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Abstract

This paper presents an endogenous growth model with population
growth and an inter-generational spillover of human capital: we con-
sider the “local home environment externality conceptualized by Galor
and Tsiddon (1997a). The model will generate a negative relationship
between the population growth rate and the per capita GDP growth rate,
which is also present in the data. Furthermore, multiple equilibrium paths
will result. As far as we know, this is the first paper that derives a mul-
tiplicity of steady growth paths in a model with two sources of growth
and the Jones technology. The paper also casts a paradox that the GDP
growth rate may be higher in the society without the externality than the

one in the economy with externality.
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1 Introduction

Under the presumption that population grows in the real world, this paper
presents an endogenous growth model which is useful to analyze the relation-
ship between the population growth rate and the per capita GDP growth rate.
Following the recent developments in the endogenous growth literature, we con-
sider two engines of growth: Romer-type R&D activities and human capital
accumulation. Also, following the literature, we adopt the Jones technology to
eliminate the “scale effects” from the model. We will show that the model will
generate a negative relationship between the population growth rate and the per
capita GDP growth rate, which is also present in the data.! Furthermore, multi-
ple steady growth paths will result even though we adopt the Jones technology.
To obtain the result, the “local home environment externality” conceptualized
by Galor and Tsiddon (1997a) plays a crucial role. Interestingly, our stabil-
ity analyses with a numerical method casts a paradox that the GDP growth
rate may be higher in the society without the externality than the one in the
economy with externality.

The literature of R&D-based growth model can be divided into three stages.?
The first stage models include Romer (1990), Grossman and Helpman (1991)
and Aghion and Howitt (1992). They consider endogenous technological changes
and depict how the economy can show long-run growth. However, due to their
assumption of linearity of the innovation functions in R&D sectors, a problem
of “scale effects” arises: population growth accelerates the GDP growth rate so
that we cannot include the population growth into the model.

Second stage models try to overcome these scale effects by considering the
Jones technology (Jones 1995a; 1995b). The Jones technology is a non-linear
function of technology-creation-process with labor inputs. This specification is
consistent with empirical studies on the relationship between R&D inputs and
creation of new technologies. While the Jones technology provides a merit that
the scale effects can be eliminated and economists can introduce population
growth into the model, there is a demerit that if there is no population growth,
the economy does not show long-run growth. That is, the GDP growth rate in
these second stage models is positively correlated with the population growth
rate. Unfortunately, as it is well-known, this property is not supported by

empirical findings (Kelley; 1988, Kelley and Schmidt; 1995 and Ahituv; 2001,

!Dalgaard and Kreiner (2001) and Strulik (2005) construct models in which the population

growth rate and the per capita GDP growth rate can be positively correlated.
2See Arnold (1998).



among others): empirical studies report a negative (or no) correlation between
the population growth rate and the per capita GDP growth rate. Moreover,
Easterly (1994) and Quah (1996, 1997) suggest that the world economy exhibits
complicated patterns of the per capita GDP growth. With this argument, we
can easily deduce that the per capita GDP growth rate is far from being tied to
the population growth rate.>

Finally, third stage models consider two engines of endogenous growth to
capture a range of general equilibrium effects on GDP growth. Howitt (1999)
and Segerstrom (2000) consider two types of R&D activities: vertical and hori-
zontal R&D technologies. Jones (2001) allows an endogenous choice of fertility
and population growth, thus extending the framework of the second stage mod-
els. Arnold (1998), Funke and Strulik (2000) and Strulik (2005) consider en-
dogenous human capital accumulation depicted by the well-known Uzawa-Lucas
technology in the framework of Romer-type R&D-based growth model.

Following the spirit of Arnold (1998), Funke and Strulik (2000) and Strulik
(2005), we develop a model with R&D activities and human capital accumula-
tion. Because we adopt the Jones technology in R&D sector, our model is free
from the scale effects and we can analyze the relationship between the popula-
tion growth and the per capita GDP growth as Dalgaard and Kreiner (2001)
and Strulik (2005).* One major difference between these previous studies and
the present paper is that aggregate human capital can be augmented in two
ways, namely the Uzawa-Lucas type human capital investment and the exoge-
nous population growth. The latter mechanism is rather “automatic” and it
occurs because we consider spillover effects of human capital among genera-
tions: newly born agents are endowed with positive amount of human capital
when they enter into the production process. This effect 1s conceptualized by
Galor and Tsiddon (1997a) as the "local home environment externality”.5 Also,
we can interpret the effect from the view point of Azariadis and Drazen (1990)
as the “inter-generational spillover of human capital”.®

An important finding under our framework is that the per capita GDP
growth rate reflects whole range of general equilibrium effects rather than being

tied to the population growth rate. Hence, our model has consequences on sug-

8 Galor and Weil (2000) construct a model in which historical patterns of economic growth
are explained with a non-monotonic relationship between the population growth rate and the

technological development. See also Galor (2005).

4Funke and Strulik (2000) adopt a linear function in the R&D sector while Arnold (1998)
do not consider the population growth.

5See also Galor and Tsiddon (1997b).

61n Strulik (2005), new agents are endowed with no human capital.



gestions of Easterly (1994) and Quah (1996, 1997). In addition, the correlation
between the population growth rate and the per capita GDP growth rate can
be negative under certain parametric restrictions. This outcome accommodates
to empirical findings of Kelley (1988), Kelley and Schmidt (1995) and Ahituv
(2001).

