
 
 
 

Discussion Papers In Economics 
And Business 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Graduate School of Economics and 
Osaka School of International Public Policy (OSIPP) 

Osaka University, Toyonaka, Osaka 560-0043, JAPAN

 

The Monotonicity of Asset Prices 
with Changes in Risk 

 
 

Masamitsu Ohnishi Yusuke Osaki 
 

 

Discussion Paper 05-14 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
May 2005 

 

この研究は「大学院経済学研究科・経済学部記念事業」 

基金より援助を受けた、記して感謝する。 

 
Graduate School of Economics and 

Osaka School of International Public Policy (OSIPP) 
Osaka University, Toyonaka, Osaka 560-0043, JAPAN 

 

The Monotonicity of Asset Prices 
with Changes in Risk 

 
 

Masamitsu Ohnishi Yusuke Osaki 
 

 

Discussion Paper 05-14 



The Monotonicity of Asset Prices
with Changes in Risk∗

Masamitsu Ohnishi†‡

Graduate School of Economics, Osaka University
Daiwa Securities Chair, Graduate School of Economics, Kyoto University

Yusuke Osaki§

Graduate School of Economics, Osaka University

Abstract

The goal of this paper is the examination of the conditions on preferences
to guarantee the monotonicity of asset prices, when their returns change in
the sense of first– and second–order stochastic dominances.

JEL Classification: D81, G12.
Keywords: Asset Price; Comparative Statics; First–order Stochastic Domi-
nance; Second–order Stochastic Dominance.

∗The authous thank Marc Bremer and Katsushige Sawaki for their comments and suggestions.
Of course, all remaining errors in the paper are mine.

†Corresponding Author.
‡Addreess: Graduate School of Economics, Osaka University, 1–7 Machikaneyama–Machi, Toy-

onaka, Osaka 560–0043, Japan. E–mail: ohnishi@econ.osaka-u.ac.jp. Phone Number: +81–6–
6850–5234. Fax Number: +81–6–6850–5277

§E–mail: osakiyusuke@srv.econ.osaka-u.ac.jp



1 Introduction

Many studies have examined the effects of changes in risk on optimal risk–taking

behavior. Rothschild and Stiglitz (1971) and Fishburn and Porter (1976) obtained

two counterintuitive results in their seminal papers. Although risk averters improve

their utilities for first– and second–order changes in risk, these stochastic domi-

nances only lead to ambiguous comparative static results of optimal decisions for

risk averters. In order to resolve these results, the development of this topic has

followed two directions: restrictions on changes in risk and preferences.1 An end

of the research for the former direction is made by Gollier (1995) and that for the

latter direction is made by Hadar and Seo (1990). It is natural to question how

changes in risk affect asset prices. Gollier and Schlesinger (2002) gave the result for

asset prices corresponding to the former direction. They determined the stochastic

dominance that is an equivalent condition for asset prices to be monotone. This

stochastic dominance cannot be compared with first– and second–order stochastic

dominances. This means that asset prices do not necessarily have monotonicity when

their returns change in first– and second–order stochastic dominance shifts. Hence

the following question araises: What conditions on preferences must be imposed

to guarantee monotone changes in asset prices for first– and secon–order changes

in risk? This paper answers to this question. To obtain the answer, we only add

a natural condition from empirical and theoretical viewpoints to the conditions on

preferences for optimal risk–taking behavior: No additional condition is imposed for

first–order stochastic changes in risk and only prudence is required for second–order

stochastic changes in risk.2

2 Stochastic Dominance

As an introduction, we give the definition and properties of first– and second–order

stochastic dominances, and denote a Cumulative Distribution Function (CDF) over

1Gollier and Eeckhoudt (2000) provided a survey of this topic along these directions.
2Kimball (1990) showed that prudence households have positive precautionary savings. From

empirical observations, households save money for future uncertainty. This means that prudence
is justified from the descriptive viewpoints. See Kimball (1990) for further discussions.

1



a bounded support [a, b] as F (x) := P(x̃ ≤ x).

Definition 2.1.

• F (2) dominates F (1) in the sense of First–order Stochastic Dominance (FSD)

if F (x; 2) ≤ F (x; 1) holds for all x ∈ [a, b]. We denote this as F (2) ≥FSD F (1);

• F (2) dominates F (1) in the sense of Second–order Stochastic Dominance

(SSD) if
∫ x

a
F (t; 2)dt ≤ ∫ x

a
F (t; 1)dt holds for all x ∈ [a, b] and

∫ b

a
F (t; 2)dt =

∫ b

a
F (t; 1)dt. We denote this as F (2) ≥SSD F (1).

The following properties are well known in the theory of stochastic dominance.

Hence we give the following theorem without proofs. Readers may refer to Ch. 3 in

Gollier (2001) for detailed discussions.

Theorem 2.1.

• F (2) ≥FSD F (1), if and only if E[g(x̃(2))] ≥ E[g(x̃(1))] for every increasing

function g.

• F (2) ≥SSD F (1), if and only if E[g(x̃(2))] ≥ E[g(x̃(1))] for every concave

function g.

3 Comparative Statics

3.1 Equilibrium Asset Price

Let us consider a static version of a Lucas (1978) economy. The economy is a

two–date competitive and pure exchange economy with a representative investor.

