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Abstract

This paper studies sustainability of economic growth considering the risk

of natural disasters caused by pollution in an endogenous growth model with

physical and human capital accumulation. We consider an environmental tax

policy, and show that economic growth is sustainable only if the tax rate on the

polluting input is increased over time and that the long-term rate of economic

growth follows an inverted V-shaped curve relative to the growth rate of the

environmental tax. The social welfare is maximized under a positive steady-

state growth in which faster accumulation of human capital compensates the

productivity loss due to declining use of the polluting input.
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1 Introduction

Natural disasters have a large impact on economic activity primarily through de-

struction of capital stock. For example, National Oceanic and Atmospheric Admin-

istration (NOAA, 2005) estimates that Hurricane Katrina, occurred on August 2005

in the Gulf of Mexico, caused over 100 billion dollars’ worth of damage mainly on

physical capital. This magnitude of destruction might seem unusual, but the losses

caused by landfalling hurricanes in the United States in the previous year, 2004, were

also considerably large–approximately 45 billion dollars, as reported by NOAA. This

magnitude of damage is not negligible even in comparison to the whole size of the

U.S. physical capital stock.

Despite various forms of preventive efforts, the occurrence of natural disasters is

not declining but in a growing trend.1 The long-term consequence of the increased

possibility of such disasters critically hinge on whether their occurrences are purely

exogenous phenomena to the economic system, or they are caused for some part by

economic activity. That is, if the latter is true, economic growth itself creates a threat

to economic activity, making the sustainability of economic growth questionable.

Recent meteorological research shows that, unfortunately, the latter argument is

likely to be true. For example, it is clearly stated in the Intergovernmental Panel on

Climate Change third assessment report (IPCC, 2001) that “Emissions of greenhouse

gas and aerosols due to human activities have a great impact on global climate

change.” Global warming, or more specifically, increasing sea surface temperature,2

1In Hoyois et al. (2005), the global number of reported disasters is 1.55 times higher in 2000-

2004 period than in 1995-1999 period, and the number of reported extreme temperature disasters,

floods, and people affected by disasters are almost 2 times, 1.74 times, and 1.33 times higher,

respectively. A disaster in the database must be fulfilled at least one of the following criteria: 10

or more people reported killed; 100 people reported affected; declaration of a state of emergency;

call for international assistance.

2The tropical sea surface temperature in the North Atlantic shows a large upswing in the last

decade. Emamuel (2005) argues such a upswing is related to the El Niño and reflects the effect of

global warming.
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is in turn suspected to increase hurricane frequency and intensity (Emamuel, 2005;

Webster et al., 2005).

Those observations suggest that there is a two-way causality between economic

activities and the occurrence of natural disasters. This paper investigates the sustain-

ability of economic growth in the presence of this two-way causality, by introducing

the endogenous risk of natural disasters into a Uzawa-Lucas type of endogenous

growth model. Following the literature (e.g., Copeland and Taylor, 1994; Bovenberg

and Smulders, 1995; Stokey, 1998), we assume that polluting inputs such as fossil

fuels are necessary for economic activities and those inputs are subject to an envi-

ronmental tax.3 Differently from earlier studies, however, this paper examines the

case in which the use of polluting inputs raises the probability that capital stocks

are destroyed by natural disasters. Agents make saving decisions taking into account

the possibilities of loss of asset due to natural disasters.

Using the model, we show that the economic growth is, in fact, not sustainable

if the (per-unit) tax rate on polluting inputs is kept constant. Intuitively, under the

constant tax rate, firms are willing to use increasing amounts of polluting inputs as

the economy grows. However, as increased use of polluting inputs raises the risk of

natural disasters, it reduce incentive agents to invest in capital stock since they face

a higher possibilities of asset loss. Thus, even in the long run, capital stock cannot

exceed a constant threshold under a constant tax rate.

To overcome this limitation, we next consider a time-varying tax on polluting

inputs. If the per-unit tax rate is raised over time, private firms owing a Cobb-

Douglas production technology will increase the use of other inputs, including human

capital, relative to polluting inputs. As a result, the use of polluting inputs can

be is bounded above, making the economic growth sustainable. It is also shown

that the growth rate of environmental tax has both positive and negative effects on

economic growth. The faster the rate at which the environmental tax is increased,

3Copeland and Taylor (1994) and Stokey (1994) assumed that there are a continuum of technol-

ogy generating a different level of pollution. However, the technology can be written with capital

and the total level of pollution as inputs.
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the lower is the asymptotic amount of pollution and therefore the lower is probability

of disasters. This gives households more incentive to save, which promotes growth.

However, the increased cost of using polluting input faced by private firms reduces

their productivity at each date, which has a negative effect on growth. Due to those

opposite effects, the rate of economic growth rate is shown to follow an inverted

V-shaped curve relative to the growth rate of environmental tax.

Having shown that the sustained growth is feasible, this paper then examine

whether it is desirable or not. This question may seem trivial, but in a AK-growth

model with pollution Stokey (1988) shows that, even when production technology

allows sustained growth, it is theoretically possible that agents prefer a no-growth

state with a good environment.4 Contrary to Stokey’s analysis, we show that the

social welfare is maximized on a steady-state growth path, where the environmental

tax is raised at a positive rate, although this does not coincide with the growth

maximizing path.

The difference of our result from Stokey’s stems not from our assumption that the

use of polluting input only affects the risk of natural disasters without directly affect-

ing consumer’s utility.5 Rather, it comes from the our two-sector specification that

the growth is driven both by physical and human capital accumulation. This paper’s

analysis shows that sustained growth with a Cobb-Douglas technology is feasible

under a limited use of polluting input because human capital stock is accumulated

much faster than the rate at which output is increased. In fact, provided that human

capital stock has lower degree of vulnerability to disasters, as suggested by Skidmore

4Stokey (1998) assumed additive separable preference for consumption and pollution in which

the marginal utility from consumption is declining whereas the marginal disutility from pollution is

increasing. Then, as consumption increases due to capital accumulation, reducing pollution becomes

more important than increasing consumption. She shows that further growth is not optimal at a

high level of capital stock.

