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Abstract

This note gives sufficient conditions of cross risk vulnerability introduced
by Malevergne and Rey (2005), which is the equivalent condition to guarantee
that an unfair non–monetary background risk makes decision makers more risk
averse. The sufficient conditions determined by this note expand the results
for univariate utility function into bivariate utility functions.
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1 Introduction

In recent two decades, a considerable number of studies has been focused on the

effects of background risks on optimal decisions under uncertainty. Since changes

in risk aversion have unambiguous comparative statics predections in most models

with uncertainty, many authors derived conditions to guarantee that background

risks make decision mekers more risk averse. A landmark concerning this topic

is the “risk vulnerability” introduced by Gollier and Pratt (1996), which is the

weakest condition among them. As the risk vulnerability is a technical condition,

several authors determined sufficient conditions of risk vulenrability which have

some intuitive interpretations. The following two conditions are well known: (i) the

standard risk aversion derived by Eeckhoudt and Kimball (1992), (ii) the decreasing

and convex risk aversion derived by Gollier and Pratt (1996). An excellent survey

on this topic can be found in Part IV in Gollier (2001), the interestend readers can

see it.

Most studies concerning background risks in optimal choices under uncertainty,

consider decision makers with univariate von–Neumann Morgenstern utility func-

tions. However, there are many situations in which decision makers have multi–

dimensional utility functions. For exapmle, utilities of decision makers are not only

depend on finacial wealth, but also health status in the context of health economics.

We can list many examples of decision making with multi–dimension, like environ-

mental status, social status, and so on. Hence, we need to understand the effects

of background risks on optimal choices with multi–dimension under uncertainty. In

their recent intersting paper, Malevergne and Rey (2005) generalize risk vulnerabil-

ity to the case that decision makers have bivariate utiity functions, and they call it

“cross risk vulenerability”. The purpose of this note gives the sufficient conditions

of cross risk vulnerability, which are correspond to the well–known sufficient condi-

tions of risk vulnerability above mentioned. A best way to understand the effects of

background risks in multi–dimensional decisions under uncertainty is a generaliza-

tion of results in one–dimensional as possible as we can, baecause we obtain many

understaings regarding them in last two decades. One importance of our results

comes from this point of view.

2 Preliminary Analysis

First of all, we give some preliminary analyses to derive sufficient conditions of

cross risk vulnerability introduced by Malevergne and Rey (2005). Our setting is

identical with them, and therefore we borrow their notaions. Let us consider a

dicision maker (DM) with a bivariate (von Nuemann Morgenstern) utility function
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U : R × R → R. We impose standard assumptions of the utility functions U : (i)

U1, U2 > 0, (ii)U11, U22 ≤ 0, and (iii) U12 ≤ 0. Here subscripts denote partial and

cross derivatives of corresponding arguments, i.e. Ui denotes the partial derivative of

the i–th argument, and Uij denotes the cross derivative of the i– and j–th arguments.

The assumption (ii) and (iii) mean risk and correlation aversion, respectively. The

notion of correlation aversion was initiated by Epstein and Tanny (1980). In a

recent paper, Eeckhoudt, et al. (2005) characterized some desiable properties of

cross derivatives of bivariate utility functions using preferences over the fifty–fifty

lottery suggested by Eeckhoudt and Schlensinger (2005). As Malevergne and Rey

(2005), the first and second arguments stand for wealth and health, respectively.

We define the cross derived utility function toward health background risk ε̃ as

V (x, y) = E[U(x, y + ε̃)]. (1)

The health background risk ε̃ is a random variable followed by the distribution

function F : [ε, ε] → [0, 1]. For the sake of simplicity, we assume that the distibution

function F is differentiable, that is the density function f(ε) = F ′(ε) exists. The

cross derived utility function is a slight modification of derived utility function for

univariate utility functions defined by Kihlstrom, et al. (1981) and Nachman (1982).

