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STOCK MARKET VOLATILITY AND THE FORECASTING ACCURACY 

OF IMPLIED VOLATILITY INDICES 
 
 
 
 
 
 
 
 

ABSTRACT 
 

This study develops a new model-free benchmark of implied volatility for 
the Japanese stock market similar in construction to the new VIX based on 
the S&P 500 index. It also examines the stochastic dynamics of the implied 
volatility index and its relationship with realized volatility in both markets. 
There is evidence that implied volatility is governed by a long-memory 
process. Despite its upward bias, implied volatility is more reflective of 
changes in realized volatility than alternative GARCH models, which 
account for volatility persistence and the asymmetric impact of news. The 
implied volatility index is also found to be inclusive of some but not all 
information on future volatility contained in historical returns. However, its 
higher out-of sample performance provides further support to the rationale 
behind drawing inference about future stock market volatility based on the 
incremental information contained in options prices. 

 
 
 
 
 
 

INTRODUCTION 

According to Heisenberg uncertainty principle in quantum theory, it is not possible to 

measure with perfect accuracy the position and momentum of a particle simultaneously. 

This argument may apply with equal force to financial markets where the level and volatility 

of asset prices cannot be measured with the same precision. The daunting difficulties 

associated with this observation problem derive from the fact that these parameters are 

complementary and the measurement of one parameter with greater accuracy is likely to be 

accompanied with some loss in measurement precision of the other. Whereas information 

on stock price indices is being disseminated at increasingly higher data frequency, measures 
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of future volatility with comparable accuracy and frequency are rather hardly available. 

Assuming that the second moment of return distribution exists, it is possible to estimate 

volatility as the variance or standard deviation from the history of returns. However, the 

volatility implicit in option prices can provide an alternative measure of future return 

variability. One of the merits of this implied volatility approach is that it results in a 

time-series of observations that reconciles differences in data frequency, albeit not 

necessarily in accuracy, of price level and volatility. 

The construction of a time-series of implied volatility is important to enhance our 

understanding of how market volatility ebbs and flows in increasingly integrated financial 

markets. Stock market volatility constitutes indeed an essential ingredient not only in 

investment and risk-hedging but in market regulation and monetary policy-making as well. 

Market participants can view volatility quite differently and their anticipated reactions to 

economic events and the release of macroeconomic information may differ as well. The 

development of an implied volatility index is important for policymaking purposes insofar 

as it reveals the changing and perhaps stochastic beliefs of market participants. The 

importance of such measure of consensus expectations about short-term volatility for 

monetary policies is evident for instance, in the explicit reference by the Bank of England to 

the implied functions from options markets in its monetary policy meetings. There is 

evidence from Fornari (2004) that the implied volatility from swaption prices is responsive 

to macroeconomic announcements such as the release of US economic indicators. 

Furthermore, Neely (2005) shows that changes in the implied volatility from three-month 

eurodollar interest rates are associated with major events about monetary policy, stock 

markets and the real economy. Carr and Wu (2006) provide also evidence that the new VIX 

implied volatility index from S&P 500 option prices is reflective of the increasing 

uncertainty prior to monetary policy decisions about the Fed Fund target rate. 
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The new VIX index computed and disseminated by the Chicago Board of Options 

Exchange is a model-free benchmark in the sense that it does not depend on a particular 

option pricing model. This approach has the merit of avoiding measurement errors arising 

from model misspecification. This index aggregates information in the term structure of 

implied volatility and the nonlinear relationship with respect to exercise prices reflected by 

volatility smiles, sneers and smirks. However, the absence of implied volatility benchmarks 

for other international stock markets impedes the growth of international evidence on the 

usefulness of implied volatility for risk-hedging and policymaking purposes. It is the 

purpose of the present study to develop a new VIX benchmark for the Japanese stock market. 

The construction of this volatility benchmark is an acknowledgment of the fact that the 

Nikkei 225 index is the underlying asset of several financial derivatives traded, albeit under 

different contract specifications, on major Asia-Pacific derivatives markets.1 

This paper examines the stochastic dynamics of the forward-looking implied 

volatility index of Japanese and US equity markets. It assesses its relationship with realized 

volatility by addressing in particular, the classical question of whether the implied volatility 

index reveals incremental information beyond that contained in historical returns. It also 

examines the empirical question which naturally arises as to whether drawing inference 

about future stock market volatility based on implied volatility is justified by higher 

out-of-sample forecasting ability. Based on a novel measure of forecasting performance 

proposed by Blair, Poon and Granger (2001), this study assesses the forecasting ability of 

implied volatility indices relative to alternative GARCH models. Thus, in addition to the 

development of the new VIX index for the Japanese equity market, this study differs also 

                                                  
1 Futures on Nikkei 225 stock average are traded on three derivatives markets, namely the 

Singapore Exchange Derivatives Trading Division, formerly the Singapore International 

Monetary Exchange since September 3, 1986, on the Osaka Securities Exchange since September 

3, 1988 and on the Chicago Mercantile Exchange since September 25, 1990. 
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from the existing literature as it uses a sample period covering fifteen years of daily options 

prices, and spanning the Asian financial crisis in 1997, the Russian debt default and the 

Long-Term Capital Management (LTCM) crisis in 1998, the burst of the information 

technology bubble in 2000, the Latin American debt crisis in 2002 and the 1990s 

decade-long recession of the Japanese economy. 