5In section 4.1, we examine the case in which pollution directly causes disutility to consumers, in

addition to raising the risk of disasters. It is shown that a positive steady-state growth is compatible

to welfare maximization even in this case.
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and Toya (2002), the risk raises incentives for more investment in human capital

stock relative to physical capital stock.

To our best knowledge, this study is a first attempt to examine the consequences

of natural disasters in an endogenous growth model. This does not mean, of course,

that our study is independent from the previous literature. In fact, great attention

has been paid to the sustainability of economic growth in the literature of growth

theory, by noticing that the finite nature of natural environment may potentially

restrict sustainability of economic growth. With regard to the finiteness of natu-

ral resources, Aghion and Howitt (1998), Scholz and Ziemes (1999), Schou (2000),

Grimaud and Rougé (2003), and Agnai, Gutiérrez and Iza (2005) examined sus-

tainability of economic growth in endogenous growth models with non-renewable

resources.6

Complementary to those studies, Stokey (1998) and Uzawa (2003) examined sus-

tainability focusing on emission of pollutants. Since the global atmosphere is finite,

the negative effects from pollutants will become unacceptably serious when the us-

age of polluting input increases without bound. Therefore, both Stokey (1998) and

Uzawa (2003) concludes that, without exogenous technological change, the economy

should converge to a no-growth steady state. Our study is related to their studies in

that it is focusing on pollutants, but is more closely related to Bovenberg and Smul-

ders (1995) who explicitly considers accumulation of knowledge. When accumulation

of knowledge improves the productivity of other inputs (including polluting inputs),

the economy can grow using constant or even declining amounts of polluting inputs.

Their prediction that sustained growth is possible under an appropriate policy also

holds in our model.

The rest of the paper is organized as follows. Section 2 presents the model and

proves that growth cannot be sustained under a constant tax rate on polluting inputs.

6For example, Grimaud and Rougé (2003) analyzed sustainability of economic growth intro-

ducing a non-renewable natural resource into a Schumpeterian endogenous growth model. They

showed that whether both optimal and equilibrium growth is positive at the steady-state depends

on the value of the subjective discount rate relative to the productivity of R&D.
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The steady-state growth with an increasing environmental tax is analyzed in Section

3. The social planners’s problem is examined in Section 4 so as to investigate the

desirability of sustained growth. Section 5 concludes.

2 The Model

This section presents a model of natural disasters and economic growth. In the first

subsection, the risk of natural disasters is introduced into a two-sector growth model

based on Uzawa (1965) and Lucas (1998). In the second subsection, the behavior of

households and firms is examined. After presenting equilibrium conditions, the final

subsection proves that sustained growth is not possible when the environmental tax

rate is kept constant.

2.1 The risk of natural disasters

In the model, output is produced by a constant-returns-to-scale production technol-

ogy using physical capital Kt, human capital Ht, and polluting input Pt such as fossil

fuels that emits pollutants or greenhouse gases. The production function is given by:

Yt = F (Kt, utHt, Pt) = AK
α
t (utHt)

1−α−βP β
t ,

where ut is the time share devoted to production of goods, α is a constant share of

physical capital, and β is that of the polluting input. Output is either consumed

or added to physical capital stock. Since we focus on the risk of natural disasters,

we ignore the extraction cost and/or production cost of polluting inputs and finite

nature of natural resources. The risk of natural disasters on capital stock is assumed

to be inevitable and to depend on the amount of pollution.

Specifically, suppose that economy consists of continuum of local areas. Let qt be

the arrival rate of natural disasters per unit of time at each area:

qt = q + bqPt, (1)

where q and bq are positive constants. Equation (1) says that the arrival rate raises
as the amount of aggregate polluting inputs increases, as in the case of hurricanes
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and fossil fuels. When a natural disaster occurs at an area, it causes damage to

physical capital. For example, if natural disasters occur at an area where the existing

aggregate physical capital stock is eKt, the expected loss of physical capital is φ eKt,

where φ > 0 is the average damage to physical capital stock. Note that, for various

reasons, a natural disaster harms human capital stock as well.7 Similarly to φ, define

ψ > 0 as the average damage to human capital stock. The damage on human capital

measured in relative to the existing stock is, however, smaller than the damage on

physical capital stock, and therefore it is reasonable to assume φ > ψ > 0.

For simplicity, each area is assumed to be small enough and the occurrence of

natural disasters in one area is assumed not to be correlated to others.8 By the law

of large numbers with (1), the aggregate damage to physical capital stock and human

capital stock are respectively:

qt · φKt = (φq + φbqPt)Kt, (2)

qt · ψHt = (ψq + ψbqPt)Ht. (3)

Let δK and δH be the constant rates of depreciation of physical capital stock and

human capital stock, respectively. Then, similarly to Lucas (1988), the resource

constraints for physical and human capital stocks are written as:

K̇t = F (Kt, utHt, Pt)− Ct − (δK + φPt)Kt, (4)

Ḣt = B(1− ut)Ht − (δH + ψPt)Ht, (5)

where δK ≡ δK + φq, φ ≡ φbq, δH ≡ δH + ψq, ψ ≡ ψbq, and Ct, B, and 1 − ut is the
aggregate consumption, the constant productivity of human capital accumulation,

7The death toll in Katrina rose to over 1000 (NOAA, 2005) and the number of the injured was

much more. In addition, many education institutions are forced to remain closed for extended

periods of time and a large number of data and documents storing valuable knowledge are lost after

the disasters pass.