The novelty in the present paper is that multiple steady growth paths may
generate even when we adopt the Jones technology.” In one equilibrium path,
aggregate human capital is augmented solely through exogenous population
growth (corner solution case). In the other equilibrium path, there are positive
amounts of human capital invested in the Uzawa-Lucas technology (internal so-
lution case). Under plausible parameter sets, we find with a numerical method
that both paths can be supported as optimal growth paths. As far as we know,
this is the first paper that derives multiple equilibria in a model with two en-
gines of growth and with the Jones technology. We will argue that our model
will have potential to give a theoretical reason to the polarization phenomenon
discussed by Krugman (1991), Lucas (1993) and Howitt (1994), among others.
Then, we hold that the model could integrate two major empirical topics in eco-
nomic growth literature: the negative correlation between the per capita GDP
growth rate and the population growth rate and the polarization phenomenon.
Interestingly, our stability analyses also casts a paradox that the GDP growth
rate may be higher in the society without the externality than the one in the
economy with externality.

The paper is organized as follows. In Section 2, we set up the model. Steady
growth paths are analyzed in Section 3. Stability analyses are conducted in

Section 4. Section 5 concludes.

2 The Model

Our model adopts a Romer-type (1990) R&D production structure, Benhabib-
Perli-Xie-type (1994) intermediate goods and final goods production structures
and Uzawa (1965) and Lucas (1988) type human capital accumulation process.
There are three production sectors: final goods sector, intermediate goods sec-
tor, and R&D sector; and four factors: raw labor, human capital, physical
capital, and knowledge measured by the variety of intermediate goods.

We consider a continuous time model and we will omit the time script

throughout the paper if there is no fear of confusion.

7See section 3 for the discussion about the Jones technology and multiple equilibrium paths.



2.1 Final Goods Production Sector

The final goods sector is competitive. The production function is homogenous

of degree one and is given by
A C

Y = L*Hy (/ x(jﬁdj) ;o By e(0,1), (=1, and a4+ f+y=1,
0

where Y, Hy, L denote the amount of final goods production, human capital
employed in the final goods sector, and the raw labor force, respectively. (j)
denotes the amount of intermediate goods supplied by an intermediate goods
firm with index j while the variety of the cluster in the intermediate goods

sector 1s measured by A.

The first order conditions (FOCs) in this sector are given as % = wr, % =
wy, and % = p(j), where wr is the competitive wage paid to the raw labor

force, wy is the wage paid to human capital devoted to the final goods sector,
and p(j) is the price of intermediate good supplied by an intermediate good firm

with index j.

2.2 Intermediate Goods Production Sector

Intermediate goods are used to produce the final goods. They are assumed to
be supplied monopolistically. One unit of the intermediate good is produced
by n units of physical capital, into which the final goods can be translated by
one-to-one manner. Hence, the profit of an intermediate firm with index j 1s
given by 7(j) = p(j)x(j) — rnaz(i), where r denotes the rental price of capital.
By solving the optimization problem of the intermediate goods firm with the

optimal conditions in the final goods sector, the following conditions result:

2 o A 5 -1 -2
x(j):[:?] “\renf (/0 x(j)?dj) . and p(j):%.

In this paper we assume the symmetry in the intermediate goods sector. This
assumption results in the equality of the size of intermediate goods firms. Hence,
we have K = fOA nx(j)dj = nAwx, where K denotes the supply of physical capital.
From this condition and the structure of the final goods production sector, we

obtain the optimal production of the final goods and the market prices as

Y =g VLY Hy ASTYRT, (1)
and
2
7Y Y Y W=7 Y
= —— —a— =pf— d = ——. 2
r CEK wy, aL, wy ﬁHY and R T (2)



2.3 R&D Activities

Following the literature, the R&D process is set up as a variety-creating process
in the intermediate goods sector. We introduce the Jones technology in the

process so that the evolution of a new variety (A) is given by
A=BAXHS, B>0, ¢€(0,1), xe€l0,1), (3)

where H 4 denotes the amount of human capital supplied to the R&D activities.
The creation of a new variety exhibits the Inada property: limg, 0 % =
and limgr, o0 % = 0. By this structure, the model has no scale effects and
we can introduce the population growth into the model.

The term of patent for a newly created variety is assumed to be permanent.
Hence, the value of R&D (denoted as v) can be designated as the present value
of perpetual monopoly profits: v(t) = ftoo e N T(s)dsﬂ'(r)dr. By differentiating
this equation with respect to time (¢) and by applying the Leibniz’s rule, we

obtain the well-known no-arbitrage condition which is given as
v =T+ 0. (4)

Finally, free entry into the R&D sector is secured so that the cost and the
benefit of the R&D activity be equal, which provides the following condition

UA = wAHA,

where w4 is the wage paid to human capital devoted to the R&D sector. In
equilibrium, wy = wy = wy must hold. Here, wg can be interpreted as the
market price of human capital. Substituting the above equation into (3) gives

H?
iR (5)
BAX

vV=wg

2.4 Population Growth and Human Capital Accumulation

In our model, representative agent is endowed with one unit of raw labor force
and a certain amount of human capital. As stated above, raw labor force is
in-elastically supplied to the final goods production sector. Furthermore, the
population of the economy grows at an exogenously given rate n. The population
growth enhances the supply of row labor force (L) constantly.