The Arrow–Pratt (absolute) risk aversions toward a wealth risk of the utility function

U and V are given as

A(x, y) := −U11(x, y)

U1(x, y)
, and AV (x, y) := −V11(x, y)

V1(x, y)
. (2)

Following Malevergne and Rey (2005), we define the cross risk vulnerability:

Definition 2.1. The utility function U is cross risk vulnerable, if any unfair health

background risks make the DM in a more risk averse manner:

E[ε̃] ≤ 0 ⇒ AV (x, y) ≥ A(x, y), ∀(x, y). (3)

As a slight generalization of the notion introduced by Kimball (1990), we define

two precautionary premiums toward a zero–mean health background risk:

E[U1(x, y + ε̃)] = U1(x, y −ΨH) = U1(x−ΨW , y). (4)

We call ΨH a precautionary premium in health, and ΨW a precautionary premium

in wealth, respectively. It is obvious that both the precoutionary premium ΨH and

ΨW are the functions of x, y, ε̃, and U , but we suppress them in order to simplify

the notation. Using the Arrow–Pratt approximation, we obtain the precautionary

premium in health and wealth as follows:

ΨH ' 1

2

(
−U122(x, y)

U12(x, y)

)
E[ε̃2] =

1

2
PH(x, y)E[ε̃2], (5)
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ΨW ' 1

2

(
−U122(x, y)

U11(x, y)

)
E[ε̃2] =

1

2
PW (x, y)E[ε̃2]. (6)

PH and PW can be interpreted as Kimball (absolute) cross prudence in health

and wealth toward a health risk. As recalling that U12 and U11 is positive, this

(approximation) equality imlies that

ΨH(W ) ≥ (≤) 0 ⇔ U122(x, y) ≥ (≤) 0. (7)

Eeckhoudt, et al. (2005) justified the nonnegativity of U122, and they call it cross

prudence in wealth.

3 Main Result

In the remainder of the paper, we give three sufficient conditions of cross risk vul-

nerabulity, thier remarks, and proofs.

3.1 Propositions and their Remaks

Proposition 3.1. If the Arrow–Pratt risk averison is decreasing and convex in the

second argument, i.e. A2(x, y) ≤ 0 and A22(x, y) ≥ 0, then a utility function U is

cross risk vulenrable.

Proposition 3.2. If the Arrow–Pratt risk aversion is decreasing in the second ar-

gument, and the Kimball prudence in halth is decreasing in the first argument, i.e.

A2(x, y) ≤ 0 and PH
1 (x, y) ≤ 0, then a utility function U is cross risk vulenrable.

Proposition 3.3. If the Arrow–Pratt risk aversion is decreasing in the first and

second argument, and the Kimball prudence in wealth is decreasing in the first

argument, i.e. A1(x, y) ≤ 0, A2(x, y) ≤ 0 and PW
1 (x, y) ≤ 0, then a utility function

U is cross risk vulenrable.

Proposition 3.1 was already obtained by Malevaergne and Rey (2005) in a com-

plete different way. They obtained it as a corollary of proposition 1 and 3 in their

paper. In contrast to them, we prove it in a direct way. While they did not give a

comment, Proposition 3.1 is a natural generalization of the result that is a sufficient

condition of risk vulenerablity in the case of univariate utility functions, which is

determined by Gollier and Pratt (1996). Indeed, our proof provides for a different

proof of their result. As our proof is similar to Eeckhoudt and Kimball (1992) which

derived a sufficient condition of risk vulenerablity in the case of univariate utility

functions, Proposition 3.2 and 3.3 can be viwed as a natural generalization of the

result derived by Eeckhoudt and Kimball (1992). This implies that the conditions

of the proposition 3.2 and 3.3 correspond to the standard risk aversion in the case

of bivariate utility functions, which is introduced by Kimball (1993).
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3.2 Proofs

The proofs of proposition 3.2 and 3.3 are same except for some minor points, hence

we omit the proof of proposition 3.3.