The remainder of the paper is structured as follows. The next section presents a 

brief review of the literature on implied volatility. Section 3 examines the distributional 

properties of implied volatility and the underlying benchmark returns. Section 4 assesses the 

informational content of implied volatility by modelling its relationship with realized 

volatility. Section 5 examines the forecasting performance of implied volatility relative to 

GARCH models. Section 6 concludes the paper. 

2. REVIEW OF LITERATURE 

The literature on market volatility implicit in option premium seems to extend along several 

strands of studies. The first class of research explores various issues related to the numerical 

difficulties encountered in the determination of implied volatility. There are convergence 

problems which arise from the failure of the iterative process to equate the option’s market 

price with its theoretical premium and the absence of closed-form solutions to option 

pricing models. The literature examines the observed properties of implied volatility 

function and their implications for option pricing and proposes some nonlinear numerical 

approaches. There is evidence of ‘smile’ patterns in implied volatility functions based on 

Black-Scholes (1973) option pricing model, where deep-in-the-money or out-of-the-money 

options are associated with higher implied volatility than at-the-money options. Pena, Rubio 

and Serno (1999) attribute such systematic volatility smiles to transaction costs and find a 

significant inverse relationship between the degree of curvature and time remaining until 

expiration. As noted by Hentschel (2003), the implied volatility functions derived from 
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options away from the money are sensitive to various sources of measurement errors. 

Arguably however, the observed functions are inconsistent with Black-Scholes 

option pricing model, which assumes constant volatility that is independent of exercise 

prices and time. In order to address these inherent inconsistencies and recover unbiased 

estimates of implied volatility, approximation techniques have been advocated in several 

studies such as Corrado and Miller (1996) and Chambers and Nawalkha (2001). A 

“model-free” approach is also proposed by Britten-Jones and Neuberger (2000) who adjust 

arbitrary volatility processes to option prices, drawing upon the standard practice of fitting 

interest rate processes to bond prices. The modelling of implied volatility as function of 

exercise prices such as Ait-Sahalia and Lo (1998), can also be based on polynomial 

smoothing, interpolation or splines smoothing of the pricing function. Furthermore, the 

modelling of option prices under GARCH process by Duan, Gauthier and Simonato (1999), 

and Ritchken and Trevor (1999) is an attempt to capture the path-dependence of volatility 

and its negative correlation with return. 

It is also possible as in Hull and White (1987), and Heston (1993) inter alia, to 

substitute the constant volatility with the entire joint probability distribution of returns and 

changes in volatility. Furthermore, the modelling of stochastic volatility is found by Ball 

and Roma (1994), to be consistent with implied volatility smiles. However, this approach 

based on the assumption of volatility being a deterministic function of asset price and time 

faces difficulties of its own. Indeed, the dynamics of the market price of risk are hard to 

estimate. Furthermore, Dumas, Fleming and Whaley (1998) provide evidence that the 

predictive power and hedging performance of the deterministic volatility function are not 

higher than Black-Scholes implied volatility. It is also shown that the estimated 

deterministic function is itself unstable over time and Black-Scholes hedge-ratios are rather 

more reliable. 
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The second class of studies in the literature on implied volatility focuses on its 

relationship with realized volatility, its information content and significance for forecasting 

purposes.2 Day and Lewis (1992) provide evidence that volatility implied by S&P 100 index 

options contains useful information for forecasting market volatility. However, it is also 

found to be inefficient in the sense that the conditional volatility based on GARCH 

modeling contains incremental information beyond that reflected by implied volatility. 

Further evidence of inefficiency is provided by Lamoureux and Lastrapes (1993) using 

volatilities implicit in individual stock option prices. The empirical results from Canina and 

Figlewski (1993) are also suggestive of the absence of correlation between S&P 100 implied 

volatility and future volatility. In contrast, the empirical evidence, from Jorion (1995) and 

Amin and Ng (1997), indicates that implied volatility provides efficient, albeit biased, 

estimates of future volatility in foreign exchange markets. The implied volatility from S&P 

100 option prices is also found by Fleming (1998) to constitute despite its upward bias, a 

reliable estimate of future volatility. There is evidence that implied volatility is efficient 

with respect to its past forecast errors and that such errors are orthogonal to parameters 

usually embedded in ARCH models. 

Arguably, the assessment of the relationship between implied volatility and 

realized volatility is a joint test of the option pricing model and market efficiency. But, the 

difficulties in reconciling this body of conflicting evidence may also stem from various 

sources of measurement errors such as model misspecification and the failure to account for 

dividend payments. As noted by Christensen and Prabhala (1998), there are also “maturity 

mismatch” problems associated with early studies, which may arise from the assessment of 

the predictive power (one-day or week-ahead horizons) of implied volatilities calculated 

                                                  
2 An interesting review of the literature on volatility forecasting including studies on the predictive 

performance of implied volatility is provided by Poon and Granger (2003). 
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from options with much longer time remaining to expiration. Using monthly observations of 

non-overlapping volatility, they explain away part of the bias in S&P 100 implied volatility 

with regime shifts in options pricing around the October 1987 stock market crash. The 

empirical results suggest also that implied volatility is associated with higher predictive 

power than historical volatility. Using an index of implied volatility based on the S&P 100 

options, Blair, Poon and Taylor (2001) find also that implied volatility is more accurate for 

out-of-sample forecasting than past realized volatility. There is also evidence from Whaley 

(2000) that this implied volatility index is indicative of the extent of investor fear and stress, 

thereby reveals useful information about market sentiment. More recently, there is evidence 

from Giot (2005) that implied volatility indices contain useful information for Value-at-Risk 

modelling. 