8This assumption is not realistic when considering large scale disasters. Without it, the law of

large numbers does not apply, and disasters cause short-term fluctuations. However, since we are

focusing on long-term behavior of the economy, analysis of such fluctuations are out of the scope

of this paper.
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and a fraction of time devoted to production of human capital, respectively. Equa-

tions (4) and (5) shows that the risk of natural disasters effectively augments the

depreciation rates of physical and human capital stocks, in proportion to the use of

polluting input. We assume that α+ β > φ so that the sensitivity of the augmented

depreciation rate to the polluting input is not too high.

Observe that, unlike standard endogenous growth models, the right hand sides of

equations (4) and (5) are not homogenous of degree one in terms of quantities. This

implies that balanced growth that presents a homothetic expansion is not feasible,

which reflects the finiteness of natural environment.

2.2 The market economy

Since firms do not take into consideration the externality such that the use of pol-

luting inputs increases the risk of natural disasters, the market equilibrium does not

correspond with the solution of the social planner’s problem. The followings con-

sider explicitly the market economy where per-unit tax τt, in terms of final goods, is

levied on the use of polluting inputs. Since there is no uncertainty, consumers pre-

dicts {τt}∞t=0 at the initial time under perfect foresight.9 The government balances
its budget at each moment and equally distribute the tax revenue Tt = τtPt among

households in a lump-sum fashion.

Households

The economy is populated by a unit mass of infinitely lived homogeneous house-

holds. Each household owns physical capital stock, kt, and human capital stock, ht.

However, due to natural disasters, they are faced with the risk of damages to both

types of capital stock. The insurance market is assumed to be complete. Under

this assumption, it is optimal for households to take out insurance that cover the

all losses associated with natural disasters. Since their expected damages to physi-

cal capital stock and human capital stock are qtphikt and qtpsiht, respectively, the

9This paper does not consider the issue of dynamic inconsistencies.
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budget constraint of households can be written as:10

k̇t = rtkt + wtutht − (δK + φPt)kt − ct + Tt, (6)

ḣt = B(1− ut)ht − (δH + ψPt)ht, (7)

where rt, wt, and ct denote the real interest rate, the real wage rate, and the amount

of consumption, respectively. Note that the cost associated with depreciation and

insurance is paid by the owner of the capital.

The utility function of the representative household is given by:Z ∞
0

c1−θt − 1
1− θ

e−ρtdt, (8)

where θ > 1 is the inverse of the elasticity of intertemporal substitution and ρ is

the rate of time preference. We assume B > ρ so that households have enough

incentive to investment in human capital. Each household maximizes (8) subject to

the constraints (6) and (7). From the first-order condition for maximization problem,

we obtain the Keynes-Ramsey Rule:

−θ ċt
ct
= ρ+ φPt + δK − rt. (9)

This condition is similar to that obtained in the original Uzawa-Lucas model, except

that it depends on the risk of natural disasters, φPt.

The shadow price of human capital relative to that of physical capital is wt/B,

which equals to the market price of human capital measured by physical capital

stock. Hence, the arbitrage condition between human capital investment and physical

capital investment is given by:

ẇt
wt
= rt − (φ− ψ)Pt − (δK − δH)− B. (10)

10Equations (6)-(7) implicitly assume that damaged human capital is compensated in the form of

human capital. Obviously, a more realistic setting is that this compensation is done in the form of

goods. Nonetheless, as long as the amount of compensation in terms of goods is calculated using the

appropriate price of human capital, wt/B, the equilibrium outcomes do not change in the aggregate

level.
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In (10), the left hand side implies the rate of change in the relative shadow price of

human and physical capital while the right hand side implies the difference between

the marginal return to investment in physical capital and human capital. Note that

this condition must be satisfied in the long run. If it is not, the solution would be

either ut = 0 or ut = 1 for all agents, and therefore one of the two kinds of aggregate

capital stock approaches zero due to depreciation, clearly inconsistent with the Cobb-

Douglas production function. The transversality conditions are limt→∞ ktνte−ρt = 0

for physical capital stock and limt→∞ htµte−ρt = 0 for human capital stock, where

νt = c
−θ
t and µt = (wt/B)c

−θ
t .

Firms

There is a continuum of firms producing final goods in competitive market. We

consider a representative firm maximizing its profit. The firm pays the wages for

labor input, the rental rate for physical capital input, and the environmental tax as

well. Given factor prices rt, wt and τt, the profit maximization problem is:

max
Kt,Nt,Pt

F (Kt, Nt, Pt)− rtKt − wtNt − τtPt,

where Nt ≡ utHt is the amount of human capital employed by the firm. The first-
order conditions for this problem are rt = αYt/Kt, wt = (1 − α − β)Yt/Nt, and

τt = βYt/Pt. Substituting the profit maximizing polluting input, Pt = βYt/τt, into

the production function, the output can be written as:

Yt =
³ eAτ− β

1−β
´
K bα
t N

1−bα
t , (11)

where eA ≡ ββ/(1−β)A1/(1−β) and bα ≡ α/(1 − β). When written in the form of (11),

it becomes clear that the environmental tax lowers the effective total factor pro-

ductivity, eAτ−β/(1−β). Using this notation, the first order conditions are expressed
as

rt = α eAτ− β
1−β

t

³Kt

Nt

´bα−1
, (12)

wt = (1− α− β) eAτ− β
1−β

t

³Kt

Nt

´bα
. (13)
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2.3 Equilibrium conditions

Since the population is homogenous and normalized to unity, Kt = kt, Ht = ht, Ct =

ct, and ut = Ht/Nt hold in equilibrium. From the budget constraint of households,

the evolution of physical capital stock is given by:

