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Abstract

We consider a single product, periodic review inventory model with variable
capacity, random yield, and uncertain demand in a random environment. All
model parameters and distributions depend on environmental fluctuations. It is
assumed that the environmental process follows a discrete-time Markov chain.
The optimal inventory policy to minimize the total discounted expected cost
is derived via dynamic programming. For the finite-horizon model, we show
that the objective function is quasi-convex and that the structure of the optimal
policy is characterized by a single environmental-dependent critical number for
the initial inventory level at each period. Expressions for solving the critical
number and the optimal planned ordering are obtained. We further show that
the solution for the finite-horizon model converges to that of the infinite-horizon
model.

1 Introduction

Inventory systems are often subject to randomly changing exogenous environment-
conditions that affect the demand for the product, the supply, and the cost
structure.

But, the inventory control has long focused on managing certain specific
types of probability distributions in the demand for the products. Since many
models include a purely random component in the demand process, it will be
difficult to describe the inventory control of products sensitive to economic con-
ditions, products subject to obsolescence, and new products.

Inventory models operating in random environments are only scarcely con-
sidered in earlier papers. For example, Kalymon[11] considers a discrete-time
inventory purchasing model, in which the unit cost of the item is determined by
a Markov process, and the distribution of demand in each period depends on the
current cost. Feldman[7] models the demand environment as a continuous-time
Markov chain. Given the state of environment, the demand forms a compound-
Poisson process. But he studies only the stationary distribution of the inventory




position. Song and Zipkin[17] derive some basic characteristics of optimal poli-
cies and develop algorithms for computing them in a continuous-review inven-
tory model where the demand process is a Markov modulated Poisson process.
Ozekici and Parlar[14] consider infinite-horizon periodic-review inventory mod-
els with unreliable suppliers where the demand, the supply and cost parameters
change with respect to a randomly changing environment.

The effect of a randomly changing environment in other stochastic models
in operations research is discussed in following papers. Cinlar and Ozekici[?)]
studied a model in reliability and maintenance where the failure rates of the
components of a device depend on a semi-Markov environment process.

Eisen and Tainiter[6], Neuts[12], and Prabhu and Zhu[15] introduced a model
where the arrival and service rates depend on a randomly changing environment.

Another issue in this paper is that of supply process. As uncertainties in
supply process, we consider two categories that effect the products by the dif-
ferent ways, variable capacity and random yield. In a given time period, the
planned order is fully received if the order quantity is less than the realized
capacity. Otherwise, only part of it can be received. On the other hand, yield
is random due to the random proportion of defectives received in a lot. So,
in this paper, we use the stochastically proportional yield model, as defined in
Henig and Gerchak[8]. That is, the received quantity is the product of the order
quantity and a random fraction, called yield rate, which is independent of the
order quantity.

The earliest model of random supply variable was explored by Karlin[1].
Yano and Lee[20] gave several ways of modeling random yield. Henig and Ger-
chak[8] analyzed a periodic review inventory policy with stochastically propor-
tional yield. In the single period situation, they showed that there exists a
reorder point that does’nt depend on uncertain yield. In multi-period problem,
they showed the existence of a reorder point, nonorder-up-to optimal policy,
and convexity of the cost function. Ciarallo et al.[2] model capacity as ran-
dom variable with a known distribution function. In a periodic review model,
they show that the objective function is quasi-convex, and the optimal policy
is a base-stock policy where the order-up-to level is a constant. Further, Wang
and Gerchak[19] simultaneously incorporate variable capacity and stochastically
proportional yield in a periodic review setting. They show that the objective
function is quasi-convex, and the optimal policy is not an order-up-to type where
is characterized by a single critical number at each period.

In this paper, we introduce a periodic review inventory model that incor-
porates random environment, variable capacity, and stochastically proportional
vield. The supply and the demand processes depend on environmental fluctu-
ations of which process follows a discrete-time Markov chain. Furthermore, all
of the cost parameters are affected by the environmental process. The main ad-
vantage of the Markov-chain approach is that it provides a natural and flexible
framework for formulating various changes described above.