Proof of propsition 3.1: Let us define the following function for ε ∈ [ε, ε]

f̂(ε) :=
U1(x, y + ε)f(ε)∫ ε

ε
U1(x, y + ε)f(ε)dε

. (8)

Since f̂(ε) is positive for all ε ∈ [ε, ε] and F̂ (ε) =
∫ ε

ε
f̂(ε)dε = 1, F̂ : [ε, ε] → [0, 1] can

be viewed as a distribution function defined over the compact support [ε, ε]. The

correlation aversion implies that U1(x, y + ε) ≥ U1(x, y + ε′) for all ε, ε′ ∈ [ε, ε] with

ε ≤ ε′. Hence, we have that

f(ε′)
f(ε)

≥ U1(x, y + ε′)f(ε′)
U1(x, y + ε)f(ε)

⇔ f(ε′)
f(ε)

≥ f̂(ε′)

f̂(ε)
. (9)

The equation (9) means that F dominates F̂ in the sense of monotone likelihood

ration dominance. The monotone likelihood ratio dominance is a strong stochastic

dominance of the first–order stochastic dominance. Since the expectation of the

health background risk is non–positive, we have Ê[ε̃] ≤ E[ε̃] ≤ 0. For details of

stochastic dominance, the intersted readers are refereed to e.g. Shaked and Shan-

thikumar (1994) or Müller and Stoyan (2002). Using this distirubtion function, we

have

AV (x, y) =

∫ ε

ε

A(x, y + ε)f̂(ε)dε (10)

= Ê[A(x, y + ε̃)], (11)

where Ê denotes the expectation operator with respect to the distribution function

F̂ . By the equation (11), we obtain that

AV (x, y) = Ê[A(x, y + ε̃)] (12)

≥ A(x, y + Ê[ε̃]) (13)

≥ A(x, y). (14)

The first inequaltiy follows from the Jensen’s inequality, the second inequaliy follows

from Ê[ε̃] ≤ 0 and A2 ≤ 0. ¤

Proof of propsition 3.2: The health background risk ε̃ decomposes to ε0 and ε̃1, i.e.

ε̃
d
= ε0+ ε̃1, where ε0 = E[ε̃] ≤ 0 and E[ε̃1] = 0. By the definition of the precautionary

premium in health ΨH , we have that

V1(x, y) = U1(x, y + ε0 −ΨH), (15)
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V11(x, y) = U11(x, y + ε0 −ΨH)− U12(x, y + ε0 −ΨH)ΨH
x , (16)

where ΨH
x denotes the partial derivative of ΨH with respect to x, i.e. ΨH

x = ∂ΨH/

∂x. Using the equation (15) and (16), we obtain that

−V11(x, y)

V1(x, y)
= −U11(x, y + ε0 −ΨH)− U12(x, y + ε0 −ΨH)ΨH

x

U1(x, y + ε0 −ΨH)
(17)

= −U11(x, y + ε0 −ΨH)

U1(x, y + ε0 −ΨH)
+

U12(x, y + ε0 −ΨH)

U1(x, y + ε0 −ΨH)
ΨH

x (18)

≥ −U11(x, y + ε0 −ΨH)

U1(x, y + ε0 −ΨH)
(19)

≥ −U11(x, y)

U1(x, y)
= A(x, y). (20)

As U1 > 0, U12 < 0, and PH
1 ≤ 0 is equivalent to ΨH

x ≤ 0, we have that the second

term in the equation (18) is non–negative. Hence, we have the first inequality. The

second inequality follows from A2 ≤ 0 and y > y + ε0 −ΨH . ¤

4 Concluding Remarks

In this note, we give sufficient conditions of cross risk vulnerability. These conditions

are a generealization of the well–known sufficient conditions of risk vulnerability:

standard risk aversion and decreasing and convex risk aversion. Since most deci-

sions under uncertainty are multi–dimensional, we need to understand the effects

of background risks in multi–dimensional decisions under uncertainty. A best way

to understand them generalize those of one–dimesional decisions under uncertainty.

This paper can be regarded as one of a series of studies. We have many future re-

serches to understand the effects of background risks in multi–dimensional optimal

choices under uncertainty, since we have a great number of understandings regarding

them in one–dimension.
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