In light of the widely documented errors in implied volatility estimation, it is 

important to reduce measurement errors and to take into account the term structure and 

nonlinear relation between implied volatility and exercise prices. The new implied volatility 

index, which provides an aggregate estimate of future volatility, is based on a model-free 

methodology in order to avoid misspecification problems. The next section briefly describes 

this model-free approach and examines its distributional properties in the Japanese and US 

equity markets. 

3. DISTRIBUTIONAL PROPERTIES OF IMPLIED VOLATILITY 

The new VIX index represents a model-free approximation of a thirty-day return variance 

swap rate.3 It is based on a hypothetical at-the-money option with fixed expiration and with 

exercise price equal to the futures on the underlying index. The model-free methodology is 

                                                  
3 Unlike this model-free new VIX index, the original CBOE-VIX index based on the OEX bid-ask 

quotes on S&P100 American options is calculated using Black-Scholes pricing model. Carr and 
Wu (2006) provide an insightful analysis of the rationale underlying the calculation of these 
indices and their major differences. 
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aimed at gathering information contained not only in the market prices of at-the-money or 

near-the-money options but in the volatility structure across the prices of a portfolio of 

in-the-money and out-of-the-money options as well. The implied volatility index is 

estimated by interpolating the implied volatilities from the nearest and next-term options, 

which are calculated as follows. 
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where iτ is the time expressed in minutes until the thi  maturity of near or next-term options, 

fr is the risk-free interest rate until expiration, F is the forward equity index determined 

from option prices and 0X is the exercise price immediately below F . For each strip 

of iN out of-the-money options, the exercise price jX of the thj option corresponds to a call 

if FX j > and a put otherwise. The spread between exercise prices jX∆ is equal to the 

average difference between the strike prices nearest to jX . For the highest (lowest) exercise 

price, jX∆ is equal to the difference between that exercise price and the next lower (higher) 

strike price. The closing price ( ).G  of each option is used to calculate its contribution 
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∆  to the implied volatility index. The contribution to implied volatility is an 

increasing function of the exercise price for puts and a decreasing function of the strike price 

of calls. The index uses the nearest and next-term expirations to span the fixed period of 30 

days to expiration. As expiration draws near, the rollover to the second and third contract 

months takes place with eight days remaining to maturity in order to avoid pricing errors in 

options with imminent expiration. The interpolation process of the nearest and next-term 

implied volatilities results in a single measure of implied volatility, which is annualized to 

obtain the new VIX index. 
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The sample period extends from January 1990 through December 2004, resulting 

in daily observations and spanning 180 options expirations. There is evidence from Figure 1, 

which describes the behavior of daily time-series of implied volatility for the S&P 500 and 

Nikkei 225 indices that expectations of the future level of volatility vary over time and 

across markets. There is a tendency for implied volatility in the US market to be lower than 

in the Japanese market and to converge since the late 1990s. The peaks in implied volatility 

for the Japanese market in the early 1990s coincide with the onset of the economic recession 

and heightened uncertainty induced by lingering bad debt problems and the appreciation of 

the yen, among other factors. The similarities in the behavior of these indices are also 

reflective of major economic events including the Asian financial crisis in 1997 and the 

Russian debt and LTCM crises in 1998, among others. The burst of the information 

technology bubble in 2000 is not associated with as significant an increase in implied 

volatility as that associated with the Latin America debt crisis in 2002. There is a tendency 

for implied volatilities to increase sharply but decrease rather on monotonous basis. This 

volatility persistence suggests that shocks to the volatility process are likely to be 

long-lived. 

The distributional moments reported in Table 1 indicate that the average sample 

implied volatility in the US market is indeed significantly lower than in the Japanese market. 

Expectations of higher Nikkei 225 volatility may be related to the stronger concerns over the 

Japanese economy during the post-bubble recession of the 1990s, which are reflected by 

negative stock market returns. It is noted however that though the means of implied 

volatilities are significantly different, their variances are not. The test of the null hypothesis 

for the equality of means indicates also that the magnitude of daily log changes in implied 

volatility are comparable across markets. In light of the distributional moments and 

normality tests, there is little evidence that stock market returns and volatility are normally 
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distributed. 

The autocorrelations for the levels of implied volatility reported in Table 2 remain 

positive, suggesting that the autocorrelation function decays exponentially to zero. This 

suggests that the dynamics of implied volatility are stochastic and likely to be governed by a 

long-memory process. In contrast, the evidence of negative autocorrelations for stock 

market returns and changes in daily implied volatility suggests that the autocorrelation 

functions are more likely to decay rather in oscillatory patterns. Also, the results of unit-root 

tests indicate that all time-series of stock market returns and volatility are found to be 

stationary. 