The purpose of this paper is to show that the objective function is quasi-
convex, and the structure of the optimal policy is characterized by a single
environmental-dependent critical number for the initial inventory level at each
period. We further show that the solution for the finite-horizon model converges
to that of the infinite-horizon model. In this paper, in particular, we focus on
the finite-horizon analysis, since it gives us concrete and realistic insights.

This paper is organized as follows: Section 2 presents the formulation of




the general problem as a dynamic programming model. Section 3, 4, and 5 pro-
vide analyses for the single-period, finite-horizon, and infinite-horizon problems,
respectively. The paper concludes with some final remarks in Section 6.

2 Assumption and Notation

Consider a single-product periodic-review inventory system for N-periods. Let
the period be numbered such that the final period is denoted as period 1, while
the first period is denoted as period N.

The state of the environment observed at the beginning of period n (n =
1,2,...,N) is represented by I, and we assume that I = {I,;n > 0} is a
Markov chain on a countable state space E with a given transition matrix P =
{P(i,j)} = {P[I—1 = j|I. = i]}. Let X,, denote the inventory level observed
at the beginning of period n. The basic assumption of this model is that the
cost-parameters, the demand and the supply distributions at any period depend
on the state of the environment at the beginning of that period. Therefore, the
decision maker observes both the inventory level and the environment state to
decide on the optimal order quantity which is delivered immediately.

If D, is the total demand during period n, then the demand process D =
{D,;n > 0} depends on the Markov chain I so that its conditional distribution
function is A;(z,) = P[D, < 2|, = i], with the probability density function
a;(zn). Also, we assume A;(0) = 0,a;(-) > 0. Let W, be a random variable
representing the uncertain capacity in period n. Its conditional distribution
function is F;(wy) = P[W,, < w,|I, =], with the probability density function
fi(wy). Also, we assume F;(0) = 0, f;(-) > 0. Let R,, be a random variable
representing the random yield in period n. Its conditional distribution function
is Q;(rn) = P[R, < rn|l, = i] , with the probability density function g¢;(r,)
and a mean v;. Also, we assume @;(0) = 0,¢;(-) >0

We consider the following four types of costs: if the environmental state is

;, a fixed ordering cost K; independent of the order quantity, a unit ordering
cost ¢;, a unit holding cost h; incurred at the end of period, and a unit shortage
cost p; incurred at the end of period. To motivate ordering, we assume that
v;p; > ¢; as in standard models. Also, we assume that unsatisfied demands are
fully backlogged.
Let U, (i, z,) be the order quantity if the environment is ¢ and the inventory
level is z,, at the beginning of period n. The admissibility condition requires
that Uy, (i, 2,) > 0 since we do not allow for discarding of any inventory without
satisfying demand. It is noted that, for any wu,, the inventory level X,, is a
Markov chain, where

Xn-1 =2y + Rpymin{u, (i, 2,), Wn} — Dy,

for n > 0. Figure 1 illustrates the behavior of the inventory level.

Now, let V;*(z,) be the minimum expected total discount cost of operating
for n-period with the state of the environment i and the initial inventory level
., under the best ordering decision is used at period n through period 1. Then,
a dynamic programming equation (DPE) for the problem can be given by

Vvio(xO) = 03




T Ui,

Ty

n n—1 n—2 2 1 0
Figure 1: The behavior of the inventory level

e Vi (x,) = IEZILI%{Kl(S(un) + G zp,un)}, n>0,i € E, (1)
where ) L
s =15 w20
and
G (zn,un) = ¢ /Oun wpdF;(w,) + /000 /O"n {L:”(:Un + rpwy) + Z P(i,j)

JEE

X / - VI (@ + Tty — zn)dAi(zn)}dFi(wn)in(rn)
0

+[1 = F;(un)] [ciun + / {L’:(Cﬂn + rpiy)
0
#a S0P0) [V e — A Q)|
JEE 0
(2)
with the expected holding and shortage cost function at period n

Ly = h /0 "= 2)dAi(zn) + i / " (o — )d Az

and the discount factor a per period. The first and second derivatives of L} (y)
are

L*y) = (hi+pi)Ai(y) — ps
Li"(y) = (hi+piai(y) >0



The decision variable in this model is u,, so (2) plays a central role to find
the optimal value w,.