In this economy, the evolution of aggregate human capital depends on two
factors. The first element is human capital investment through Uzawa-Lucas

technology. And the second element is given by the assumptions of population



growth and of spillover effects in human capital accumulation process. Assume
that we do not consider the second element. Then, the evolution of aggregate

human capital will be obtained as
H=>bHyg, b>0

where H and Hp are the amount of human capital and human capital supplied
to the Uzawa-Lucas human capital creation process, respectively. b measures
the efficiency in Uzawa-Lucas technology.

In this paper, we introduce spillover effects of human capital among gener-
ations and the newly born agents are endowed with positive amount of human
capital when they enter into the production process. This effect is conceptual-
ized by Galor and Tsiddon (1997a) as the “local home environment externality”
in their discrete time model.® Although parents’ transfer of education to chil-
dren, that is, the spillover of human capital, is determined endogenously in
Galor and Tsiddon (1997a), we consider an exogenous determination on how
much children learn at home from their parents. That is, the intensity of the
spillover effects is determined by a parameter. By taking the effects into con-

sideration, the evolution of aggregate human capital can be written as
H=bHg+(1—-8nH, §€]0,1] (6)

where § represents the intensity of ”local home environment externality”. H is
the current amount of human capital in the economy and nH captures the in-
stantaneous amount of human capital augmented because of population growth
when new agents have as much human capital as old agents. See here that
when & € [0,1) (spillover case), aggregate human capital increases even with-
out human capital investment (Hg = 0). On the other hand, when ¢ = 1 (no
spillover case), (6) reduces to H = bHy and one needs human capital investment

(Hg > 0) to increase aggregate human capital .’

2.5 Optimization Problem of Agents

The utility of a representative agent is given by

[e’e} l-0 _
/ Me_Ptdt (0- > 0)’
0

l1—0

8 An alternative way to interpret the effect is to consider the inter-generational linkage of

human skills in Azariadis and Drazen (1990).
9Strulik (2005) consider the no spillover case and there are no multiple steady growth paths

in his model.



where ¢, p and o denote the consumption by a representative agent in the
dynasty,'? the subjective discount rate, and the inverse of the elasticity of inter-
temporal substitution, respectively. Throughout the paper we will impose the
following condition about & and p to ensure positive investments on human

capital if there are no spillover effects in human capital accumulation process

condition 1: b—p>0.

The budget constraint of financial assets in per capita terms is given by
l%f:rk—i—wH(hA—i—hy)—l—wL—c—nk, (7)

where k (= K/L) is the per capita financial assets. hy (= Hy/L) and hy
(= Hy/L) represent the per capita human capital devoted to the R&D ac-
tivities and the per capita human capital devoted to produce the final goods,
respectively.

By considering the population growth and the exogenous local home envi-

ronment externality, we can obtain the per capita human capital evolution when

we divide through (6) by L as
h = bhy — dnh, (8)

where h (= H/L) and hy (= Hp/L) are the per capita human capital and
the per capita human capital supplied to the human capital creation process,
respectively.tt
From the objective function and two constraints, the optimal condition about
consumption is the usual Keynes-Ramsey rule given by
é

oo =r—n—p. (9)

In addition, the optimal condition for the human capital wage reads

w—HSr —b—(1—-23)n, with equality whenever hg > 0. (10)
WH

10Hence-force, per capita variables are denoted by lower-case letters.
11'We can interpret (8) as the following way. If § = 0 (the spillover is perfect), (8) reduces

to h = bhg, which means that the per capita human capital is not diluted even with the
presence of growing population. This is a simple reflection of the fact that when § = 0, the
newly born agents have the same amount of human capital as their ancestor have. In reality,
the spillover effect will not be perfect so that in per capita term the human capital decreases
due to the population growth. This effect is captured by —énh in (8). Notice that in the
evolution of financial wealth the diluting effect of population growth is perfect so that in (7)

we have the term of —nk instead of —énh.



This condition indicates that the growth rate in human capital wage must be
sufficiently high compared to the interest rate in order to ensure positive invest-
ment in the human capital creation process.

Finally, the transversality conditions are given as follows:
lim e ™ \ky =0, and lim e psh; =0, (11)
t— 00 t—oo

where A and p are the shadow prices of per capita financial assets (k) and per
capita human capital (h), respectively.

The equilibrium dynamics of the economy can be depicted by (2), (4), (5),
(7) — (11). TFinally, the market clearing condition of human capital imposes
H = Hy + Hs + Hy. For later reference, we define ug = Ha/H, ug = Hy/H
and uy = Hy /H so that ua + uy +ug = 1.

3 Analyses of the Steady Growth Paths

In this section we confine our attention to the case of the steady growth path
(SGP), and derive some features of the model. In the present model, we have two
SGPs; one path for the internal solution case (with Hy >0, H4 > 0, Hg > 0)
and the other path for the corner solution case (with Hy > 0, Hy > 0, Hyg = 0).

To understand the importance to consider the local home environment exter-
nality and population growth at the same time, with the presence of the Jones
technology, assume that there is no local home environment externality. In this
case, if Hp = 0, there is no growth of (aggregate) human capital. This situa-
tion implies that the variety in intermediate goods should be constant over time
(A/A = 0) along this SGP.}? From the structure of the Jones technology and
A > 0, this means H4 = 0. However, H4 = 0 in front of the Jones technology
is not optimal because the marginal benefit of infinitesimal increase of H4 from
zero is infinite with the Jones technology (limg, 0 % = 0). Then, when we
impose the Jones technology the internal solution case will result as the only
optimal path without the local home environment externality.