4. MODELLING THE RELATIONSHIP BETWEEN IMPLIED AND REALIZED VOLATILITIES 

The standard deviations of returns reported in Table 1 can be converted into annualized 

volatility estimates which are rather close to the sample averages of implied volatilities 

(19.40% against 19.88% for the S&P 500 index and 28.22% against 24.76% for the Nikkei 

225 index). In order to assess the significance of the long-term relationship between the 

forward-looking implied volatility index and actual volatility, an ex post estimate of realized 

volatility is calculated as the standard deviation of log returns. This measure is based on a 

rolling 30-day sample period, which is consistent with the fixed time-to-expiration of the 

new VIX index’s hypothetical option 

( )∑ =
−= t

t

T

s tstTtr rr
1

2
,

1
,σ      (1) 

where tT is the number of calendar days until maturity, str , is the return on a given day s until 

expiry, and ∑ =
= t

t

T

s stTt rr
1 ,

1 denotes the average return over the monthly sample period. For 

comparative purposes, this measure of realized volatility is annualized. 

These daily measures of realized volatility are plotted against implied volatility 

for the US and Japanese markets in Figures 2 and 3 respectively. Implied volatility does not 
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constitute a perfect forecast of realized volatility but the relationship between these ex ante 

and ex post measures of volatility tends to be positive. There is evidence from both stock 

markets that the relationship appears to weaken as the level of volatility increases. The 

conventional approach adopted by several studies that examine the significance of this 

relationship is to estimate the following linear regression model 

tittr ξσγγσ ++= 10,       (2) 

where tr ,σ  and itσ  denote the daily estimates of realized and implied volatility, respectively. 

Based on the sign and magnitude of the regression coefficients, it is possible to assess the 

extent of the informational content of implied volatility. In the case where 00 =γ  and 11 =γ , 

implied volatility is an unbiased forecast of realized volatility. It is also an efficient estimate 

of realized volatility if the residuals tξ are white noise. 

The estimation results reported in Table 3 are based on white 

heteroskedasticity-consistent standard errors under the efficiency hypothesis. The slope 

coefficient 1γ is found to be positive and significant suggesting that implied volatility 

contains some information about future volatility. However, it seems to be a biased estimate 

of subsequent volatility since the F-test rejects the joint hypothesis that the intercept 0γ and 

slope 1γ are significantly different from zero and unity, respectively. There is also evidence 

of serially correlated residuals, which suggests that implied volatility does not constitute an 

efficient estimate of actual volatility. Although the relationship between implied and 

realized volatility remains positive, the extent of unbiasedness and efficiency differ across 

markets. The regression line lies below the o45  line characteristic of unbiased forecasts for 

US market, and it is rather flatter for the Japanese market. As noted by Christensen and 

Prabhala (1998), the negative intercept for the US market may be at least partially, induced 

by the errors-in-variables problem associated with the implied volatility index. 
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The positive relationship may be the artifact of the measurement process resulting 

in overlapping observations of volatility. The error terms tξ  are indeed likely to show signs 

of heteroskedasticity due to the serial dependence of the regression variables. In order to 

reduce measurement errors and inconsistent regression estimators from daily observations, 

the regression model is reexamined using nonoverlapping observations. The autoregressive 

process equation (3) which describes the behavior of monthly realized volatility includes 

implied volatility as an exogenous variable. 

ttiik ktrktr ξσγσγσ ++= ∑ − ,,,     (3) 

The two time-series of monthly measures of realized volatility until option expiry 

and implied volatility one-month ahead are obtained from all maturities of the S&P 500 and 

Nikkei 225 options from February 1990 to January 2005. The expiration dates differ across 

these options markets, but the sampling procedure results in 180 nonoverlapping 

observations for each volatility series. 

The estimation results for monthly expirations reported in Table 3 indicate that the 

inclusion of additional lags in order to correct for serial correlation in the residuals induce a 

marginal improvement of the explanatory power of the regression models. For both markets, 

the parameters 1γ for lagged values of realized volatility are positive but statistically 

insignificant whereas the iγ  coefficients for implied volatility are significant. These findings 

are consistent with early evidence that implied volatility does contain some useful 

information about subsequent volatility. 

However, the F-statistics for Wald tests reject the joint hypothesis that 0=kγ and 

1=iγ at the 1% level in the US market. Similar test results are obtained for the Japanese 

market at the 5% level with two lags of realized volatility included into the autoregressive 

process. Thus, there remains evidence of implied volatility being a biased forecast of future 
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volatility. Compared to the regression results with overlapping observations, there is 

however weaker evidence against the efficiency of implied volatility judging from the tests 

of serial correlation. 