We assume that all parameters and costs are nonnegative, and that all rele-
vant functions are differentiable.

3 Single-Period Analysis

In this section we analyze the single-period problem for the model introduced in
the last section. This analysis will provide important insights in understanding
the n-period analysis. We begin by rewriting (1) and (2) as

Vi) = glizf(l){Kié(Ul) + G (x1,u)} (3)
Gi(zi,u1) = ¢ /Ou1 w1dF;(wr) + /0°° /0“1 L}(zy + rywy)dF;(w)dQ;(ry)
+[1 — Fi(u1)] {ciul + /0 Lz1 (x1 + T1u1)in(7"1)} (4)

We first investigate the properties of (4) since it plays a central role in the
minimization in (3). We obtain the first two derivatives of (4) as follows:

M = [1 _Fi(ul)]{cmL/Oo r L (2, +r1u1)in(r1)} (5)

8“1 0
0*Gi (a1, ® o
% = [1-Fi(w)] / ri L (w1 4 ryug)dQi(r)
1 0

—fi(ul){ci + / T1L21($1 +T1U1)in(T1)} (6)
0
It should be noted that L!!(-) is increasing,

c; +vih; >0, (7)

lim {ci-l—/ rngl(xl +T1U1)in(7"1)}
0

U] —00

lim {ci—f—/ T1L21($1 +T1U1)in(T1)}
0

UL ——00

ci —vip; <O. (8)
For given 1, therefore, there exists a finite and unique solution such that

6+ / r L (o + 1) dQi(r) = 0 (9)
0

Let u; (x1) solve (9), then u; = u} (x1) satisfies the first-order condition for mini-

mizing (4). To satisfy the second-order conditions, notice that (6) is nonnegative
when

[1- Fi(u)] /Om PP L (g + ryun)dQi(r1)
> fi(ul){ci + /OOO r L (z + Tlul)in(Tl)} (10)

Because the left hand side of (10) is always positive, the inequality is always
satisfied when the right-hand side is nonpositive. Thus, if u; < u}(z1), then
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Figure 2: The form of G} (z1,u;)

0?Gl(z1,uy)/0u? > 0, hence G} (z1,u;) is convex and decreasing. For values
of uy close to ul(zy), still 9*°G}(z1,u1)/0u? > 0, hence G}(z1,u;) is convex.
But for large values of u; > ul(z1), 0*°G(z1,u1)/0u? < 0, hence G}(x1,u1)
is concave and increasing. The behavior of G}(z1,u;) for given z; is shown
graphically in Figure 2.
From these observations, it is clear that G} (z1,u;) is quasi-convex in u; and
attains its global minimum at u; = u}(z;) for given ;.
Now, differentiating (9) with respect to z1, we get
o0
ull (1) = 'y nli (o 4w @))dQir) (11)
Jo riLit (@ + ruf (21))dQi(ry)

So, when R; = 1, i.e., without random yield, we see from (11) that u/! (z;) = —1.
Then, the optimal policy is of an order-up-to type. But in case with random
vield, in general, u!!(z;) # —1. That is, the optimal policy is not of an order-
up-to type.
Next, we investigate the properties of G}(z1,u}(z1)). We obtain the first
two derivatives of G} (z1,ul(z1)) in z; as follows:

Gi' (21, u; (21)) 0G| (z1,u; (21)) /01 + 0G] (21, uj (21))/dus - uil (1)
8G3 (.Z'l, u% (131))/8.1'1