K̇t

Kt

=
Yt
Kt

− Ct
Kt

− (δK + φPt), (14)

From the production function of human capital stock, its evolution is given by:

Ḣt
Ht
= B(1− ut)− (δH + ψPt). (15)

From (10) and (13), the evolution of labor supply ut must satisfy:

− β

1− β
· τ̇t
τt
+ bα³K̇t

Kt

− Ḣt

Ht
− u̇t
ut

´
= α

Yt
Kt

+ (ψ − φ)Pt − (δK − δH)− B. (16)

The dynamics of consumption is given by the Keynes-Ramsey Rule:

−θ Ċt
Ct
= ρ− α

Yt
Kt

+ δK + φPt. (17)

Finally, from the firm’s f.o.c., the amount of polluting input is determined by

Pt = βYt/τt. (18)

A necessary condition for the transversality condition associated with physical

capital stock is K̇t/Kt + ν̇t/νt − ρ < 0 as t → ∞. We will show in Section 3

that K̇t/Kt = Ċt/Ct in the long run. Thus, from ρ > 0 and νt = c−θt , we obtain

K̇t/Kt + ν̇t/νt = (1 − θ)Ẏt/Yt so that the transversality condition associated with

physical capital stock is satisfied so long as Ẏt/Yt ≥ 0 (i.e., unless the economy

is shrinking toward zero). Likewise, the transversality condition associated with

human capital stock is satisfied whenever Ḣt/Ht + µ̇t/µt − ρ < 0. Differentiating

logarithmically with respect to time in µt = (wt/B)c
−θ
t and using (9), (10), and (15),

we obtain Ḣt/Ht + µ̇t/µt − ρ = −But. Because B > 0, the transversality condition
associated with human capital stock is satisfied if ut > 0.
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2.4 Sustainability under a constant tax rate

Observe, from (18), that pollution increases in proportion to output Yt if the gov-

ernment do not change the environmental tax rate. Since the increasing usage of

polluting inputs makes natural disasters more and more frequent, it seems that eco-

nomic growth is not sustainable under such a static environmental policy. This

subsection formally proves that this insight is correct.

The proof goes via reductio ad absurdum. When the government sets a constant

environmental tax rate (i.e., τt = τ0 for all t), the Keynes-Ramsey Rule (17) can be

rewritten, from (18), as:

−θ Ċt
Ct
= ρ+ δK −

µ
α− φβ

τ0
Kt

¶
Yt
Kt
.

This equation states that, if consumption grow in the long-run (i.e., Ct → ∞ as

t → ∞), the sign of the value in the parentheses must be positive. Hence, Kt

must be bounded above by a constant value τ0α/φβ (i.e., limt→∞Kt < τ0α/φβ).

To interpret this result, observe that that, from (11) and (12), the rental price of

physical capital is rt = αYt/Kt and therefore the last term of represents marginal

rate of return of holding capital net of insurance cost φPt = φβYt/τ0. As physical

capital accumulates, the insurance cost increases in relative to interest rate due to

increased risk of natural disasters. Since this lowers the incentive to save, the stock of

physical capital should not become too large in order to maintain sustained growth.

This raises another question, however, of maintaining output growth under a lim-

ited size of physical capital. From (11), the positive growth rate of output requires

the positive growth rate of human capital stock devoted to production due to the

supremum of Kt. That is, limt→∞ Ṅt ≥ 0 must hold in order to support increas-

ing consumption. Under a constant environmental tax rate equation, (16) can be

rewritten as:

bα³K̇t

Kt

− Ṅt
Nt

´
= α

Yt
Kt

+ (ψ − φ)Pt − (δK − δH)− B.

Consider the behavior of both hands of the above equation in the long-run. The left

hand side implies the growth rate of wage, which eventually becomes negative value,
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−bαṄt/Nt. Conversely, the right hand is given by:µ
α− φβ

τ0
Kt

¶
Yt
Kt
− δK + ψPt − B + δH ,

which is the difference between the marginal rate of return on both types of capital

stock. From the condition for the positive growth rate of consumption derived above,

the sign of the value in the parentheses must be positive, and thus, the value of the

right hand side goes to infinity as Yt →∞. These results imply that the equality in
(16) fails to hold, and therefore Ct and Yt cannot grow in the long run. To summarize,

Proposition 1 If the environmental tax rate is constant, economic growth is not

sustainable.

3 Steady-state growth

Given Proposition 1, this section considers a time-varying tax policy. In order to

focus on the long-term behavior of the economy, the following considers a policy

that has the constant growth rate of environmental tax:

τt = τ0 exp(gτ t), τg : positive constant.

The main task of this section is to examine the dependence of long-term rate of

economic growth, denoted by

g∗ ≡ lim
t→∞

Ẏt
Yt
,

on the growth rate of environmental tax gτ . Note that, for any gτ chosen by the

government, the corresponding equilibrium value of g∗ cannot be larger than gτ

since it means the usage of polluting input, Pt = βYt/τt, become infinite in the long

run, and therefore is impossible for the same reason as explained in subsection 2.4.

Hence, g∗ ≤ gτ , which leads to limt→∞ Ṗt/Pt ≤ 0 from (18). Since the amount of

polluting input is nonnegative, this means that Pt converges to a constant value,

denoted by P ∗, in the long-run.

To examine the long-term property of the equilibrium dynamics, we consider the

steady-state growth path in which the various quantities grow at constant rates:
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K̇t/Kt = gK , Ċt/Ct = gC , Ḣt/Ht = gH , and u̇t/ut = gu. In this steady state, (15)

and (17) implies that the value of ut and Yt/Kt must be constant. In addition, from

(14), these properties in turn imply Ct/Kt must also be constant. Thus we denote

those constant values by ut = u, Yt/Kt = z, Ct/Kt = χ.