5. Forecasting performance of implied volatility against alternative GARCH models 

5.1. In-sample forecasting performance 

The empirical results reported thus far suggest that implied volatility does contain some 

information about future volatility but it remains biased and to some extent inefficient. It is 

important at this point to determine whether alternative GARCH models of market volatility, 

which have the merit of capturing the clustering properties of market volatility and its 

persistence over time, do also contain useful information that is not reflected by implied 

volatility. The conditional mean and variance equations for the standard GARCH-in-mean 

model can be written as follows 

tttr εσλλ ++= −
2

110  

2
1

2
10

2
−− ++= ttt w σβεασ       (4) 

where the conditional mean, variance and error terms tε are conditional on the information 

set 1−ℑt available at time 1−t . In this standard GARCH-in-mean specification (model (1)), 

the conditional variance is positive definite and stationary when 0>β and 1<+ βα . The 

persistence of the volatility process increases as approaches unity. It is noted that the 

variance term is included as a measure of risk into the return generating process in order to 

account for possible risk premium in stock markets. 

Following Day and Lewis (1992), and Lamoureux and Lastrapes (1993), it is 

possible to assess the additional informational content of implied volatility by including 

implied variance into the conditional variance equation (model (2)). 

2
1,1

2
1

2
10

2
−−− +++= tittt w σπσβεασ     (5) 
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The test of significance of π provides evidence on whether implied volatility contains 

useful information on the dynamics of future volatility beyond that reflected by past 

volatility levels and innovations. In order to avoid underestimating the significance of 

implied volatility, a stronger test of information efficiency proposed by Amin and Ng (1997), 

can be performed by including both the contemporaneous and past implied variance into the 

conditional variance equation (model (3)) 

2
1,1

2
,0

2
1

2
10

2
−−− ++++= titittt w σπσπσβεασ     (6) 

The test of the informational content of implied volatility relative to GARCH modelling is 

straightforward in the sense that if the GARCH terms α and β  are both found to be 

statistically insignificant while 0π and ( )βαππ +−= 01 are, then implied volatility is 

sufficient to convey all past and current information about future volatility. 

In addition to volatility persistence, it is important given the growing literature on 

leverage effects, to account for the asymmetric response of volatility to negative news. The 

GARCH-in-mean model proposed by Glosten, Jagannathan and Runkle (1993) allows for 

the volatility dynamics to depend not only on the magnitude of innovations but on their sign 

as well. This is achieved by estimating the following conditional variance equation (model 

(4)). 

2
1

2
11

2
10

2
−−−− +++= ttttt dw σβεδεασ     (7) 

where 1−td is an indicator variable which equals unity when 01 <−tε and zero otherwise. 

Following this GJR approach, it is also possible to examine the hypothesis of whether 

implied volatility contains useful information beyond that conveyed by past returns by 

including past implied variance into the conditional variance equation (model (5)). 

2
1,1

2
1

2
11

2
10

2
−−−−− ++++= tittttt dw σπσβεδεασ    (8) 

The significance of 1π can be interpreted as evidence of the implied volatility conveying 
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useful information about future volatility beyond that contained in the history of stock 

returns even upon accounting for the asymmetric impact of shocks on the return-generating 

process. 

The five competing models differ only in their specification of the conditional 

variance. The models (2), (3) and (5) include implied volatility as explanatory variable in 

order to assess its informational content relative to referring to the standard GARCH-M 

model (1) and GJR model (4). Table 4 presents the estimation results of these models with 

daily sample observations using the quasi-maximum likelihood method. The GARCH terms 

for the standard model (1) are positive and significant except for the negative parameter 

α for the Japanese stock market index. The sum of α andβ parameters is close to unity, 

suggesting volatility clustering in both markets. There is however no evidence of a 

significant risk premium over the sample period. 

The parameter 1π associated with past implied volatility in model (2) is found to be 

positive and significant for both the US and Japanese markets. This evidence suggests that 

implied volatility provides incremental information about future volatility that is not 

contained in the history of returns as described by various GARCH-M models. The GARCH 

termsα and β  are statistically insignificant for the US market whereas the magnitude of the 

parameter β  decreases for the Japanese market. This evidence on information efficiency is 

consistent with the empirical findings by Day and Lewis (1992), Harvey and Whaley, 

(1992) and Lamoureux and Lastrapes (1993), inter alia. In order to avoid underestimating 

the significance of implied volatility, model (3) further includes the contemporaneous 

observations of implied variance as explanatory variable. The estimation results indicate 

that the parameter 0π for current implied variances is positive and significant but the 

parameter 1π for the lagged observations of implied variances becomes negative for both 

markets. It is interesting to note that GARCH effects remain significant in the presence of 
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past and contemporaneous implied volatility. These results suggest that implied volatility is 

reflective of some but not all information on future volatility contained in historical returns. 

There is evidence based on the sign and magnitude of theδ parameters in the 

estimation of model (4), which accounts for the asymmetric effects of bad news on market 

volatility, that the leverage effects are significant in the US stock market but insignificant 

for Japanese equity. The incorporation by model (5) of past implied variances as 

explanatory variable has again the effect of altering the significance of GARCH terms. The 

significant parameter 1π  for past implied volatility is indeed associated with lower degree of 

volatility persistence for both markets. However, the asymmetric effects of bad news are 

found to be significant in the presence of past implied volatility. These empirical results 

suggest that even after allowing for leverage effects, implied volatility does still reveal some 

useful information about future volatility that is not reflected by historical returns. It does 

not reflect all information contained in the historical series though. 