/ / L@y + ryws)dF;(wy)dQi(ry)
0 0

+[1= Rl @)] [ L8+ rud@)dQi) (12

0

G (1, ul(zy)) = / / L (zy + rywy)dF;(wy)dQ;(r)
o Jo

+[1= Rul@)] [ L (4 () (L ! (o) d@Qa(r)




oo pul(wr)
= / / LM (21 + riwr)dF; (w1)dQ;(r1) + [1 — Fy(u} (21))]
o Jo

X [/Oo L (zy + ryul (21))dQi(r1) - /Oo i L (21 + ryug (21))dQi(r)
0 0

_{/000 ri L (2 +T1U}($1))in(T1)}2]

//oOo T%Lgll(wl +T1U}(w1))in(T1) (13)

The second multiplicand of the second term in (13) is positive by the Cauchy-
Schwartz inequality. Then, we see that all the terms in (13) are positive, so
G (z1,ul(z1)) > 0. That is, G} (21, u} (21)) is convex in z;.

Now, if u; =0, (9) becomes

ci + v LM (z1) = 0. (14)

Let £ solve (14), that is,

- Ai_l [Pi - Cz‘/Vi]_
hi + pi
‘| is nonnegative and finite because 0 < [%] < 1 with (p; — ¢i/vi) >
0 and (p; — ¢;/vi) < (h; +pz) That is, if 21 = 1, then G}(z1,ul(z1)) =
G}(x1,0). Otherwise, G} (z1,ul(z1)) < G}(z1,0). Here, it should be noted that
the planned order quantity can not be negative. From (9) we see that u} (x1)
is decreasing in zy, since L!!() is increasing. So, if z; > 7y, then ul(z;) < 0.
That is, from the quasi-convexity of G}(z1,u1) in u1, the optimal order quantity
is 0. Furthermore, for x; < 2, there exists a unique solution such that

K; + Gj(z1,ui(21)) = G (21,0) (15)
Let s! solve (15), then it follows that

Ki+ G (z1,ul (1)) < G}Hx1,0) for 2, < i, (16)
K; + G (Z‘l, (Z‘l)) > Gll(l'l,O) for 811 <z < 7. (17)

The behavior of G} (z1,ul(z1)), Ki + G} (z1,ul(z1)), and G}(z1,0) is shown
graphically in Figure 3.

Based upon the state of the environment 7 and the initial inventory level x1,
the optimal policy can now be characterized in terms of the single critical number
st. For z1 < s}, the expected savings {G}(z1,0) — G} (z1,ul(z1))} gained by
ordering u!(x1) units can offset the fixed ordering cost K; provided one plans
to order. This follows from (16). On the other hand, for s} < z; < 77, it is not
worthwhile to order because the fixed ordering cost K; will offset the expected
savings {G}(z1,0) — G} (z1,ul(z1))} derived from ordering u}(z;) units. This
follows from (17). Since the planned order quantity < 0 for z; > 4, it is not
worthwhile to order, too.

Now the following summarizes the optimal policy for period 1 and the prop-

erty of G (z1,u1).
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Figure 3: The form of G}(z1,u} (7)), K; + G}(z1,ul(z1)), and G} (x,0)

(1) the optimal policy for period 1 is given by

1 : 1

. u;(xy) if 2 < s
Ll*(hl'l)_{ 01( ) if:L‘1>si’
2

where critical number s} is a solution to Eq.(15) and is the reorder point.

(2) For given z1,
decreasing in u; if uy < ul(zy),

GMx1,u1) is quasi-convex and { . O, .
i) isq increasing in uy  if ug > ul(z1).

Therefore, the expected cost V;!(z;) under the optimal policy is obtained by
substituting Us (i, z1) into (3):

1 _ Ki+ GH(x1,ul (1)) if 21 < sl
Vile) = { G}(x1,0) = L} (xy) if @y > s}, (18)
And its first two derivatives are
Gy, ul(xy)) if oy < s}
11 _ i 1, %, 1 1> 9
Ville) = { L (1) if 2, > 51 (19)
G/ (xy,ul(zy)) if 2y < st
"1 _ i 1,4; 1 1> 9
Vi) = { Zhiss Lrs o (20)

So, V} (1) is convex in z;.

4 n-Period Analysis

In this section, we analyze the n-period problem for the model introduced in
Section 2.