Since gK = gC = g
∗ and gu = 0 are already known, the following focuses on the

determination of g∗ and gH . Differentiating logarithmically with respect to time in

(11) and using gK = g
∗ yield the growth rate of human capital stock:

gH = g
∗ +

β

1− α− β
gτ . (19)

Equation (19) shows that, in the long run, the use of human capital grows faster

than physical capital (and output). It compensates for the decreasing use of polluting

input due to the increasing environmental tax. Constancy of u leads to Ṅ/N = Ḣ/H.

Hence, from (13), the rate of change in wage is given by:

ẇ

w
= − β

1− α− β
gτ . (20)

Recall that the price of a unit of human capital stock measured in goods is wt/B.

Equation (20) shows that it decreases as human capital stock increases.

Applying the above discussion, the equilibrium conditions (14)-(18) can be sim-

plified along the steady-state growth path, as follows.

evolution of Kt: g
∗ = z − χ− (δK + φP ∗), (21)

evolution of Ht: g
∗ +

β

1− α− β
gτ = B(1− u)− (δH + ψP ∗), (22)

arbitrage condition: − β

1− α− β
gτ = αz − B + (ψ − φ)P ∗ − (δK − δH), (23)

Keynes-Ramsey rule: − θg∗ = ρ− αz + (δK + φP ∗), (24)

asymptotic value of Pt: P
∗

≥ 0 if g
∗ = gτ (case 1),

= 0 if g∗ < gτ (case 2).

(25)

Those five conditions, (21)-(25), determine five unknowns, g∗, z ≡ Yt/Kt, χ ≡ Kt/Ct,

u, and P ∗, in the steady state growth path. Note that, however, they include a

complementary slackness condition (25), and we cannot know whether P ∗ = 0 or
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g∗ = gτ holds in advance. Thus we need to examine two possible cases in turn, and

then to determine which case actually occurs in equilibrium under a particular set

of exogenous parameters.

Let us first derive the steady-state growth path assuming that Case 1 actually

occurs (whether this assumption is appropriate will be checked immediately). Sub-

stituting g∗ = gτ into (24) and (23), we obtain the steady-state value of polluting

input:

P ∗ =
1

ψ

h
B − ρ−

³
θ +

β

1− α− β

´
gτ − δH

i
. (26)

In (26), we can see that the condition, P ∗ ≥ 0 is satisfied if gτ is within the following
region:

gτ ≤ B − ρ− δH

θ + β
1−α−β

≡ gmax.

Hence, Case 1 is possible only if gτ ≤ gmax. From (21) to (24), we obtain the value

of other variable as follows:

z =
1

α
(θgτ + δK + φP ∗ + ρ) , (27)

χ =
1

α

³
(θ − α)gτ + (1− α)(δK + φP ∗) + ρ

´
, (28)

u =
1

B

³
(θ − 1)gτ + ρ

´
. (29)

Next, we examine the possibility of steady-state growth in Case 2. Suppose that

the amount of polluting input is zero at the equilibrium. The same procedure as the

above yields the steady-state growth rate:

g∗ =
1

θ

³
B − δH − β

1− α− β
gτ − ρ

´
, (30)

we can see that the condition g∗ < gτ is satisfied if gτ > gmax. The steady-state value

of other variables are:

z =
1

α

³
B + δK − δH − β

1− α− β
gτ

´
, (31)

χ =
³ 1
α
− 1
θ

´³
B − δH − β

1− α− β
gτ

´
+
1− α

α
δK +

ρ

θ
, (32)

u =
1

Bθ

h
(θ − 1)

³
B − δH − β

1− α− β
gτ

´
+ ρ
i
. (33)
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It can be confirmed that all z, χ and u in (31)-(33) are positive if gτ is lower than

glim ≡ (1− α− β)β−1(B + δK − δH).

Note that the possibilities of Case 1 and Case 2 are mutually exclusive–that is,

under a given set of parameters, only one case is possible. Therefore, the steady-

state path is always unique, and it is characterized by g∗ = gτ and (26)-(29) if

gτ ∈ [0, gmax], and by P ∗ = 0 and (30)-(33) if gτ ∈ (gmax, glim). In Appendix, we
show that the steady state is saddle stable in both cases, given that either δK is not

too large or gτ is below a certain level:

egτ ≡ (γ + θ)(1− α− β)(B − δH) + ρ(1− α− β)

(θ − 1)β .

Since glim and egτ are considerably high under reasonable parameter values, we restrict
our attention to gτ < min{glim,egτ}.
Figure 1 illustrates the relationship between the growth rate of environmental

tax and the long-run growth rate of human capital stock in (22), physical capital

stock and output in (21), and the growth rate of polluting inputs or pollution which

is given by Ṗ /P = g∗− gτ . The asymptotic amount of pollution, P ∗, is largest when
the environmental tax rate is constant (i.e., gτ = 0), which results in the highest

probability of natural disasters and zero growth. When gτ in increased within the

range of [0, gmax], the long-run amount of pollution, P ∗ decreases while the growth

rates of Y and K increase in parallel with gτ . The growth rate of human capital gH

also increases, at a faster pace. This enables sustained growth under (asymptotically)

constant use of polluting input. When the environmental tax rate is raised so rapidly

that gτ exceeds g
max, the use of polluting inputs Pt is continually reduced, converging

asymptotically to zero level. In this case, the growth rates of Y and K can no

longer increase in parallel with gτ , but decreasing in gτ . Nonetheless, provided that

gτ < g
lim, the economy can grow at a positive rate growth by accumulating gH much

faster than output grows. The following proposition summarizes the obtained results.