Judging from the estimates of the log-likelihood functions, it is the GARCH-M 

model (3) including past and current implied variances that performs better than alternative 

models for both markets. But among the estimation models, which do not include implied 

volatility, it is the GJR model accounting for potential leverage effects that performs 

marginally better than the standard GARCH-M model.4 

5.2. Out-of-sample forecasting performance 

The results reported so far imply within-sample forecasts which assume that parameters 

                                                  
4 The models of volatility dynamics were also estimated using monthly time-series for options 

expirations. The results, which are not reported here for the sake of brevity, are qualitatively 

similar to the estimation results from daily data, though the GJR models are no longer associated 

with an excess log-likelihood over GARCH-in-mean models for both the US and Japanese 

markets. This is possibly due to the lower monthly data frequency, which does not fully capture 

the impact of leverage effects on the volatility dynamics. 
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estimates are stable over time. The economic usefulness of the implied volatility index in 

forecasting future market volatility may be judged in light of out-of-sample tests of 

robustness. Furthermore, the forecasting performance of implied volatility can be assessed 

against alternative models describing volatility dynamics. With the focus being restricted to 

GARCH models where implied volatility is not included, it is the GJR model that is used for 

comparative purposes given its higher log-likelihood function relative to the standard 

GARCH-M model. It is noted that the forecasting performance of GARCH models may be 

affected when the underlying assumption of variance stationarity is violated. It can be also 

sensitive to small sample periods. Hence, the out-of-sample forecasting of volatility over the 

five-year period from 2000 to 2004 is performed using implied volatility as well as GJR 

model estimates over the entire 1990s decade. 

There is evidence from forecasts based on implied volatility and GJR models 

shown in Figures 4 and 5 for the US and Japanese markets respectively, that both forecast 

series represent close approximations of realized volatility. There is also a tendency for 

implied volatility in the US market to remain at levels above realized volatility. This result is 

consistent with evidence from Fleming (1998) that the implied volatility from S&P 100 

options is upwardly biased. The tendency for volatility in the US market since 2003 to 

remain below the 20% upper boundary is suggestive of regime switches in market volatility. 

The sharp increase in realized volatility associated with the Latin American debt crisis in 

2002 is also reflected in the forecast series, albeit with some time lag. This constitutes 

evidence that implied volatility is able to capture not only the impact of domestic shocks but 

the volatility spillover from international stock markets as well. 

Figure 6 shows the time-series of forecast errors relative to realized volatility, with 

positive errors indicating the overestimation of market volatility. There is evidence from 

both markets that the implied volatility and GJR forecasts fluctuate around zero, with a 
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more obvious upward bias for the US market since 2003. While the forecast errors are rather 

close for the US market, they seem to depart from each other for the Japanese series. The 

spread in forecast errors seems to be more significant when both series overestimate future 

volatility than when they underestimate it. Judging by the sharper increases in GJR forecasts, 

there is thus evidence that inference from GARCH models, which assume variance 

stationarity, are more sensitive to large deviations of stock returns from the long-run mean. 

In contrast, implied volatility seems to constitute a smoother forecast of future volatility. It 

is more reflective of patterns in realized volatility than the GJR conditional volatility model. 

In order to evaluate the predictive accuracy of implied volatility relative to GJR 

forecasts, it is possible to compute the proportion of explained variability P following Blair, 

Poon and Taylor (2001) 

( )
( )∑ −

∑ −
−= 2

,

2
,1

rtr

ttrP
σσ

νσ
      (9) 

where tν denotes the time-series of implied volatility or GJR forecasts depending on the  

model being used, and rσ represents the mean of realized volatility over the forecast period. 

This measure of predictive power estimates the sum of squared forecast errors relative to 

variations in actual volatility. It approaches unity when forecast errors are small and can 

take the negative sign when forecast errors have greater variability than actual volatility. 

The estimated P  measures of explained variability for the US market amount to 

0.566 for implied volatility and 0.520 for GJR forecasts. For the Japanese market however, 

these measures take the lower estimates of 0.297 for implied volatility and -0.040 for GJR 

forecasts. This negative P value suggests that inferences from the GJR model are likely to 

show more variability than the actual fluctuations of market volatility. This is not a desirable 

feature of a forecasting model, and it can be due to the stronger sensitivity of GJR modelling 

to large shocks to equilibrium returns. The lower P-values for the Japanese market relative 
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to the US estimates may be related to the stronger tendency for options mispricing following 

the inception of trading on Osaka Securities Exchange. The existence of arbitrage 

opportunities has the potential of introducing a degree of bias in implied volatility that 

ultimately affects its forecasting performance. Inference from GJR models based on the 

shorter estimation period from 1995 to1999 where both VIX indices tend to converge is 

associated with a lower P statistic of 0.462 for the US market but a positive estimate 0.038 

for the Japanese market. The discrepancies in predictive power may also result from 

structural shifts in the level of uncertainty associated with the Japanese economic recovery. 

Judging by the higher P measures of VIX indices relative to GJR models for both 

markets, the implied volatility index offers more accurate forecasts of future market 

volatility. This empirical evidence is also consistent with Blair, Poon and Taylor (2001) 

results based on the implied volatility from S&P 100 index options. Part of the explanation 

for the higher predictive performance of implied volatility may lie in, inter alia, the absence 

of restrictions on variance stationarity and the model-free methodological approach applied 

to aggregate expectations about future volatility. It is equally plausible that this evidence 

pertains to the forward-looking nature of implied volatility, the formation of expectations 

and the information efficiency of options markets. Addressing these issues is important as 

they relate to the determinants of implied volatility, but they lie beyond the scope of this 

paper. 