To use induction, we assume that the following properties hold for the (n—1)-
period problem, where the state of the environment is j € E.

V' Yzn_1) is convex. That is, V"' (z,_1) > 0.

VI @) = hy+a Y PG R +a® Y P k)P, D +

keE k,leE
a2 " P(j,k)P(k,1) - P(x,¢) P(¢),w)h, > 0
L im VT o) = —py—a > PG ke —o® Y P k)P(k, Dp
keE kleFRE

=" P, k)P(k, 1) - P(x, ) (¢, w)ps < 0

For an n-period problem, the DPE is given by (1). We investigate the

property of (2) since it plays a central role in the minimization in (1). We
obtain the first two derivatives of (2) as follows:

OGH (%, up,)
Ou,,

= [1 - F;(un)] {ci + /OO rn{LQ"(xn + Tnty)
0
+a Z P(i / V/”_l(a:n + Pty — zn)dAi(zn)}in(rn)]

JEE

(21)
PG (wp,un)

Ou?

n

— _ . > 2 /fn
-1 FZ(un)]/O r2{ L (o + )
+a Z P(i,j / V,”"—l(mn + Ty — zn)dAi(zn)}in(rn)

JEE

— fi(uy) [ci + / rn{L;”(xn + rptn)
0
+a X Pl) [V ot — )i aa) i)
JEE
(22)
It should be noted that L{*(-) and Vj'”_1 (+) are increasing,

Uy, —+ 00 0

+a T PG [V o+t = ) o) Q)|

JjEE

= citvi{hi+a Y Pli,j)hs+0* Y P(i, )P, k)i +
JEE jkEE



u? (z,) Up
Figure 4: The form of G} (%, uy)

4" P(i, )P k) - P(x, ) P(4,w)he > 0 (23)

lim I:Ci + / Tn{L;n(l'n + rnun)
0

4+ Z P(l,]) /OO ‘/jln_l(xn + TnUn — Zn)dAl(Z'ﬂ)}dQl(r"):l
JEE 0

=ci—vi{pita) Pl.ip; 0 3 Pli)PGkpe+
JEE 7, keE

o+ P, §) PG E) - P(x, ¢) P(ih,w)ps < 0. (24)
For given z,, therefore, there exists a finite and unique solution such that
ci + / rn{L;"(xn + rpuy) + @ Z P(i,j)
0 JEE
« / VI (@ ratin — 20)dAi(22) bdQi(ra) =0, (25)
0
Let u}*(z,) solve (25), then u,, = ul(z,) satisfies the first-order condition for

minimizing (2). To satisfy the second-order conditions, notice that (22) is non-
negative when

CE)] [ 2 { e+ s

= FRw)] [ {5 e+ o)

4 S PG) [V ot = 20)dAs() JdQi(r)
0

JEE

> filun) [ci + /000 rn{LQ"(xn + rpty)

10



+a Z P(i,j / V.’n—l(xn + Tty — zn)dAi(zn)}in(rn)].

JEE
(26)

Because the left hand side of (26) is always positive, the inequality is always
satisfied when the right-hand side is nonpositive. Thus, if u, < u?(z,), then
O?G? (T, un)/Ou? > 0, hence G (z,,un) is convex and decreasing. For values
of u,, close to u?(z,), still ?G?(z,,u,)/0u? > 0, hence G?(z,,u,) is convex.
But for large values of u,, > u?(z,), 0*G?(zn,u,)/0u < 0, hence G?(z,, un)
is concave and increasing. The behavior of G?(z,,u,) for given z,, is shown
graphically in Figure 4.

From these observations, it is clear that GI(x,,u,) is quasi-convex in u,
and attains its global minimum at u,, = u?*(z,) for given x,,.

