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Abstract

The outranking analysis has been frequently used to deal with the complex decisions involving qualitative

criteria and imprecise data. So far, various versions of ELECTRE have been proposed for ranking alternatives

in the outranking analysis. Among others, ELECTRE III has been widely used. A distillation procedure

using a qualification index is proposed to rank alternatives from the valued outranking relation. A weakness

of ELECTRE III, however, is to involve the arbitrariness in the selection of the discrimination threshold

function for the distillation procedure.

On the other hand, various variants of PROMETHEE are also proposed for the outranking analysis.

PROMETHEE intends to be simple and easy to understand. A deficiency of PROMETHEE is that it does

not take into account the preference intensity of alternatives in the in-preference flow and out-preference

flow for each alternative.

We propose a new preference ranking procedure based on eigenvector using the “weighted” in- and out-

preference flows of each alternative in the outranking analysis. The basic idea of the procedure proposed

here is that it should be better to outrank a “strong” alternative than a “weak” one and, conversely, it is

less serious to be outranked by a “strong” alternative than by “weak” one in a PROMETHEE context. It

has a completely different interpretation with the AHP (Analytic Hierarchy Process) since the components

of the valued outranking relation matrix are neither ratios nor reciprocal as in the AHP.

JEL Classification: C44, C61, C63
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1 Introduction

The outranking analysis has been frequently used to deal with the complex decisions involving qualitative criteria

and imprecise data (see, Bana e Costa, 1990, Roy,1996; Roy and Vanderpooten,1997; Roy and Vincke,1984;

Vincke,1992;Larichev and Olson,2001). So far, various versions of ELECTRE (ELimination Et Chix Traduisant

la REalité) have been proposed for ranking alternatives in the outranking analysis. Among others, ELECTRE

III is very familiar and has been widely used (see, Roy,1996; Rogers, Bruen and Maystre, 2000; Pomerol and

Romero, 2000). A distillation procedure using a qualification index is proposed to rank alternatives from the

valued outranking relation. A weakness of ELECTRE III, however, is to involve the arbitrariness in the selection

of the discrimination threshold function for the distillation procedure.

On the other hand, various variants of and PROMETHEE (Preference Ranking Organization METHod

for Enririching Evaluations) have also been widely used for the outranking analysis (Brans and Vincke, 1985;

Brans and Mareschal,1992; Brans,Vincke and Mareschal, 1986; Pomerol and Romero, 2000; Albadvi,2004).

PROMETHEE intends to be simple and easy to understand. PROMETHEE is based on the positive (out-)

and negative (in-) preference flows for each alternative in the valued outranking relation to derive the ranking

of alternatives. The positive flow is expressing how much an alternative is outranking the other ones, and

the negative flow how much it is outranked by the other ones. Based on the preference flows, PROMETHEE

I provides a partial preorder. PROMETHEE II is also introduced to obtain a complete preorder by using a

net flow, though it loses much information of preference relations (Brans, Vincke and Mareschal, 1986). A

deficiency of PROMETHEE is that it does not take into account the preference intensity of alternatives in the

in-preference flow and out-preference flow for each alternative.

We propose a new preference ranking procedure based on eigenvector using the “weighted” in- and out-

preference flows of each alternative in the outranking analysis. The basic idea of the procedure proposed here

is that it should be better to outrank a “strong” alternative than a “weak” one and, conversely, it is less serious

to be outranked by a “strong” alternative than by “weak” one in a PROMETHEE context. It has a completely

different interpretation with the AHP (Analytic Hierarchy Process) since the components of the outranking

relation matrix are neither ratios nor reciprocal as in the AHP (see Saaty,1990). Macharis et al (2004) discussed

the strengths and weaknesses of PROMETHEE and AHP. And recommendations are formulated to integrate

into PROMETHEE a number of useful AHP features, especially a tree-like structure similar to the one found

in AHP and the determination of weights. They, however, didn’t suggest the preference ranking based on the

eigenvector in a PROMETHEE context. Thus, this new procedure differs from the AHP and the approach

adopted by Macharis.

The rest of this paper is organized as follows: In the next section, we shall briefly review the PROMETHEE
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analysis with the simple preference flows. In section 3, we shall generalize the simple preference flows and

introduce the weighted preference flows in a PROMETHEE context. It is shown that the preference ranking

procedure based on the weighted preference flows yields the eigenvalue problem. A rationale of the eigenvalue

approach is provided in the theorem. Concluding remarks are given in the final section.

2 Preference Flows in a PROMETHEE Context

Let us consider the set A of n alternatives:

A = {a1,a2, . . . ,an}.

Let g1, g2, . . . , gm be m-criteria. Thus, each alternatives ai is characterized by a multiattribute outcome denoted

by a vector

(g1(ai), g2(ai), . . . , gm(ai)) .