6. CONCLUSION 

The principal objective of this study was to examine from an international 

perspective, the stochastic properties and forecasting performance of stock market volatility 

implied in options prices. For this aim, we developed an index of implied volatility 

heretofore unavailable for the Japanese equity market. The Nikkei 225 implied volatility 

index was constructed following the methodology underlying the calculation of the new 
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VIX index for S&P 500 benchmark. These implied volatility indices are useful in providing 

a volatility measure with data frequency comparable to that of benchmark stock prices. This 

estimate of volatility may not be as accurate as the level of stock prices due to the 

complementary of these parameters. Such measurement problems are however akin to the 

difficulties in quantum mechanics of ascertaining with accuracy both the location and 

velocity of objects. 

The empirical analysis provided some insights into the stochastic dynamics and 

the relationship between implied volatility and realized volatility. Despite its upward bias, 

the implied volatility index is found to be reflective of changes in actual volatility. There is 

also evidence that implied volatility reveals some but not all information on future volatility 

contained in historical returns. The tests of out-of-sample performance indicate that implied 

volatility represents a smoother forecast of future volatility. This higher performance 

contrasts with inference from GARCH models, which assume variance stationarity and are 

more sensitive to large deviations of returns from the long-run mean. Judging from the 

measures of predictive power, the implied volatility index provides more accurate forecasts 

of future market volatility. 

The empirical evidence and the development of the new implied volatility index 

for the Japanese equity market have some bearing for market regulation, policy-making and 

risk-hedging decisions and open interesting avenues for future research. The implied 

volatility index can be helpful in examining the impact of the release of macroeconomic 

information on the dynamics of implied volatility using for instance, event-study 

methodology. These studies can contribute to a better understanding of market sentiment, 

investor confidence, and the perceptions by market participants of economic uncertainty. 

Drawing parallel with the leverage effects in stock market returns, future research may also 

explore the asymmetric effect of bad news on the implied volatility index. Furthermore, the 
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economic significance of implied volatility forecasts can be also assessed in the VaR context 

of risk-hedging. Finally, by providing a model-free measure of uncertainty, the implied 

volatility indices can throw light on the debate over what constitutes excessive market 

volatility. It can thereby benefit research on the impact of financial crises and help bring a 

broader perspective to the issues and controversies related to margin regulation and stock 

market volatility. 
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TABLES 
 

 
TABLE 1. Distributional properties of implied volatility and stock market returns  

S&P 500 series Nikkei 225 series  
Stock 

returns 
Implied 

volatility 
Log IV 

differences 
Stock 

returns 
Implied 

volatility 
Log VIX 

differences 
Mean 0.0003 0.1988 -0.0001 -0.0003 0.2476 0.0002 
Std. Dev.  0.0102  0.0635  0.0550  0.0148  0.0647  0.0642 
Minimum -0.0711  0.0931 -0.2751 -0.0723  0.0769 -0.6597 
Maximum  0.0557  0.4574  0.4169  0.1243  0.6376  0.9382 
Skewness -0.1031  0.9063  0.6082  0.1961  0.6528  2.0064 
Kurtosis  6.8986  3.7215  6.8647  6.3530  4.1171  40.1397 
Jarque-Bera  2485.06  620.70  2676.43  1858.13  481.53  227517.89
Notes: The sample period extends from January 2, 1990 to December 31, 2004. JB is the 

standard Jarque-Bera normality test distributed as 2χ on the null. The series of 
stock market returns and changes in implied volatility are calculated with log 
differences. 
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Table 2. Autocorrelation and stationarity tests of implied volatility and stock returns  

Autocorrelation function Stationarity tests  

1ϕ  2ϕ  3ϕ  10ϕ  25ϕ  ADF LB 

S&P500 index  
Stock returns -0.003 -0.019 -0.035 0.022 0.003 -37.904b 0.222 
Implied volatility 0.981 0.964 0.950 0.889 0.782 -4.220a 0.401 
Changes in VIX -0.059 -0.074 -0.069 0.050 0.048 -23.007c 1.000 

Nikkei 225 index  
Stock returns -0.020 -0.051 0.001 0.007 0.032 -46.979c 0.790 
Implied volatility 0.966 0.943 0.923 0.823 0.669 -5.937b 0.121 
Changes in VIX -0.166 -0.044 -0.045 -0.002 0.053 -28.187c 0.290 

Notes:  The sample period extends from January 2, 1990 to December 31, 2004. ADF are the 

Augmented Dickey-Fuller test statistics, using Schwarz information criterion with 

additional lags included to eliminate any remaining ARCH effects.  The 1% critical 

values are -3.966, -3.435 and -2.566 for unit root tests with (a) trend and intercept, (b) with 

intercept only, and (c) with neither. LB refers to the p-values for Ljung-Box Q-statistics 

distributed as 2χ on the null of no autocorrelation up to the 10th order. 
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Table 3．Modelling the relationship between realized and implied volatility 
Regression 
parameters 