Now, differentiating (25) with respect to z,, we get

U;n(mn) = _/Ooo Tn{L;m(wn‘i'rn“?(mn))
+aZP(z ])/ vime Yop +rpul(z,) — 2,)dA; (zn)}dQ (rn)

JjEE

// L”" (n + Toul (2,))

PG [V () - 2)dd () Qi)

JEE

< 0. (27)

So, when R,, =1, i.e., without random yield, we see from (27) that u/*(z,) =
—1. Then, the optimal policy is of an order-up-to type. But in case with
random yield, in general, u}"(z,) # —1. That is, the optimal policy is not of an
order-up-to type.

Next, we investigate the properties of GI'(zy, u?(x,)). We obtain the first
two derivatives of GI'(x,,ul’(z,)) in z, as follows:

= 0GH(wp,ul (2,))/0xn + OGT (0, ul () /Oy, - U™ ()
= 0G} (Tn,ui (Tn))/O0Tn

(zn
/ / L’":L'n+rnwn +aZPz1

JEE
X/o VimT (@n + rpwn — 2n)dA;(2 n)}sz(wn)in(Tn)
+[1 —F,(u:‘(a:n))]/o {L;"(l’n + rpug (T,))
103 Pij / Vin 4 ] () = 2)dAi(z) }dQi(rn)

JjEE
(28)

11



Hnn n
G (2,

ui (zn))
/ / L""xn+rnwn +OzZPZ]

JjEE

X/ V;'Im 1(11771 + rpWn — n)dAz( n)}dFl(wn)sz(T")
0

[1 — Fi(u; (xn))]

[z @ )

+a ¥ Pl / VI 4 ] () = 20)dAi(20) }AQa(r)

JjEE

AR LR AEn)
+aZPz]/ VI 4 ] () = 20)dAi(20) }AQa(ra)

JEE

- [/OOO rn{L;'"(xn +rpul(zn)) + Z P(i,j)

JjeE

/ V//n 1(xn F (@) — 2n)dA; (Zn)}dQ (Tn)] 2‘|

// L”" (n + rpui (z,))

+a 3 P, / VI il () = 2n)dAi(20) }AQi(r)
jekE

(29)

The second multiplicand of the second term in (29) is positive by the Cauchy-
Schwartz inequality. Then, we see that all the terms in (29) are positive, so
G!™(n,ul(x,)) > 0. That is, G (xn, ul(z,)) is convex in z,.

Now, if u, =0, (25) becomes

¢+ l/i{L (Tn) + Z P(i,j / Vj'"_l(xn — zn)dA,(zn)} =0. (30)

JEE

Let a5, solve (30). That is, if z, = 4, then GI'(zn,ul(x,)) = G?(z,,0).
Otherwise, G7'(zn,uf(r,)) < G7(wn,0). Here, 1t should be noted that the
planned order quantity can not be negative. From (25) we see that ul*(z,) is
decreasing in z,, since L"(-) and Vj'"_l(o) are increasing. So, if z,, > 2, then
ul(zy,) < 0. That is, from the quasi-convexity of G} (zn,u,) in u,, the optimal
order quantity is 0. Furthermore, for z,, < #,, there exists a unique solution
such that

K; + G}z, ul(z,)) = GT (24, 0) (31)

Let s? solve (31), then it follows that
K; + G} xn,ul(z,)) < G (x,,0) for z, < si (32)
K+ G xn,ul(x,)) > GHx,,0) for s7 <z, 5 - (33)

12
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Figure 5: The form of G} (zy, ul (z,)), K; + G (xn, ul(2,)), and GI(zn,0)

The behavior of G (x,,, ul(z,)), K; + GHxp,ul(z,)), and GF(x,,0) is shown
graphically in Figure 5.

Based upon the state of the environment ¢ and the initial inventory level x,,
the optimal policy can now be characterized in terms of the single critical number
s, For z, < s?, the expected savings {G}(zn,0) — G} (@n,ul’(z,))} gained by
ordering u?*(z,) units can offset the fixed ordering cost K; provided one plans
to order. This follows from (32). On the other hand, for s? < z,, < @, it is not
worthwhile to order because the fixed ordering cost K; will offset the expected
savings {G?(x,,0) — G?(zn, ul(x,))} derived from ordering u?(z,) units. This
follows from (33). Since the planned order quantity < 0 for z, > &, it is not
worthwhile to order, too.