The valued outranking relation is constructed from the notions of quasi-criterion and pseudo-criterion. In partic-

ular, PROMETHEE constructs it using a preference function which represents the decision maker’s preference

for an alternative ai with regard to aj . Several types of preference functions are considered for the criteria such

as usual criterion, quasi-criterion, criterion with linear preference, level criterion, pseudo-criterion with linear

preference and indifference area, and Gaussian criterion (see, Brans and Vincke, 1985 and Brans, Vincke and

Mareschal, 1986). To be more precise, let

Pk(ai,aj) = f [gk(ai)− gk(aj)]

be the preference function associated with the criterion gk(·). As f(·), six types of functions are proposed to

cover most of the cases in practical applications. Then, the valued outranking relation π(ai,aj) of ai over aj

is defined as the weighted sum of the preference functions Pk:

π(ai,aj) =
∑

k

Pk(ai,aj)wk,

where wk is a weight for criterion k. Thus, π(ai,aj) represents the intensity of the preference of ai over aj

for all the criteria: the closer to 1, the greater the preference. From a valued outranking relation, a valued

outranking graph with nodes signifying alternatives and arcs (ai,aj) having values π(ai,aj) is depicted.

Then, the preference out-flow and preference in-flow of each node ai are respectively defined by

φ+(ai) =
∑

j

π(ai,aj), (1)

φ−(ai) =
∑

j

π(aj ,ai). (2)

The higher the preference out-flow and the lower the preference in-flow, the better alternative.
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The out-flow and in-flow induce respectively the following complete preorders,

aiP
+aj if and only if φ+(ai) > φ+(aj),

aiI
+aj if and only if φ+(ai) = φ+(aj).

aiP
−aj if and only if φ−(ai) < φ−(aj),

aiI
−aj if and only if φ−(ai) = φ−(aj).

PROMETHEE I provides a partial preorder by considering the intersection of these two complete preorders:

(a) aiPIaj is defined by

1. φ+(ai) > φ+(aj) and φ−(ai) < φ−(aj) or

2. φ+(ai) > φ+(aj) and φ−(ai) = φ−(aj) or

3. φ+(ai) = φ+(aj) and φ−(ai) < φ−(aj)

(b) aiIIaj is defined by

1. φ+(ai) = φ+(aj) and φ−(ai) = φ−(aj)

(c) ai and aj are incomparable, otherwise.

Example 1. Consider the following outranking relation matrix.

Π =



a1 a2 a3 a4

a1 1 1 0 1

a2 0 1 1 0

a3 0 0 1 1

a4 0 0 0 1



a1��
��

a2��
��

a3��
��a4��

��π(a1,a4) = 1 π(a1,a2) = 1

π(a3,a4) = 1 π(a2,a3) = 1

PPPPPPq

������)

������)PPPPPPi

Figure 1. Outranking graph

In general, it is reasonable to assume the ranking:

a1 - a2 - a3 - a4.

In fact, ELECTRE III derives the same ranking as above. Employing PROMETHEE I, however, we have the

following ranking:

a1 - {a2,a3} - a4

We will revisit this example later.
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3 Weighted Preference Flows in a PROMETHEE context

We now introduce the “weighted” preference (out-) flows.

λψ+(ai) =
n∑

j=1

π(ai,aj)ψ+(aj), i = 1, 2, . . . , n, (3)

where λ is a constant and ψ+(aj) is the strength of preference of aj .

This implies that it should be better to outrank a “strong” alternative than a “weak” one.

Similarly, we define the weighted preference (in-) flows

λψ−(ai) =
n∑

j=1

π(aj ,ai)ψ−(aj), i = 1, 2, . . . , n. (4)

which implies that it is less serious to be outranked by a “strong” alternative than by “weak” one.

In what follows, with no loss of generality, let ψ+(ai) (ψ+(ai)) be normalized such that

max
j
ψ+(aj) = 1

(
max

j
ψ−(aj) = 1

)
.

Thus, using the weighted preference flows yields the eigenvalue problem:

Πψ+ = λmaxψ
+

(
ψ−Π = λmaxψ

−) , (5)

where Π = (π(ai,aj)) and ψ+ = (ψ+(ai)), (ψ− = (ψ−(ai))) , is the right (left) eigenvector associated with the

maximum eigenvector λmax of Π.

We have a well-known (see, for instance, Saaty, 1990, p. 170)

Lemma (Perron). Let Π be any positive square matrix. Then

1. Π has a real positive simple eigenvalue λmax whose modulus exceeds the moduli of all other eigenvalues.

2. The eigenvector of Π corresponding to λmax has positive components and is essentially (to within multi-

plication by a constant) unique.