0γ  iγ  1γ  2γ  Wald 
Test 

DW
Test

LB(1) LB(4) Adjusted
2R  

 Daily observations 
S&P 500 -0.0209 0.9916   526.882 0.091 3566 12310 0.583 
 (0.000) (0.000)   (0.000)  (0.000) (0.000)  
Nikkei 225 0.0640 0.8070   108.689 0.068 3654 13196 0.266 
 (0.000) (0.000)   (0.000)  (0.000) (0.000)  
 Monthly expirations 
S&P 500 -0.0205 0.9999   22.489 1.738 3.027 8.358 0.596 
 (0.196) (0.000)   (0.000)  (0.082) (0.079)  
 -0.0191 0.9282 0.0733  15.071 1.868 0.765 4.097 0.598 
 (0.243) (0.000) (0.470)  (0.000)  (0.382) (0.393)  
Nikkei 225 0.0401 0.8808   3.072 1.472 12.450 13.222 0.364 
 (0.087) (0.000)   (0.049)  (0.000) (0.010)  
 0.0472 0.9002 0.1446 -0.1938 2.839 1.779 1.036 3.644 0.394 
 (0.039) (0.000) (0.164) (0.013) (0.026)  (0.309) (0.456)  

Notes: Estimation of the regression model with white-heterostkedasticity consistent standard 

errors. The sample of daily observations includes rolling volatility series over the period 

January 1990 to December 2004. The sample of monthly observations includes 180 

non-overlapping expirations covering the period from February 1990 to January 2005. 

Asymptotic p-values for regression coefficients reported in parentheses. F-statistics for 

Wald Test of the null of ( )1,00 == iγγ  and for regression models with additional lags, the 

null of ( )1,0 == ik γγ with the associated p-values reported in parentheses. DW is the 

Durbin-Watson statistic for the test of first-order serial autocorrelation. LB(k) denotes 

Ljung-Box Q-statistics distributed as 2χ  on the null of no serial correlation up to lag k, 

with corresponding asymptotic p-values reported in parentheses.  
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 TABLE 4. GARCH modelling of stock market volatility in the US and Japanese markets 

S&P 500 stock index Nikkei 225 stock index  Model 
Parameters Model (1)Model (2)Model (3) Model (4) Model (5) Model (1)Model (2)Model (3) Model (4) Model (5)

0λ  0.0260 0.0289 0.2221a 0.0133 0.8448 -0.0776c -0.1002b 0.0684c -0.0921b -0.1047a

1λ  3.7734 0.1575 -19.7920 1.8391 0.0197 4.6164c 5.0157b -4.0209c 2.9588 3.2893c

0w  0.0005 -0.0109a -0.0010c 0.0010a -0.0013 0.0061a 0.0052 0.0008c 0.0050a 0.0005 
α  0.0538 -0.0076 0.0165b 0.0059 -0.0355a 0.0833a 0.0974a 0.0096c 0.0220b -0.0236a

β  0.9421a -0.0054 0.8856a 0.9347a 0.7231a 0.8899a 0.7136a 0.9761a 0.9016a 0.7089a

0π    0.0038a     0.0038a   

δ     0.1020a 0.1743a    0.1069 0.2130a

1π   0.0025a -0.0035a  0.0005a  0.0005a -0.0037a  0.0007a

LB 0.225 0.338 0.507 0.279 0.290 0.956 0.837 0.878 0.967 0.781 
LM 0.723 0.268 0.326 0.832 0.489 0.790 0.225 0.050 0.479 0.280 
Log-L 12913.33 12994.84 13133.58 12955.37 13009.80 11200.90 11226.22 11304.84 11242.72 11280.27
Excess log-L  81.51 220.25 42.04 96.47  25.32 103.94 41.82 79.37 

Notes: The sample period of daily observations extends from January 1990 to December 2004. 

The model (1) refers to the GARCH-M model equation (4), model (2) to the GARCH-M 

with past implied volatility equation (5), model (3) to the GARCH-M with current and past 

implied volatility equation (6), model (4) to the GJR-GARCH-M equation (7) and model 

(5) to the GJR-GARCH-M with past implied volatility equation (8).  The various GARCH 

models are estimated with Bollerslev-Woodridge robust standard errors. The parameters 

estimates 0λ and 0w  are multiplied by 210 and 310 , respectively. Significance at the 1, 5 and 

10% level is denoted by a, b and c, respectively. LB refers to the p-values associated with 

Ljung-Box test for serial correlation in squared residuals up to the 10th order. LM refers to 

p-values of the Lagrange-Multiplier test for neglected ARCH effects. Both tests are 

distributed as 2χ on the null. LogL is the estimated log-likelihood function. Excess log-l is 

the excess log-likelihood with respect to model (1). 
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FIGURES 
 
 

FIGURE 1. The behavior of implied volatility in the Japanese and US markets 
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FIGURE 2. The relation between implied and realized volatilities in the US market 
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FIGURE 3. The relation between implied and realized volatilities in the Japanese market 
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FIGURE 4.  Out-of-sample forecasting of the US stock market volatility 
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FIGURE 5.  Out-of-sample forecasting of the Japanese stock market volatility
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FIGURE 6.  Out-of-sample forecast errors of stock market volatility 
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