Now the following summarizes the optimal policy for period n and the prop-
erty of G} (xn, uy).

(1) the optimal policy for period n is given by

. ul(x if ¢, <s®
Un (i 2n) = { Ol( g if xz > s:.l,
7

where critical number s} is a solution to Eq.(31) and is the reorder point.

(2) For given z,,,
decreasing in u, if u, < ul(z,),

G (2, u,) is quasi-convex and { . .2, .
i (@n,un) is g increasing in u,, if u, > ul(z,).

Therefore, the expected cost V;*(z,) under the optimal policy is obtained
by substituting U (i, z,) into (1):

K; + GMap,ul(zy)) if z,, < s?,
Vi'(z,) = G7(25,0) = Li(xn) + @3 ;cp P(1,5) (34)

X f0°° Vj"_l(mn — 2p)dAi(z,) if z, > s

13



IAnd its first two derivatives are

Vit (z,) = L (zn) + aZjeE P(i, ) (35)
X o VI N en — 2n)dAi(zn) if 2 > s}
Gi™ (@, ul (xn)) if x, <7
VI™(@,) = & Li™(xn)+adcp P, ) > 0. (36)
X [ VI (@ — 2n)dAi(zn)  if @, > 87
So, V*(x,) is convex in z,, where,
— 2
zhl)nooV (n) = h—i—aZP(z Jhj + ZP(z] Jk)hy +
JEE j,kEE
4" P, )P k) - P(x, ) P(3h,w)hy > 0
L dm  Vi'(za) = -pi —a) P(i,j)p;—a® Y P(i,j)P(,k)p, -
JEE J,k€E

_an_lzp(la])P(]ak)P(Xa'(/))P(waw)pw <0

5 Infinite-Horizon Analysis

In this section, we consider the case where n — oo for the model introduced in
section 1. For an infinite-horizon problem, the DPE, which is equivalent to (1),
can be written as

Vi(z) = IJ]ZIBI{K,(S(U) + Gi(z,u)}, (37)

where

Gi(z,u) = ci/ wdF;(w / / i(x +rw)

+a Z P(i,j / Vi(z +rw — z)dA,-(z)] dF;(w)dQ;(r)

JjEE

+[1 = F;(u)] {ciu—l- /000 [L,(a: + ru)
+a 3 PG, / Vi(a+ ru — 2)dAi(z )]in(r)} (38)

JjEE

Our purpose in this section is to show that the DPE V;”(z) of the finite-horizon
problem converges to a limit function V;(z), which satisfies (37), (38), and that
the reorder point s} of the finite-horizon problem also converges to s; where s;
specifies the optimal ordering policy for (37).

The following gives the proof.

Consider the convergence of the functional sequence {V;*(x)}52; defined as

1 — 3 Slu Cs uw S(w e AT+ rw AUY i\
Vi) = min{Kis) + /0 dF( )+/O /OLZ( + rw)dF; (w)dQs (r)

(2

+ [1 - Fi(u)] {c,-u + /0°° Li(z + ru)in(r)}

14



Vi (x) min{Kid(u) + ¢ /Ou wndF;(wy,) +/ / Ty + rpwy)

+a Z P(i,j / V."_l(a:n + rw, — zn)dA,(zn)] dF;(wy)dQ;(ry)

JEE

+[1 = F;(un)] {ciun + /000 [Lf(:rn + Pty
+a];5P i,] / Vi (@0 + roun — zn)dAi(zn)]in(rn)} (39)

Note that V;!(z) is continuous in z from (18) and so is V;*(x) for each n
recursively from (39). And, for any =z,

Vi) > V(@) >0,
therefore, {V;"(2)}52; is nondecreasing recursively from (39), i.e.,

