the residuals. LM(k) is the 

Lagrange-multiplier test of heteroskedasticity up to order k. The tests are distributed as χ2(k) on the 

null. LogL refers to Log Likelihood statistics. 
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Table 3. Realized volatility and the forecasting ability of the implied volatility index 

 
0λ  vλ  hv,λ  Sλ  LB(12) LM(12) Adj. R2

Model I 0.032 
(0.094) 

0.670
(0.000)

  14.944
(0.245)

0.723 
(0.727) 

0.416 

Model II 0.054 
(0.011) 

0.630
(0.000)

-0.179 
(0.025) 

 12.018
(0.444)

0.713 
(0.735) 

0.427 

Model III 0.038 
(0.059) 

0.671
(0.000)

-0.151 
(0.044) 

-7.881
(0.000)

15.104
(0.236)

0.989 
(0.463) 

0.491 

- Sub-period A 
1989/06~1995/06 

0.054 
(0.051) 

0.606
(0.000)

-0.169 
(0.098) 

-9.334
(0.002)

9.646
(0.647)

0.769 
(0.678) 

0.480 

- Sub-period B 
1995/07~2001/06 

-0.015 
(0.648) 

0.858
(0.000)

-0.061 
(0.612) 

-7.208
(0.002)

9.725
(0.640)

0.670 
(0.771) 

0.515 

Notes: Number of monthly observations is 144. Estimation of the regression model (12), 

where vλ , hv,λ  and Sλ denote the coefficient estimates associated with the independent 

variables mv , h
mmv 11 −− −σ and mr , respectively. LB(k) refers to Ljung-Box test of serial 

correlation in the residuals. LM(k) is the Lagrange-multiplier test of heteroskedasticity up 

to order k. The tests are distributed as χ2(k) on the null.  

 
Table 4. Structural analysis of implied volatility 

 
0π  Dπ  Mπ AR(1) Inverted 

AR Roots
LB(12) LM(12) Adj. R2

Model I 0.310 
(0.000) 

-0.037
(0.000)

0.947 
(0.000)

  72.815 
(0.000) 

0.887 
(0.562) 

0.355 

Model II 0.293 
(0.000) 

-0.026
(0.014)

0.743 
(0.000)

0.519 
(0.000)

0.52 10.358 
(0.499) 

1.490 
(0.138) 

0.529 

- Sub-period A 
1989/06~1995/06 

0.231 
(0.000) 

-0.017
(0.236)

1.040 
(0.000)

0.547 
(0.000)

0.55 9.812 
(0.547) 

1.187 
(0.321) 

0.571 

- Sub-period B 
1995/07~2001/06 

0.395 
(0.000) 

-0.045
(0.003)

0.507 
(0.001)

0.396 
(0.001)

0.40 16.116 
(0.137) 

0.935 
(0.521) 

0.477 

Notes: Estimation of the regression model (17) where Dπ and Mπ  represent the slope coefficients 

associated with past levels of the diffusion index, and of the standard deviation of MSCI 

world index, respectively. LB(k) refers to Ljung-Box test of serial correlation in the 

residuals. LM(k) is the Lagrange-multiplier test of heteroskedasticity up to order k. 

Probability values reported in brackets. For AR models, the regression statistics are 

based on the one-period ahead forecast errors. 

 
 



 28

Figures 
Figure 1. The behavior of Nikkei 225 spot and implied volatility index in Japanese and US markets 
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Figure 2. The time series of daily implied volatility index and return on Nikkei 225 stock index 
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Figure 3. Asymmetric news impact functions from conventional and implied volatility-based TARCH 

and EGARCH modeling of Nikkei 225 and S&P 100 stock index returns 
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Figure 4. The behavior of realized and implied volatilities over monthly Nikkei 225 options expirations 
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Figure 5. The implied volatility in Japanese options market and its relation with the diffusion index and 

the volatility of MSCI world price index 
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Footnotes 
                                                  
1  Nikkei 225 stock average futures are traded on the Singapore Exchange Derivatives Trading Division 

(formerly, on the Singapore International Monetary Exchange) since September 3, 1986, on Osaka 

Securities Exchange since September 3, 1988 and on Chicago Mercantile Exchange together with futures 

options since September 25, 1990. 
2 In the absence of closed-form solutions, simple approximations of implied volatility values from option 

premium can be made as in Corrado and Miller (1996) and Chambers and Nawalkha (2001), inter alia. 
3 This brief review of recent literature focuses on studies in implied volatility. A broader survey of 

research in option pricing is thus beyond its scope but reference is made to useful reviews of tests of 

option pricing models by Bates (1996) and trends in options research by Chance (1999). 
4 Additional empirical evidence by Jorion (1995) from currency options markets is indicative of higher 

forecasting ability of implied volatility over GARCH conditional volatility. 
5 These weighting schemes include inter alia, the equal weighting, the elasticity-based approach and the 

weighting on the basis of the value of vega or partial derivative with respect to volatility. The VIX 

methodology is closer to the latter scheme as it relies on at- and near–the-money options, which tend also 

to be the most liquid options. 
6 The expression of implied volatility in trading days rather than calendar days is consistent with 

empirical evidence in Davidson, Kim, Ors and Szakmary (2001) that volatility in financial markets is 

more directly related to trading days for a wide variety of underlying assets. 
7 The approach is based on the tacit assumption that investors’ expectations about volatility do not change 

significantly during trading sessions. Its implementation results in as few as 5 and 4 cases, where the 

opening and highest prices are used for call and put options, respectively. 
8 For further discussion on the mathematics and applications of the ICAPM, see Merton (1973b) and 

Breeden (1979), inter alia. 
9 The intertemporal approach is consistent with Black-Scholes option pricing, as the replication portfolio 

remains riskless over a short period of time when the option and underlying asset are subject to the same 

sources of uncertainty. 
10 The sensitivity of implied volatility to risk factors can be also examined within the theoretical 

framework of the arbitrage pricing model as in the study by Franks and Schwartz (1991) who regress 

average implied volatility on economic variables such as real interest rates, oil prices and exchange rates. 