In our model, local home environment externality is taken into consideration.
Hence, even if Hy = 0 there can be positive growth in aggregate human capital.
Hence, even with the Jones technology, corner solution case could be optimal
under certain parameter restrictions. Moreover, it is easy to see that both SGPs
can be realized under the same parameter set: we will have multiple SGPs in

our model.

12To see this, refer to (12) below.



In the following sections, we denote the growth rate of the variable z by g,

in the internal solution case and by ¢, in the corner solution case.

3.1 The Internal Solution Case

First assume the internal solution case. In this case, we have Hg > 0 so that
(10) is satisfied with equality.

From (8), we can see that g = ¢gp,, on the SGP. Therefore, g, = gm, =
9Hy = gu are easily derived.’® From (3) and gg, = gg, the following condition

18 necessary:

ga = %gﬂ. (12)

(12) relates the growth rate of variety (ga) to the growth rate of aggregate
human capital. Notice that the Jones technology affects g4 not through the
level parameter (B) but through the efficiency parameters (x and ¢).

From the resource constraint of the final goods, K=Y — C, we have g¢ =
9K = gy, where C' = cL is the total consumption. From this and the production

function of the final goods, gy is obtained as

gy = {an+ B9 +(( —7)ga}. (13)

=7
By combining (12) and (13), we obtain the following relationship between gy

and ggr
1

-7

9y =7 {an +Vgpg}, (14)

where ¥ = 3 + fi¢(> 0).

-X
Next, with (10) and wg = ﬁf}/—y, we have

gy —gg =r—b—(1—-30)n. (15)
Moreover, on the SGP, (9) is written into
1
v —n=1(r—n—p) (16)
o
From (15) and (16), we obtain another relationship between gy and gpg as
gn=(1—-0)(gy —n)+ (1 =8n+b—p. (17)

As it can be seen from (14) and (17), the GDP growth rate (gy) and the

aggregate human capital growth rate (gz) are inter-dependently determined,

13The proof of uniqueness of allocation of H among H,, Hy and Hy on the SGP is

straightforward and is available from the authors upon request.



which is not the case in Arnold (1998). This is because we consider a general
CRRA felicity function rather than a log-separable one.
From (14) and (17), gy is obtained as

a+ (oc—86)T

N\
T S ), (18)

gy =

where T = a+ 4 — (1 — 0)¥. We can re-write (18) into a per capita form as

a= 80 D). (19)
where g, is the per capita GDP growth rate and § = % € (0,1). We can
see from (19) that g, is a linear combination of the factor of the population
growth rate n and the factor of contribution of Uzawa-Lucas type human capital
accumulation b— p. Hence, the signs of T and (§ —6) determine the relation ship
between n and g,. Notice here that if T < 0, then an unfamiliar implication
results: in that case, (b — p) affects g, negatively. In this paper we will exclude

this case by imposing the following condition

condition 2: T >0

With the condition 2, we can have a negative correlation between the pop-
ulation growth rate and the per capita GDP growth rate when § —d < 0 is
satisfied. The relationship is supported by empirical findings such as Kelley
(1988), Kelley and Schmidt (1995) and Ahituv (2001).

Next we should investigate conditions to ensure the internal solution ob-
tained above. First, from the internal solution assumption (Hg > 0) and from
(8), h/h = bhg/h — én > —dn. With a little algebra, this condition can be
re-written into

b>p—;—‘;(g—a)\pn. (20)

Secondly, with the transversality conditions (11), a little algebra gives the

other constraint as

b{>}ﬂ\ﬁp—(é—5)n, for{o-<1 . (21)

< l1—0 oc>1

When ¢ = 1, the transversality conditions are automatically satisfied. We
obtain that the SGP of the internal solution can generate under the parameter

space satisfying both (20) and (21).

10



3.2 The Corner Solution Case

This section investigates the corner solution case (Hy = 0). By remembering
that (10) is not satisfied with equality and by replicating the procedure in the
previous section with the condition Hg = 0, we can obtain the GDP growth

rate (gy ) and the per capita GDP growth rate (g,) in the corner solution case

as
ﬁY:a_i\Ij_ﬁ(é—é)n—l—n, (22)

and
7y = 5@ - . (23)

(23) shows that the per capita GDP growth rate exhibits a semi-endogenous
growth property: the growth rate is pinned down to the population growth rate
as in the second stage models.

In turn, we should investigate parametric conditions to generate the corner
solution case. This is done by examining (10) when it holds with inequality.
Because gy, = gy — gm on the SGP, the condition given by (10) can be written
into

Jup =0y — g <r—>b—(1—-¥9)n. (24)

With (9) and the condition that gy = g on the SGP, the following condition
is obtained

olgy —n)=r—p—n. (25)

In the corner solution case, gg = (1 — d)n. Also we can eliminate r and gy

from (25) with (24) and with (22). Hence, we obtain the parametric condition

for the corner solution case as

o
a+f

b>p— (6 — 8)Wn. (26)

Notice that the partition given by (26) is equivalent to the one given by (20) in
the internal solution case.
Finally, a negative correlation between n and g, can be obtained when (§ —

d) < 0 with the condition 2, as in the internal solution case.

4 Stability of the SGPs

In this section, we will investigate the local stability of two SGPs with a nu-
merical method. We calibrate the model in accordance with strains of previous

literature and examine the stability of the dynamical system on the SGPs.