Proposition 2 If the environmental tax rate is raised at constant rate gτ ∈ (0, egτ ),
there exists a unique and saddle-stable steady-state growth path with positive rate of
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Figure 1: Growth rate of environmental tax and the steady state growth. The upper

panel shows the relationship between the growth rate of environmental tax (gτ ) and that of human

capita (gH), phisical capital (gK), output (g
∗), and pollution (gP ). The lower panel shows the level

to which the level of pollution converges to in the long run (Pt → P ∗). Parameters: α = .4, β = .1,

θ = .2, ρ = .98, B = 2, ψ = .005, φ = .01.

growth. The long-term rate of growth follows an inverted-V shape against the growth

rate of the environmental tax rate, and it is maximized when gτ = g
max.

It is possible to interpret Proposition 2 in terms of the Keynes-Ramsey rule. Note

that, from the arbitrage condition between human capital investment and physical

capital investment, the rates of return to both of capital net of insurance payments

are equal. Therefore, using the arbitrage condition (10) and the Keynes-Ramsey

Rule (9) and the fact that gC = g∗, the growth rate at the steady state can be

rewritten as:

g∗ =
1

θ

µ
B − ψPt − β

1− α− β
gτ − ρ− δH

¶
. (34)

The second term in the parenthesis of (34) expresses the expected loss of human

capital due to natural disasters. If the growth rate of environmental tax is acceler-

ated, the effective productivity of private firms, eA falls, the value of human capital
17



is reduced, and individuals invest less in human capital. Given P ∗, thus, the growth

rate of economy decreases. As a result, the growth rate of pollution, Ṗt/Pt = g
∗− gτ

decreases. However, when P ∗ is positive (Case 1), the risk of damage to human

capital stock decreases due to a reduction in P ∗, which allows the growth rate of the

economy to increase, as shown in (34). This boost continues until g∗ catches up with

gτ . However, when Pt is already approaching P
∗ = 0 (Case 2), the reduction in Ṗ /P

accelerates the speed at which Pt converges to P
∗ = 0, but it does not change the

asymptotic value P ∗. Thus, the steady-state growth rate remains low.

4 Welfare

The previous section established that sustained growth is feasible by raising the

rate of environmental tax rate over time. It is yet to shown, however, such an

environmental policy is desirable in terms of welfare. This section investigates the

social planner’s problem so as to derive the welfare-maximizing environmental policy.

The planner maximizes (8) subject to the following constraints:

K̇t = F (Kt, utHt, Pt)− Ct − (δK + φPtKt), (35)

Ḣt = B(1− ut)Ht − (δH + ψPtHt). (36)

From the first-order conditions for optimality, the dynamics of Kt, Ht, and Ct, and

the arbitrage condition between two types of capital stocks are the exactly same as

(14)-(17), which are parts of market equilibrium conditions. Since the social planner

takes into consideration the externality of polluting emissions, that is, the risk of

natural disasters, it chooses the amount of polluting input according to the following

rule:
βYt
Pt

= φKt + ψHt · (1− α− β)Yt
ButHt

. (37)

Equation (37) says that Pt is determined such that the marginal benefit is equal to

the marginal cost of using polluting inputs. The left hand side of (37) is the marginal

productivity of polluting input whereas the right hand side is the sum of increases

18



in damage to physical capital stock and in damage to human capital stock, both

measured in terms of final goods.

Recall that Pt is determined according to (18) in the market equilibrium. Sub-

stituting (18) into (37) reveals that the optimal growth path can be realized in

equilibrium by setting the optimal environmental tax rate:

τ optt = φKt + ψ
(1− α− β)Yt

But
. (38)

In order to implement such a policy, it is necessary for the government to know

equilibrium paths of Kt, Yt, and ut, which appear in the RHS of (38). However,

Kt, Yt, and ut are endogenously determined depending the future path of τt that is

expected by consumers.

Although it seems excessively difficult to solve this dynamic fixed point problem,

the long-term property of the optimal policy can be conveniently analyzed by focusing

on the usage of polluting inputs, Pt, which approaches a constant steady state value,

rather than in terms of the time-varying tax rate imposed on it. Note that optimality

condition (37) can be stated as

P optt = β
Yt

τ optt

= β

µ
φ
Kt

Yt
+
ψ(1− α− β)

But

¶−1
. (39)

In the previous section, we have shown that Yt/Kt and ut appearing in the RHS of

(39) become constant in the steady-state growth path, and their values are derived

explicitly in terms of gτ (see equations 26-28 and 31-32). Therefore, the welfare-

maximizing amount of polluting input P opt in the long run can be calculated as a

function of gτ . As depicted in Figure 2, P
opt is positive and continuous in gτ for all

gτ ∈ [0, glim).
The actual amount of polluting inputs used in equilibrium is, however, determined

not by (39) but by (26) for gτ < g
max and P ∗ = 0 for g∗ ≥ gmax, which is also depicted

in Figure 2. Unless consumers heavily discount the utility in the future, it can be

shown that the intercept of P opt curve is smaller than that of P ∗. Therefore, there

exists a level of gτ ∈ (0, gmax), denoted as goptτ , such that P ∗ = P optt in the long run.

This means that the optimal growth path can be (asymptotically) implemented by

raising the environmental tax rate at the rate of goptτ .
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Figure 2: Determination of the optimal growth rate of environmental tax. The optimal

growth rate of environmental tax, goptτ , is given by the intersection of P ∗ and P opt, and is lower

than the growth maximizing rate, gmax. The parameters are the same as in Figure 1.