OSVil(I)SViz(JJ)S ...... <V™Mz) < -
Since {V;*(z) — V"~ !(x)} > 0is also continuous in z for sufficiently large X > 0,
there exists a maximum value in the closed interval —X < x < X from the
'Weierstrass M test. Let the value be

n __ n n—1 —
=g (V@) =1 )k n =23,
then, since
Vit () = Vvir(z)| < aZP(z J mln{/ / / V' (z +rw — 2)
JjEE
-V Yo 4+ rw — 2)|dA; (2)dF;(w)dQ;(r)
/ / V" (z +ru — 2)
n—1
Vi (@ +ru— z)|dAi(z)in(r)},
bt < a) P(iL )b}, n=1,2,--.
JEE
Hence,

bp <a Y Pli,j)b) "t <a® Y P(i, 1) P, ja)bfy 2 <
J1€EE J1,J2€E

)

<ot > P(i, )P, g2) - Plin—2,dn-1)b), o =2,3,- -
Jiy s in—1€E
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Since > °°, b7 is convergent, the positive term series > oo, {V;" " (2) — V*(2)}
is uniformly convergent for z < | X]|.
Therefore, because

V(@) = Vil (@) +{V?(2) = Vi' (@)} + oo +{V"(2) = V"N (@)},

the functional sequence {V;"(x)}52, is uniformly convergent for z < |X|. Let
the limitting function be V;(x), then V;(z) is continuous because of its uniform
convergency, and

Vi) = min{Kid(w) + e, / wdFy(w / / S 4 rw)
S PG) [ Vilat rw - A ()] aF w)dQi()

JEE

+[1 = F;(u)] {c,-u + /00 [L,-(a: + ru)
0
+a§5P(z j)/ Vi(x + ru — 2)dA; (z)]dQ( )}

= IJIZHOl{KZ(S(U) +Gi(w,u)},

where

Gi(z,u) = ci/OuwdFi(w)—}—/Ooo/ou[Li(m—Frw)

+a Z P(i,j / Vi(z+rw — z)dAl(z)] dF;(w)dQ;(r)

JEE

+[1 = F;(u)] {ciu + /000 [Lz(x + ru)
+a Z P(i / Vi(z + ru — 2)dAi(z )]in(r)}

JjEE
Hence,
Vifz) = lim V()
Gi(z,u) = lim GY(z,u).

Since the functional sequence which is uniformly convergent and continuous is
partial differentiable with term by term,

0Gi(x,u) . OGY(w,u)
ou nll»n;o Ou
Hence,

ui(z) = nh_}rr;ou (z),

and let solve K; + G;(z,u;(x)) = Gi(z,0), then

s; = lim s}
n— oo
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6 Concluding Remarks

In this paper, we simultaneously consider an internal uncertainty and an ex-
ternal uncertainty. First, we analyze a finite-horizon periodic-review inventory
model that incorporates random environment, variable capacity, and stochasti-
cally proportional yield. We show that the objective function is quasi-convex,
and the structure of the optimal policy is characterized by a single environmental-
dependent critical number for the initial inventory level at each period. We
further show that the solution for the finite-horizon model converges to that of
the infinite-horizon model.
We discuss the limitation of our model as well as possible extensions.

Nonstationary transition probability: In this paper, the probability of
environment changing is decreasing in time(periods), since we assume that the
environment is Markov chain. But, there is a case that it is increasing in time,
like the obsolescence of products. To solve the contradiction, we must introduce
a nonstastionary transition probability.

Another policy: In our model, we consider the optimal policy that let the
order-up-to point be the decision variable. So, we next time consider the optimal
policy that let the order quantity, the reorder-point, and the order intervals be
the decision variable. Thereby, we decide the real optimal policy by comparing
them.

Endogenous factors: In this paper, we analyze the inventory model that
depends on the exogenous factors. So, we present the inventory model that
depends on the endogenous factors where the demand be influenced by the
order quantity for example.

Another uncertain element: We will introduce to our model the uncer-
tain leadtime, since these are depend on the environment.

Production and distribution: Recently, like KANBAN of TOYOTA,
zero-inventory policy becomes main topic. So, hereafter, we focus on the inven-
tory management to minimize the cost in the system combined with production
or distribution.
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