11



4.1 The internal solution case

In the internal solution case, the dynamical system is given by the following

seven equations of seven variables consisting of {L, K, H, A, uy,ua, v}

L = nl, (27)
K = Y(L H K Auy)-C, (28)
U(g_n) = T(L,H,[(,A,UY)—p_n, (29)
UH o~ (L H K, Auy) —b— (1 —&)n, (30)

wH
v+n = (L, H K A uy)v, (31)
H = b(l—uA—uy)H+(1—5)nH, (32)

and

A= BAX(usH)?. (33)

Notice here that (i) ug does not appear in the system because up is determined

by the condition uy + uy + ug = 1 when uy and uy are given, (ii) YV is given
2

by Y = 97V L%(uy H)? A=V K" from (1), (iii) r is given by r = Z-X from (2),
(iv) m is given by 7 = W(CC—_W)% from (2) and (v) wg is given by wgy = ﬁuZH
(uaH)'=%

from (2), or equivalently, wg is given by the condition v = wg —F5x— from
(5).
In order to describe the system with variables which are stationary on the
steady growth path, we define the following variables'*
C = K H
k R

S — A and =
LTS TS AT LTS TS AT AT

¢

(34)

By using these variables, the dynamical system of the internal solution case
can be reduced to the system of five equations consisting of five variables:
{¢,¢, l?:, w4, uy . By construction, these five variables are constant on the steady
growth path.

The intensive form dynamical system can be obtained as follows!®

an Bl —=0)n+6b(1 —uy —ua) ((—7)
1 _

&
kEoo1—x -7 (1—=7)

Buﬁ{‘z’] l?:,
(35)

s [L7 Yl -1
¢ = |[={=0Tu k") —p—n}t+n
o ¢
1 — 1— (1—7) 4 ’
v v v
14See (12) for the structure of ¢, and (13) for the structure of & and k.
158ee appendix a for a detailed description on how we have the result.

12



E={b(l—us—uy)+(1-d)mn-— %Buﬁ@}g, (37)

up = [—b(l —ug—uy)+b+¢(l1—-0)n+ {X - MU—Y} Buﬁg‘z’] 1A

B ua 1—¢’
(38)
and
UY = —b(l—uA—uY)—l—W (39)
—~\B . g
+7(C1 _'% uhe? + —— LU g)} uy .

Next, in order to analyze the local stability of the dynamical system in the inter-

nal solution case, we will derive the steady-growth-path-values of {uy?" uJF £597 ¢59p, l?:sgp}.

The SGP values are obtained as

s s (r_gY +gA)6C !
uAgp:(l—uh?p){1+—7(C_7)gA , (40)
W =1 — S — g (41)
s gaNs 1

o= ()} z

~ rCU’Y %
k9P = | =7 43
() )

and

59 — (;_g _ gy)];sgp’ (44)

. . . . _(1=§
where r denotes the interest rate 1n the inner solution case and uifp = w.

4.2 The Corner Solution Case

In the corner solution case, the dynamical system is given by the following six

equations of six variables consisting of {L, K, H, A, uy, v}

L = nL, (45)
K = Y(L,H K, Auy)-C, (46)
a(g_n) = (L, H,K,Auy) —p—n, (47)
v+m = r(L,H K, A uy), (48)
H = (1-6)nH, (49)
and
A= BAX{(1 — uy)H}". (50)

13



Notice here that (i) ug and ua do not appear in the system because ug = 0

and w4 is determined by the condition u4 4+ uy = 1 when uy is given,'® (i) Y
is given by Y = n™YL%¥(uy H)? A=Y K" from (1), (iii) r is given by r = %
from (2), (iv) 7 is glven by © = W(CC VY from (2) and (v) v is determined by

{(1—uy)H}'"
BAX

Likely to the internal solution case, we define the following variables in order

=~

v=wy from (5) whereas wyr is given by wyg = ﬁu 7 from (2).

to obtain the intensive form dynamical system in the corner solution case

C = K

Cc= —Q% 5 <=5 ¢ —

LT3 HT= AT LTS HT5 AT

and £ =

1—x )
@

By using these variables, the dynamical system of the corner solution case
can be reduced to the system of four equations consisting of four variables:
{&, Ce, ke, uy .} where the subscript ¢ denotes “corner solution case”. By con-
struction, these four variables are constant on the steady growth path.

The intensive form dynamical system in the corner solution case can be

obtained as follows!”
2
te = [% %(77 Ty kT —p—n}+n
o BA=8) (=) ¢¢]~
1_771 T (1_7)3(1 uy.e)?E8 | €, (52)
Ce 1—4 -
ke = [77 uyckv I ) — 16771— A _V)n— Ei 1;3(1—11;/76)‘1’{?] ke,
. (53)
€= {(1=0)n = B~ ur )€ e (54)
and
ive = [to-p0-0 -+ T s )

Y(C—7) uye 3 606 uy,(1 —uy,)
B 1wy PO T G By

Next, in order to analyze the local stability of the dynamical system in the corner

+x—C+v-

solution case, we will derive the steady-growth-path-values of {usgp £29P ¢29p, l?:ggp}.

They are determined as

Q
uy’t = Trq where Q= B((r — gy + ga)/(v(C — ¥)g4) (56)
s _ gA % 1
gcgp - (E) W’ (57)

16Tt is easy to see that since u 4 drops off the dynamical system, the dimension of the system

reduces in the corner solution case to six from seven in the internal solution case.
17See appendix b for a detailed derivation.
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; rop \'7
s9p
c (m;%fz)ﬁ) | (58)

7

C gk, (59)

and

=

where 7 1s the interest rate in the corner solution case.