Note that, since goptτ ∈ (0, gmax), the long-term rate of economic growth g∗ co-

incides with goptτ , and therefore it is positive. Thus the above analysis shows that

the sustained growth implemented by raising the environmental tax rate is not only

feasible but also desirable. It is also notable, however, that the optimal policy does

not coincide with the growth maximizing policy since goptτ < gmax. That is, if the gov-

ernment care about welfare it should tighten the environmental policy more slowly

than when growth is its first priority. This result may seem at odds with the usual

growth vs. environment arguments, but its reasoning is similar to the modified golden

rule argument familiar to economists. Although an aggressive environmental policy

that aims to eliminate the emission of pollutants in the long run (i.e., P ∗ = 0) may

maximize the economic growth rate in the very long run, the cost in the form of

reduced effective productivity that must be incurred in the transition can overwhelm

the benefit that cannot be reaped in far future.

4.1 Disutility of pollution

Our result that the sustained growth is both feasible and desirable is in contrast to

the previous literature. Notably, Stokey (1998) has shown that even when sustained

growth is feasible, it is not desirable when production of goods emits pollutants that
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harm the utility of consumers. The difference of the results of course comes from

the setting of models. More specifically, our model significantly differs from Stokey

(1998) in two aspects; (1) we are considering human capital accumulation differently

from Stokey’s AK model; (2) so far pollutants are assumed to cause disasters but do

not directly give disutility.

In this subsection, we clarify that the critical reason behind the difference in the

results is not (ii) but (i). To this end, we present an extended model in which agents

suffer from not only damages to capital stocks caused by natural disasters but also

disutility of pollution. Suppose that consumers has an utility function ofZ ∞
0

µ
c1−θt − 1
1− θ

− P
1+γ
t

1 + γ

¶
e−ρtdt, γ > 0. (40)

Since function (40) is separable with respect to ct and Pt, behavior of all agents, who

takes Pt as given, does not change. That is, the equilibrium outcome is exactly the

same as in analyzed in sections 2 and 3.

Let us examine how the planner’s problem is affected. Under resource constraints

(35) and (36), the planner maximizes function (40). Then, the optimality condition

with respect to polluting input becomes

βYt
Pt

= φKt + ψHt · (1− α− β)Yt
ButHt

+
P γ
t

C−θ
. (41)

When compared to (37), there is an additional marginal cost of polluting input in

terms of utility. Multiplying both sides of (41) by Pt/Yt yields the condition

β =

µ
φ
Kt

Yt
+ ψ

(1− α− β)

But

¶
Pt +

µ
Ct
Yt

¶θ

Y θ−1
t P 1+γt , (42)

which is convenient since the LHS is constant.

Our goal is to find the environmental tax policy such that (42) holds in the long

run. Recall that on any steady-state growth path, Kt/Yt, ut, and Ct/Yt in (42) do not

change. Therefore, for the optimality condition to hold, Y θ−1
t P 1+γt must be constant.

Since Ṗt/Pt = g
∗−gτ from (18), this condition requires (θ−1)g∗+(1+γ)(g∗−gτ ) = 0,

or equivalently

g∗ =
1 + γ

θ + γ
gτ . (43)
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Observe that, since θ > 1, condition (43) requires that the economy should grow

slower than the rate at which the environmental tax is increased.11 As we see in

section 3, this occurs in equilibrium only when gτ > gmax. In this case, the actual

value of g∗ is determined by (30), which equals to (43) if and only if

bgoptτ =
(γ + θ)(1− α− β)(B − δH − ρ)

θ(1 + γ)(1− α− β) + β(γ + θ)
.

This expression gives welfare-maximizing growth rate of environmental tax rate:

Since bgoptτ is positive and smaller than egτ and glim, the optimal rate of growth is
positive and the dynamics is saddle stable.

To summarize, the main result that sustained growth is desirable does not change

even when disutility of pollution is introduced into the model. However, the desirable

speed at which the environmental tax is increased is now higher than the growth

maximizing speed, gmax. This implies that, if pollution affects the utility of agents

directly, the emission of pollutant should be eliminated in the long run even at the

cost of accepting a slower (although positive) rate of economic growth.

5 Concluding Remarks

The sustainability of economic growth has been analyzed in a two-sector model of

endogenous growth, taking into account the risk of natural disasters. Polluting inputs

are necessary for production, but they intensify the risk of natural disasters. In this

setting, we obtained following results.

First, the long-run economic growth can not be sustained if the private cost of

using the polluting input is kept constant.12 Since, for simplicity, we do not con-

sider the cost associated with extracting resources or the finiteness of those inputs,

11Strictly speaking, condition (43) does not rule out g∗ = gτ = 0. However, similarly to the

previous discussion, if the tax rate is kept constant, P ∗ is higher than the optimal amount of

pollutants (this should be even lower due to the disutility of pollution) unless the consumers discount

the future very heavily. Therefore, the optimal rate at which the tax rate is increased must be

positive.

12When the damage to physical capital stock is much larger than that to human capital stock
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this result implies that the environmental tax rate should be increased over time.

However, it should be noted that if the private cost changes for some ignored rea-

sons, the environmental tax rate must be adjusted to absorb those changes. More

substantially, a next step in the research agenda would be to integrate the analysis

of natural disasters with the studies of finiteness of natural resources, although it is

beyond the scope of this first endeavor.

Second, the rate of the economic growth rate follows the inverted V-shaped curve

relative to the growth rate of the environmental tax. When the rate of environ-

mental tax is initially slow growing, its acceleration will reduce the long-run level of

emission and the risk of natural disasters, which enhances the incentive to save and

hence promotes economic growth. When the rate of environmental tax is already

fast growing, the amount of polluting input at the steady state is fairly small so that

further acceleration of environmental tax excessively impair the productivity of pri-

vate firms, which works against economic growth. Therefore, the economic growth

can be maximized with choice of the most gradual increase in environmental tax rate

that minimizes the amount of pollution in the long-run.