In what follows, to assure that the eigenvectors ψ+ = (ψ+(ai)) and ψ− = (ψ−(ai)) corresponding to the

maximum eigenvalue of any valued outranking relation Π have positive components, for the sake of calculation,

we replace π(ai,aj) = 0 by π(ai,aj) = ε where ε is a sufficiently small positive number.

In the example 1, we have

ψ+ =
(
ψ+(ai)

)
= ( 1 0.06 0.003 0.0002 )

and

ψ− =
(
ψ−(ai)

)
= ( 0.0002 0.003 0.06 1 ),
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where ε = 0.0001.

The ranking is

a1 - a2 - a3 - a4

Consider a special outranking relation Π with π(ai,aj) = 1 or ε for any ai,aj .

Let us define, for any ai,aj ,

aiPaj if and only if π(ai,aj) = 1 and π(aj ,ai) = ε,

aiIaj if and only if π(ai,aj) = 1 and π(aj ,ai) = 1.

Then Π is referred to as a complete preorder if

(a) for any ai,aj , one and only one of the following relations holds: aiPaj , ajPai, or aiIaj .

(b) P is asymmetric and transitive

(c) I is an equivalent relation(i.e., reflexive,symmetric and transitive).

As is well-known, conditions (a),(b) and (c) hold if and only if there exists a value function v(aj) on a finite

set A which represents the decision maker’s preferences, that is, for any ai,aj ,

aiPaj if and only if v(ai) > v(aj),

aiIaj if and only if v(ai) = v(aj).

As a rationale of the eigenvector approach, we have

Theorem. If the outranking relation Π = (π(ai,aj)) is a complete preorder, ψ+(·) and − [ψ−(·)] are the

value functions, that is,

aiPaj if and only if ψ+(ai) > ψ+(aj),
(
ψ−(ai) < ψ−(aj)

)
,

aiIaj if and only if ψ+(ai) = ψ+(aj),
(
ψ−(ai) = ψ−(aj)

)
.

Proof : See Appendix.

Example 2. Consider the following special valued outranking relation matrix.



a1 a2 a3 · · · an

a1 1 θ θ · · · θ

a2 (1− θ) 1 θ · · · θ

a3 (1− θ) (1− θ) 1 · · · θ
...

...
...

...
. . .

...

an (1− θ) (1− θ) (1− θ) · · · 1


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ψ+ =
(
ψ+(ai)

)
=

(
1,
(

1− θ

θ

) 1
n

,

(
1− θ

θ

) 2
n

, . . . ,

(
1− θ

θ

)n−1
n

)

ψ− =
(
ψ−(ai)

)
=

((
1− θ

θ

)n−1
n

,

(
1− θ

θ

)n−2
n

, . . . ,

(
1− θ

θ

) 1
n

, 1

)
.

λmax = 1 + θ
(

1−θ
θ

) 1
n + θ

(
1−θ

θ

) 2
n + · · ·+ θ

(
1−θ

θ

)n−1
n

From this, the ranking is:

a1 → a2 → · · · → an, if
1
2
< θ < 1,

{a1,a2, . . . ,an}, if θ =
1
2
.

Example 3. (A valued outranking relation without discordance) (Table 3 in Brans et al. 1986).



a1 a2 a3 a4 a5 a6

a1 1 0.296 0.250 0.268 0.100 0.185

a2 0.462 1 0.389 0.333 0.296 0.500

a3 0.236 0.180 1 0.333 0.056 0.429

a4 0.399 0.505 0.305 1 0.223 0.212

a5 0.444 0.515 0.487 0.380 1 0.448

a6 0.286 0.399 0.250 0.432 0.133 1



We get

ψ+ =
(
ψ+(ai)

)
= ( 0.533 0.873 0.593 0.763 1.000 0.704 ),

and

ψ− =
(
ψ−(ai)

)
= ( 0.984 1.000 0.894 0.953 0.498 0.978 ).

From this, the partial preorder is given by:

a2

a5 -

�
�

�3

Q
Q

Qs

a3 - a1

a4 - a6
Q

Q
QQs

This is the same result as PROMETHEE I.
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Though, when constructing the outranking relations, PROMETHEE does not take discordance into account

(see Keyser and Peeters, 1996), since the concept of discordance plays the important role in the outranking

analysis, let us consider the outranking relation involving the discordance index.