4.3 Calibration and Discussion

We calibrate our model as follows. First, following Benhabib et al. (1994),
we can designate the labor share (Sr), the share of human capital (Sg) and
the capital share (Sk) in the final goods sector by Sp = a/(a + B8+ (72/4’)),
Sy = ﬁ/(a—i—ﬁ—l—('yz/(’)) and Sg = (72/4’)/(@—1—6—1—(72/(’)), respectively. We set
Sp = 0.25, Sy = 0.5 and Sk = 0.25 following Benhabib et al. (1994). ¢ =2 is
cited from them as well. These conditions require that o = 0.15, 3 = 0.30, and
~ = 0.55. We set the subjective discount rate p to be 0.04, and the population
growth rate n to be 0.03. The latter figure is drawn from Kortum (1997). We
set 7 = 0.34, which gives some 25% markup in the intermediate goods sector,
as is the case of Benhabib et al. (1994). b is set to be 0.05 from Lucas (1988),
Benhabib and Perli (1994) and Funke and Strulik (2000). We set o = 0.9. ¢
and y must be determined such that the Jones technology exhibits diminishing
returns to scale and we choose ¢ = 0.3 and y = 0.5. The level parameter in the
R&D process is set to be B = 1.

Finally, 6 should be determined. This is the parameter to determine the
intensity of spillover effects in human capital accumulation process. We examine
with § = 0.8 and 6 = 0.9. We will investigate the case § = 1 (no spillover case)
in order to compare the result with those in the economy with the local home
environment externality.

Table 1 shows some key economic variables which result from the parameter
sets. Notice also that the condition 2 is satisfied with these parameters. The sign
of § — ¢ is negative so that the population growth affects the per capita GDP
growth rate negatively, which 1s also present in the data. Most importantly,
conditions (20), (21) and (26) are satisfied so that we have multiple SGPs under
the parameter sets.

Now we examine the local stability of two SGPs.1® In the internal solution

case, the system consists of {£, ¢, 127, ua,uy } and there are three jump variables

18 The matlab codes to calculate the roots of the system are available from the authors upon

requests.
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and two state variables. On the other hand, in the corner solution case, the
system consists of {&, &, l?:c, uy.} and there are two jump variables and two
state variables. Because we adopt the production structure of Benhabib et al.
(1994), it seems that local indeterminacy will result.'® However, our investiga-
tions will show that the SGP of the corner solution is robustly saddle stable,
and that the SGP of the internal solution case will be either saddle stable or
unstable in the sense that there are too many explosive roots. At this point,
we suspect that this contrast between Benhabib et al. (1994) and the present
analysis is attributable to assumptions in R&D process; there are scale effects in
Benhabib et al. (1994) while we adopt the Jones technology thereby eliminating
the increasing returns effects in the R&D process, which would be a chief source
of indeterminacy in Benhabib et al. (1994).

Table 2 shows the eigen values of the matrix which we obtain by linearizing
the dynamical systems around the SGPs when 6 = 0.9 and § = 0.8. As table
2 suggests, when § = 0.9 both of the SGPs are locally saddle stable. With
the results it can be said that both SGPs can be realized as optimal paths. In
the case where we have multiple equilibria, the equilibrium path to be realized
depends on the self-fulfilling expectations of households; and hence, our result
provides a reason to explain the polarization of economies discussed by Krugman
(1991), Lucas (1993) and Howitt (1994). We argue that multiplicity in human
capital investment decisions could cause the phenomenon.

If 6 = 0.8, the situation changes (see table 2). In this case, the SGP of the
internal solution case cannot be realized as an optimal path because the number
of unstable roots is bigger than the number of the jump variables in the system.
The SGP of the corner solution case is still locally saddle stable. In this case,
though the economy potentially has two SGPs, only the corner solution path
will realize. In this case, our model would have consequences on the discussion
by Lucas (1993): we may need a miracle to attain a higher growth rate with
positive investments on human capital.?’

It is interesting to compare above results with the case where we have no
spillover effects (6 = 1). In the case of § = 1, we do not have multiple equilibria
and only the internal solution case will result. The key economic variables are

in table 3. As tables 1 and 3 suggest, the GDP growth rate in the economy

191n the present model, there will be no mechanism to bring indeterminacy from the Lucas-
type human capital production process because in the present model there is no externality

of human capital in the final goods production sector. See also Behnabib and Perli (1994).
20 The probability that the internal solution case realizes is zero in this case in the Lebesgue

sense.
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when § = 1 is higher than that of the corner solution case when § = 0.8.
Moreover, the SGP when ¢ = 1 is locally saddle stable (see table 4). This result
casts a paradox: it may seem that if there is positive externality in human
capital accumulation process, the local home environment externality, then the
growth rate will be higher than the one we have when there is no local home
environment externality. However, our results hold that i1t is not always the
case. The economy may be trapped in a slowly growing path without human
capital investments due to the externality.