Third, the sustained growth, realized by ever increasing tax rate on polluting

inputs, is not only feasible but also desirable. Although economic growth ceteris

paribus induces private firms to use more polluting input, an appropriate environ-

mental policy can lead firms to use more of human capital (e.g., by investing in

alternative technology), which decreases their reliance on polluting inputs. The op-

timal speed at which the environmental tax rate is increased is lower than the growth

maximizing speed if pollution only causes disasters, while it is higher when direct

disutility from pollution is accounted for.

(i.e., φ >> ψ), the steady-state value of P ∗ is rather large (see Equation 26). In this case, the speed

of convergence to the steady state is slow, the economic growth declines gradually, and amount of

pollution increases during the transition to the steady state.
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Appendix

Case 1

First, we examine the transitional dynamics and the stability of the steady state in

Case 1. From (14), (15), and (16), we obtain the dynamics of u as follows:

u̇

u
= B(u− u∗)− (χ− χ∗) + β(z − z∗) + (1− α− β)(φ− ψ)

α
(P − P ∗), (44)

where z∗, χ∗, u∗, and P ∗ are the steady state value of z, χ, u, and P , respectively.

From (14) and (17), the dynamics of χ is given by:

χ̇

χ
= (χ− χ∗)− θ − α

θ
(z − z∗) + (θ − 1)φ

θ
(P − P ∗). (45)

From (11) and (44), the dynamics of z and of P are given by:

ż

z
= −(1− α− β)(z − z∗) + (1− α− β)(ψ − φ)

α
(P − P ∗), (46)

Ṗ

P
= −(χ− χ∗) +

α+ β(1− α− β)

1− β
(z − z∗) + (1− 2α− β)φ− (1− α− β)ψ

α
(P − P ∗).

(47)

The Jacobi matrix of (44) - (47) is written as:

J1 =


B −1 β Λ

0 1 −θ−α
θ

(θ−1)φ
θ

0 0 −(1− α− β) Λ

0 −1 α+β(1−α−β)
1−β Ω

 ,

where

Λ ≡ (1− α− β)(φ− ψ)

α
, and Ω ≡ (1− 2α− β)φ− (1− α− β)ψ

α
.

Define a matrix as follows:

J∗ =


1 − θ−α

θ
(θ−1)φ

θ

0 −(1− α− β) Λ

−1 α+β(1−α−β)
1−β Ω

 .
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The eigenvalues of J∗ are the solutions of its characteristic equation:

−λ3 + TrJ∗λ2 − BJ∗λ+DetJ∗ = 0, (48)

where

TrJ∗ = Λ+ (α + β − φ) > 0, if α + β > φ

BJ∗ =
1 − θ−α

θ

0 −(1− α− β)
+
−(1− α− β) Λ

α+β(1−α−β)
1−β Ω

+
1 (θ−1)φ

θ

−1 Ω
,

=
θ(1− α− β)(φ− 1)− φ

θ
< 0,

DetJ∗ =
ψ(1− α− β)

θ
> 0.

We determine the sign of the real parts of the roots of (48) based on Theorem 1 of

Benhabib and Perli (1994).

Theorem 1 (Benhabib-Perli ) The number of roots of the polynomial in (48) with

positive real parts is equal to the number of variations of sign in the scheme

−1 TrJ∗ − BJ∗ + DetJ
∗

TrJ∗
DetJ∗.

Since we have TrJ∗ > 0, −BJ∗ + DetJ∗
TrJ∗ > 0, and DetJ

∗ > 0, there can only be one

positive real parts in the matrix J∗ under the assumption α + β > φ. Hence, there

can be two positive eigenvalues and two eigenvalues with negative real parts in the

matrix J1 and the steady state is saddle path stable.

Case 2

Turning to Case 2, the transitional dynamics of z, χ, u, and P are given by:

u̇

u
= Bu− χ+ βz + ΛP +

1− α− β

α
(B + δK − δH)− β

α
gτ , (49)

χ̇

χ
= χ− θ − α

θ
z +

θ − 1
θ

φP − ρ

θ
+
θ − 1
θ

δK , (50)

ż

z
= −(1− α− β)z + ΛP +

1− α− β

α
(B + δK − δH)− β

α
gτ , (51)

Ṗ

P
= −χ+ α + (1− α− β)β

1− β
z + ΩP +

1− α− β

α
B − α + β

α
gτ

+
(1− 2α− β)δK − (1− α− β)δH

α
. (52)
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Linearizing from (49) to (52) around the steady state and substituting P ∗ = 0 and

other steady state values into the linearization, we obtain:

J =


u̇

χ̇

ż

Ṗ

 '

J11 ∗ ∗ ∗
0 J22 ∗ ∗
0 0 J33 ∗
0 0 0 J44




u− u∗

χ− χ∗

z − z∗

P − P ∗

 ,

where

J11 =
θ − 1
θ
(B − δH)− θ − 1

θ(1− α− β)
βgτ +

ρ

θ
,

J22 =
θ − α

αθ
(B − δH)− (θ − α)β

αθ(1− α− β)
gτ +

ρ

θ
,

J33 = −1− α− β

α
(B − δH) +

β

α
gτ +

1− α

α
δK ,

J44 =
1

θ
(B − δH)− ρ

θ
− θ(1− α− β) + β

θ(1− α− β)
gτ ,

Substituting gmax into gτ of the above eigenvalues, we obtain:

J11 > 0, J22 > 0, J33 < 0, J44 = 0.

Moreover, substituting glim into gτ , the above eigenvalues are:

J11 > 0, J22 > 0, J33 = 0, J44 < 0.

Thus, for gτ ∈ (gmax, glim), there are two positive eigenvalues and two eigenvalues
with negative real parts in the matrix J and the steady state is saddle path stable.
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