The representative investor has an expected utility representation with a strictly in-

creasing, strictly concave and sufficiently smooth von Neumann–Morgenstern utility

function (utility function) u, which means that all of required higher order deriva-

tives are assumed to exist. The endowment of the investor is w units of a risk–free

asset and one unit of a risky asset. The risk–free asset is the numeraire and the gross

risk–free rate is normalized to one. The return on the risky asset is represented by

a random variable x̃ with a CDF F defined over a bounded support [a, b]. The price

of the risky asset is denoted as q.
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Following Gollier and Schlesinger (2002), the equilibrium asset price is given as

q =
E[x̃u′(z(x̃))]

E[u′(z(x̃))]
, (1)

where z(x) is the final wealth in equilibrium defined by z(x) := w + x

3.2 First–order Stochastic Dominance

We consider an economy i (= 1, 2) with a returen on a risky asset x̃i distributed

according to a CDF F (i), and suppose that F (2) dominates F (1) in the sense of

FSD: F (1) ≤FSD F (2). In this subsection, we examine what conditions on utility

functions guarantee q1 ≤ q2. First, we show the following lemma.

Lemma 3.1. Consider a random variable x̃i (i = 1, 2) with a CDF F (i), and suppose

that F (2) dominates F (1) in the sense of FSD: F (1) ≤FSD F (2). If relative risk

aversion defined by R(x) := −xu′′(x)/u′(x) is less than unity, then E[x̃1u
′(z(x̃1))] ≤

E[x̃2u
′(z(x̃2))]

Proof. Since the proof is similar to those of Lemma 1 in Hadar and Seo (1990) and

Proposition 9 in Gollier (2001), we provide only an intuition of the proof. We find a

condition on preference to guarantee that the function xu′(x) is increasing in x.

We obtain the next proposition.

Proposition 3.1. Consider an economy i (= 1, 2) with a risky asset return x̃i

distributed according to a CDF F (i), and suppose that F (2) dominates F (1) in the

sense of FSD. If relative risk aversion is less than unity, then q1 ≤ q2.

Proof. By the above lemma, we have that

E[x̃1u
′(z(x̃1))] ≤ E[x̃2u

′(z(x̃2))]. (2)

Since u′(z(x)) is a decreasing function of x, we have that

E[u′(z(x̃1))] ≥ E[u′(z(x̃2))]. (3)

Combining Eqs. (2) and (3), we obtain

q1 =
E[x̃1u

′(z(x̃1))]

E[u′(z(x̃1))]
≤ E[x̃2u

′(z(x̃2))]

E[u′(z(x̃2))]
= q2. (4)
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3.3 Second–order Stochastic Dominance

We consider an economy i (= 1, 2) with a return on a risky asset x̃i distributed

according to a CDF F (i), and suppose that F (2) dominates F (1) in the sense of

SSD: F (1) ≤SSD F (2). In this subsection, we examine what conditions on utility

functions guarantee q1 ≤ q2. The analysis is parallel to the previous subsection.

Lemma 3.2. Consider a random variable x̃i (i = 1, 2) with a CDF F (i) and suppose

that F (2) dominates F (1) in the sense of SSD: F (1) ≤SSD F (2). If

• absolute risk aversion defined byA(x) := −u′′(x)/u′(x) is a decreasing function

of x, and relative risk aversion is less then unity and increasing function of x;

and/or

• relative prudence defined by xP(x) := −xu′′′(x)/u′′(x) is positive and less than

2,

then E[x̃1u
′(z(x̃1))] ≤ E[x̃2u

′(z(x̃2))].

Proof. Since the proof is similar to those of Lemma 1 in Hadar and Seo (1990) and

Proposition 9 in Gollier (2001), we provide only an intuition of the proof. We find a

condition on preferences to guarantee that the function xu′(x) is a concave function

of x.

We obtain the next proposition.

Proposition 3.2. Consider an economy i (= 1, 2) with a risky asset return x̃i

distributed according to a CDF F (i). Suppose that F (2) dominates F (1) in the

sense of SSD and that the representative investor is prudent, i.e. u′′′(x) ≥ 0. If

• absolute risk aversion is a decreasing function, and relative risk aversion is less

then unity and an increasing function; and/or

• relative prudence is positive and less than 2,

then q1 ≤ q2.
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Proof. By the above lemma, we have that

E[x̃1u
′(z(x̃1))] ≤ E[x̃2u

′(z(x̃2))]. (5)

Since u′(z(x)) is a convex function of x,

E[u′(z(x̃1))] ≥ E[u′(z(x̃2))]. (6)

Combining Eqs. (5) and (6), we obtain

q1 =
E[x̃1u

′(z(x̃1))]

E[u′(z(x̃1))]
≤ E[x̃2u

′(z(x̃2))]

E[u′(z(x̃2))]
= q2. (7)

4 Concluding Remarks

We examine the conditions on preferences to guarantee the monotonicity of asset

prices, when their returns change in the sense of FSD and SSD. Our motivation

stems from the counterintuitive results obtained by Gollier and Schlesinger (2002):

the FSD and SSD changes in risk only yield ambiguous comparative static results

of asset prices. Whereas their approach to this result is the restrictions on changes

in risk, our approach introduces the restrictions on preferences. Compared with the

conditions on preferences to guarantee the unambiguous comparative static results

of optimal risk–taking behavior, an additional condition on preferences for asset

prices is prevalent from both empirical and theoretical viewpoints: risk aversion for

the FSD changes in risk and prudence for the SSD changes in risk.3

3Since risk aversion is necessary for the existence of optimal portfolio and equilibrium, it is not
explicitly appeared in conditions on preferences.
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