Actually, the situation that the growth rate in the society may be low when
the local home environment externality matters is illustrated by Galor and Weil

(2000). Quoting Schultz (1964), they argue that

-+ when productive technology has been constant [and low] for
a long period of time, farmers will have learned to use their re-
sources efficiently. Children will acquire knowledge of how to deal
with this environment directly from observing their parents, and
formal schooling will have little economic value ---. [Oded Galor
and David N. Weil, “Population, Technology, and Growth: From
Malthusian Stagnation to the Demographic Transition and Beyond,”
p810]

This argument will be, again, a reflection of difficulty to attain “modern eco-

nomic growth” through the augmentation of human capital.

5 Concluding Remarks

This paper constructs an endogenous growth model with R&D and human cap-
ital accumulation following the line developed by Arnold (1998), Funke and
Strulik (2000) and Strulik (2005). We allow for exogenous population growth
and the local home environment externality of human capital. Under these
assumptions, we obtain a negative correlation between the population growth
rate and the per capita GDP growth rate. Moreover, we show that multiple
equilibria might generate. Hence, our model would have consequences on the
polarization phenomenon which is discussed by Krugman (1991), Lucas (1993)
and Howitt (1994). Then, we argue that the model could integrate two major
empirical topics in economic growth literature. The paper also casts a paradox
that the GDP growth rate may be higher in the society without the externality

than the one in the economy with externality.
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As a final remark, it is important to point out that labor supply is exogenous
in the model. We believe that a promising extension to our model would be to
either endogenize the fertility rate or allow agents to make labor-leisure choices.

We leave these tasks for future research.

6 Appendicies

6.1 Appendix a

We can derive the intensive form dynamical system in the internal solution case
as the following way. First take the natural logarithm of (34) and differentiate

the equations with time. Hence, we will obtain the dynamic evolution of &, ¢

and k as ) ) ) ) )
¢ C a L 8 H (—-pA (60)
¢ C 1—yL 1—yH 1-—7yA
E_K_ o kg o#_(-pd 61)
P K 1—~yL 1—~H 1-—~A4
and . . .
& H 1—xA
> A 2

From (32), we obtain that % =b(1 —ug —uy)+ (1 —0)n. From (33), we see
4 Buﬁ&"z’ and from (27) we have L/L = n. From (29) and (2), & is obtained

) C
as . ,
C 1Y
6:;(?K—p—n)—l—n. (63)
% is obtained from (1) that
Y _ =
== Vuf,k” L (64)

From the resource constraint, we have % = % — % By this condition, we have

D oy, By é
%= uy k T (65)
Substituting these conditions into (60) — (62) ,we will have the following three
equations
. G B(L—38)n+pb(1 —uy —ua) ((=7) , 4.4]7
k:[nvuﬁlﬂl—g— = - Buje?| k,
Y P 1—~ 1—~ (1—y) 4
(66)
3 1 72 - 7=
¢ = [E{?(n Tuy k) —p—n}+n
an  BL—=8n+Bb(1 —uy —ua) (C—7), 4 ]
_ _ - Bu% | ¢, (67
1= 1—~ ) o7
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€= {b(1—us—uy)+(1—8)n— %Buﬁgﬂg. (68)

Next, from (30) and (5) we have

v A s H Wi
I P Y ROl QU S S §
L )
Substituting the value of 7 from (2) into (31), we obtain the growth rate of v
as follows: ( )
v_ =Ny s
S= 5 uABuAg . (70)

Substituting % =6l —uqg —uy)+ (1 —d)n, % = Buﬁ&"z’ and (70) into (69),

we obtain the dynamics of u4 as

g = |=b(l—ua—uy)+b+¢(1-0)n+ {X— MU—Y}Buﬁﬁ‘z’] ua

B ua l—¢
(71)
From (2) we have g—g = % — (% + Z—i) With this condition and (30), the
following equation is obtained
g Y H oy
—b—(1=-)n=—""==— (=4 —). 72
rmb-(i—om= o DLy (72)

From the production function, % =an+pf (% + Z—i) +(¢ - 7)% + 'y%. With
these arguments, we have the dynamics of uy as follows
ot 41— )}
1-p
-8B Yy B
+ﬁﬂfs5¢ + m(n MUk = =) by

(66),(67),(68),(71) and (73) depict the dynamical system of the model.

Next we will derive the SGP values of {uilgp’uzgp’gsgp’gsgp’];sgp}. From

(15), the interest rate on the SGP in the internal solution case is determined as

uy = b1l —uq—uy)+ (73)

2 o

r=gy —gag+b+(1—-3d)n. (74)

From (31), we can have r = % + T. Also, from (2), we have that the growth
rate of m equals gy — ga. With these conditions and the fact that the growth

rates of m and v are same, we have

T

o =Ty tga (75)
We can solve above equation with (2), (5) and ga = B(u’fF£97)? as

_ 9P
% uz’gp =r—gy +94. (76)
A
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From (32), on the SGP we have

it = b1 = 7 ) (- B = bl 4 (1=, ()
s —(1=8)n
Then, we have v}y’ = %

(18). From the resource constraint we obtain

where g is already obtained with (17) and

sgp _ sgp sgp
u =1 —u’ —uif”. (78)

Hence, from (76) and (78) we obtain uy?" and u’{" respectively as

s s - +gA)6C !
w' = (1 — 3P {1+—(r Iy , 79
A ( H ) 7(( . 'Y)gA ( )
and
WP = 1 e (80)

€97 follows immediately due to g4 = B(u/P¢*97)? as

g = (44)F - (31)

Next, from the resource constraint (K =Y — ') and (2) we have

C ¢ csap
K:PV—Z—HY: T (82)
Moreover, from % = 22 and (1) we have
YL (uy H)P ASTYKTE = z—g (83)