Example 4. (A valued outranking relation with discordance)

criteria C1 C2 C3 C4

weight (wi) 0.3 0.3 0.3 0.1

alternatives a1 15 25 40 20

a2 10 20 30 70

a3 8 15 25 130

a4 5 10 20 90

Let threshold values pi (preference), qi (indifference) and vi (veto) of each criterion Ci be:

C1 C2 C3 C4

pi 1 1 1 1

qi 0 0 0 0

vi 100 100 100 100

Then a valued outranking relation is:



a1 a2 a3 a4

a1 1 0.9 ε 0.9

a2 0.1 1 0.9 0.9

a3 0.095 0.1 1 1.0

a4 0.086 0.1 ε 1



We have

ψ+ =
(
ψ+(ai)

)
= ( 1.000 0.760 0.422 0.189 )

and

ψ− =
(
ψ−(ai)

)
= ( 0.183 0.353 0.372 1.000 )

Thus, the ranking by the eigenvector procedure is:

a1 - a2 - a3 - a4

On the other hand, the ranking by PROMETHEE I is:
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a1 -

a2
HHj

a3 ��*

a4

We employed the distillation method in ELECTRE III in which a discrimination threshold function is set at

the following:

s(λ) = 0.3− 0.15λ.

Then, we have

a1 - a2 - a3 - a4

which is the same as the eigenvector procedure.

4 Concluding Remarks

We have proposed a new eigenvector procedure based on the weighted preference in-flows and out-flows in

the outranking analysis. The eigenvector procedure is easy to understand and calculate. Various numerical

examples suggest that PROMETHEE I, ELECTRE III and the eigenvector procedure have the same or almost

the same results in valued outranking relations without discordance and that the eigenvector procedure gives

results that are closer to ELECTRE III than PROMETHEE in valued outranking relations with discordance.

However, further properties specifying the strengths and weaknesses of the eigenvector procedure remain to be

explored.

Appendix

Proof of Theorem:

From (3), we have for any ai, aj ,

λmax

`
ψ+(ai)− ψ+(aj)

´
=

nX
k=1

(π(ai,ak)− π(aj ,ak))ψ+(ak) (6)

Note that, for any ai, aj , one and only one of (i) aiPaj or (ii) ajPai or (iii) aiIaj holds.

We shall prove, if aiPaj , then ψ+(ai) > ψ+(aj).

From aiPaj , we get

π(ai,aj) = 1 and π(aj ,ai) = ε (7)

It follows from the reflexivity of I that

π(ai,ai) = 1 and π(aj ,aj) = 1. (8)
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From (7) and (8), we have

π(ai,aj) = π(aj ,aj), (9)

π(ai,ai) > π(aj ,ai). (10)

For any ak(k 6= i, j; k = 1, 2, . . . , n), we have either ajPak or akPaj or ajIak exclusively.

(a) If ajPak, then aiPak as P is transitive. That is,

π(ai,ak) = π(aj ,ak) = 1. (11)

(b) If akPaj ,then

π(aj ,ak) = ε. (12)

Since π(ai,ak) ≥ ε, we have from (12)

π(ai,ak) ≥ π(aj ,ak) = ε. (13)

(c) If ajIak, then aiPak. Thus, we have

π(ai,ak) = π(aj ,ak) = 1. (14)

From (9), (10), (11), (13) and (14), we have

π(ai,ak) ≥ π(aj ,ak), k = 1, 2, . . . , n, (15)

and

π(ai,ai) > π(aj ,ai). (16)

Since, by Lemma, λmax > 0 and ψ+(ak) > 0, k = 1, 2, . . . , n, it follows from (6),(15) and (16) that

ψ+(ai) > ψ+(aj).

Thus, it is shown that

if aiPaj , then ψ+(ai) > ψ+(aj) (17)

Similarly, we have

if ajPai, then ψ+(aj) > ψ+(ai) (18)

Finally, let us assume (iii) aiIaj . It follows that

π(ai,aj) = π(aj ,aj) = 1, (19)

π(ai,ai) = π(aj ,ai) = 1. (20)

For any ak, (k 6= i, j; k = 1, 2, . . . , n), we have either ajPak or akPaj or ajIak exclusively.

(a) If ajPak then aiPak. Therefore,

π(ai,ak) = π(aj ,ak) = 1. (21)
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(b) If akPaj , then akPai. Thus

π(ai,ak) = π(aj ,ak) = ε. (22)

(c) If ajIak, then aiIak by the transitivity of I. Thus we have

π(ai,ak) = π(aj ,ak) = 1. (23)

From (19) through (23) we have

π(ai,ak) = π(aj ,ak), k = 1, 2, . . . , n.

It follows from (6) that

if aiIaj , then ψ+(ai) = ψ+(aj). (24)

Since, for any ai, aj , one and only one of the following three cases; aiPaj or ajPai or aiIaj holds, we have

aiPaj if and only if ψ+(ai) > ψ+(aj),

aiIaj if and only if ψ+(ai) = ψ+(aj).

In a similarly way, we have

aiPaj if and only if ψ−(ai) < ψ−(aj),

aiIaj if and only if ψ−(ai) = ψ−(aj).

which ends the proof.
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