From the definition of k¥ and with a little algebra, we have

~ ey )%
k9P = <f . (84)
V2 (WP
Finally, with k%97 &59P is obtained from (82) as

59 — (;_g _ gy)];sgp. (85)

6.2 Appendix b

We can derive the intensive form dynamical system in the corner solution case as
the following way. First take the natural logarithm of (51) and differentiate the
equations with time. Hence, we will obtain respectively the dynamic evolution

of é., ]:76 and &, as
ie C o L B H (¢(-pA

ie C 1—yL 1—~vH 1-—7A4A

(86)
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_[_.( & £ p E C_ﬁé (87)
T K 1—~L 1—~vH 1—~A4

and . . .
. H 1—-xA4
e _H _1-x4 (88)
& H ¢ A

In the corner solution case, the growth rate of aggregate human capital is de-

termined as & = (1 —d)n from (49). Also, the growth rate of the variety is

H
obtained as % = B(1 - uch)‘i’gf from (50) Whereas % = n from (45).
From the resource constraint, we have % = % — =. By this condition, we

have gx = gy = gc = gy on the SGP. From (47) and (2), % is obtained as

C 1Y
Finally, % is obtained as
Y ~
=0y kT (90)
With these conditions, we have
2 1 ’)/2
Ce = [; ?(77 Uycm H—p—n}+n
a pA—-4) (=) ] .
- n— - B(1 — uy . )%€?| é., 91
1—x -~ (I—79) (1= ure) &)
+ Ty— Nc 1-— 6) (C - 7) 7
ke = T k’”l—f—— a n—ﬁ( n— B(1 — uy )% | ke,
|:77 Y,e k’c 1_,}/ 1_,}/ (1_7) ( Yy)gc
(92)
and
. 1 —
€= (1= 0)n = 2B~ wr ) € Yo (93)
With (48), (2) and (5) a little algebra leads to the evolution of uy . as
ive = [(G-0 -9 —apn+ Tmg B o
7(C_7) Uy e Do ch(l_ch)
+x—C+v— . B(1 — uy )%&¢ . : .
(x—=C+7 % 1_wyc) (1 —uy,)%¢ o1t (6= urs

(91) — (94) regulate the dynamics of the system.
Next we will derive the SGP values of {usgp 5;91’,5;91’,1};91’}. From gy =
dc, (22) and (47), the interest rate on the SGP in the corner solution case is

determined as

0
o+

From (48), we can have 7 = ; + T. Also, from (2), we have that the growth

77

(d—d)noc+p+n. (95)

rate of m equals gy — ga. With these conditions and the fact that the growth
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rates of m and v are same, we have
™ _ _
;:T—gy-i-gA. (96)

We can solve above equation with (2), (5), g4 = B{(1 —ui?f)&:97}%, and uy?? +

uzgfé =1 as
s Q _ _ _
W= g where Q=800 — gy +0)/0(C 7)) ()

£59P follows immediately due to g4 = B{(1 — u3?L)£:97 1% as

s _ gA % 1
e = (E) W, (98)

Next, from the resource constraint (K =Y — ') and (2) we have

c w e

K ’_}/2 gy = ];ggp . (99)
Moreover, from % =% and (1) we have
¥
e =1 _ 7€
n L (UY,CH)ﬁAC TKY ! = 7—2 (100)

From the definition of k. and with a little algebra, we have

7.8 7:(777 =
kcgp — (W) . (101)

Finally, with l}ggp 9P is obtained from (99) as

’ c

FBIP = (;—g — Gy ) k3P (102)

(&
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Table 1: Key Economic Variables

Internal Solution Case
6=0.9
T b—0 gy R ua uy ur
0.3330 —0.1564 0.0486 0.0868 0.1535 0.6092 0.2373
6=0.8
T b—0 gy R us uy ug
0.3330 —0.0564 0.0592 0.0963 0.1762 0.5655 0.2584
Corner Solution Case
6=0.9
T b—0 gy R us uy ug
0.3330 —0.1564 0.0178 0.059 0.0527 0.9473 O
6=0.8
T b—0 gy R us uy ug
0.3330 —0.0564 0.0256 0.066 0.098 0.902 0

Table 2: Eigen Values and the Number of Unstable Roots

6=09 6 =038
Eigen Values (I) Eigen Values (C) Eigen Values (I) Eigen Values (C)
—4.36E+404 0.5834 —2.368E+04 —0.99921
0.4439 —0.9997 0.4876 0.53974
0.089277 + 0.0236641 0.0013 0.097501 + 0.01852% 0.0019168
0.089277 - 0.0236641 —8.00E-4 0.097501 - 0.0185291 —1.49E-03
— 8.18E-12 1.96E-09
3 2 4 2

Saddle Stable

Saddle Stable No Solution

Saddle Stable

The Number of Unstable Roots: (I) stands for the internal solution case and (C)

stands for the corner solution case.
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Table 3: Key Economic Variables

Internal Solution Case

=1

T b—0 gy R ua uy

ug

0.3330 —0.1564 0.0381 0.0773 0.1245 0.6593

0.2162

Table 4: Eigen Values and the Number of Unstable Roots

=1
Eigen Values (I)
—9.13E+04
0.4004
0.080887 + 0.0270641
0.080887 - 0.027064i1
— 3.18E-10
3
Saddle Stable

The Number of Unstable Roots: (I) stands for the internal solution

case.
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