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Abstract

In this article, we consider a derivative pricing model for the stochastic volatility model
under an incomplete information. The incomplete information in our works, supposes that the
true value of the drift for the stock price process is a random variable, investors only have
an information of its distribution. This is more practical financial market than the situation
with knowledge of the drift. There are many studies about the dynamic portfolio optimization
problem under the incomplete information. In that situation, the corresponding problem be-
comes a easy to treat by Separating Principle and Bayesian updating formula. We apply these
arguments to the utility indifference price approach, and present pricing method taken into ac-
count the incomplete information. On the other hand, Sircar and Zariphopoulou (2005) gives
bounds and asymptotic approximations for the indifference prices in the stochastic volatility
model. In them works, bounds include the drift parameter for the underlying price process.
However, in practice, it is able to observe the drift parameter by estimation only. Therefore, it
is meaningful to extended to the incomplete information. We derive bounds for the indifference
prices using estimated drift, and the relationship between the buyer’s indifference price and
the seller’s one.
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1 Introduction

In this article, we consider a pricing model for an incomplete market model under an incomplete
information. As typical example of the incomplete market model, we work the stochastic volatility
model. The financial market in this paper, consists of the risk-free asset, one risky asset whose
volatility drives stochastically over the time horizon and a derivative written on the risky asset.
The incomplete information in our works, implies that investors don’t have knowledge for a true
value of the drift parameter of the risky-asset, and they only have an information of the distribution
for that. Therefore, one can capture the value of the drift parameter only by estimation it. This
situation is more close to the practical market than one with precise knowledge of the drift.

Under the incomplete information, there are many works for the decision of the dynamic op-
timal portfolio strategy based on the utility maximization up to now. ([Detemple, 1986], [Dothan
and Feldman 1986], [Detemple and Sheldan 1991], [Gennote, 1986], [Ishijima, 1999]) The dynamic
portfolio optimization problem under the incomplete information, requires that dynamic portfolio
selection and estimation of the drift have to be done simultaneously. However, Separating Princi-
ple allows us to treat optimization and estimation separately. This changes from the optimization
problem includes uncertain drift to the problem taken into account the estimation for it. On the
other hand, the utility indifference pricing approach have been studied one of pricing methods in
the incomplete market such the stochastic volatility model ([Grasselli and Hurd, 2005], [Sircar and
Zariphopoulou, 2005]), the financial model with constraints ([Hodges and Neuberger, 1989]) and so
on. The utility indifference price criterion is defined to determines the price to be equal maximized
expected utilities for two different investment opportunities. The one is the problem without any
claims, the another one is the problem with some claims. This pricing method is arrowed us to
use various market models, although it requires us to solve expected maximization problems. So
we apply studies of the portfolio optimization under the incomplete information to the indifference
pricing approach, then we derive the price of derivatives under such circumstances.

Its procedure follows: At first, we set a financial market model with stochastic volatility under
the incomplete market model. As mentioned above, we assume that the drift parameter of under-
lying asset of the derivative is not clear (i.e., a random variable), but investors have an information
of the distribution of it. Next, we consider expected utility maximization problems for a portfolio
consists of both the risk-free asset and such a risky-asset, and the derivative. In this time, we solve
it using Separating Principle. The investor, under incomplete information, dynamically determine
an optimal portfolio with estimating the drift of the stock price process. The separating principle
allows the investor to treat them separately. Furthermore, Theorem 12.7 in Lipster and Shiryaev
(2001) gives a dynamics of the estimator of the drift. This is called Bayesian updating formula.
These makes the optimization problem with estimation of the drift easy to solve.

We apply Hamilton-Jacobi-Bellman (HJB) equation to solve optimization problems. In our
works, partial differential equations obtained by related HJB equations, which are non-linear type.
So we cannot explicitly represent solutions of optimization problems. Instead, we give bounds for
solutions of these problems as Sircar and Zariphopoulou (2005), then we have a bound of utility
indifference price in our financial market model. These bounds take into account the random drift
term, that is, they include estimated drift. Furthermore we derive PDEs satisfied by the indifference
prices, then we describe the relationship between the buyer’s indifference price and seller’s one by
finding super/sub solution of these PDEs.

This paper is organized as follows: In the next section, we introduce a financial market model
with stochastic volatility model with the incomplete information. In Section 3, we introduce esti-
mation of random drift and derive the improvement of the estimation for the drift, i.e., Bayesian
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updating formula, with a change of measure. In Section 4, we examine expected utility maxi-
mization problems, and give solutions for these. In Section 5, we derive bounds of the utility
indifference prices by using results of Section 4, and we show that bounds include the estimation
of the drift instead of the true drift value. Furthermore, we provide the relationship between the
buyer’s indifference price and seller’s one. As end of the paper, we give conclusions in our works.

2 Financial Market

In this section, we set a financial market model. We first define risk-free/risky asset price processes
in a stochastic volatility environment, then we introduce an admissible portfolio strategies, and
derive it’s related wealth process.

2.1 Traded Assets

Let us consider the following financial market. There exist one risk free asset (typically the bank
account) and one risky asset (typically stock). At first, as for the bank account, we assume that
one dollar in the bank account at time 0 results in

B(s) = 1

at time s ∈ [0, T ] where T > 0 is the time horizon, that is, we assume that the risk free rate is equal
to zero for simplicity without loss of generality, which implies that dB(s) = 0.

Next, we set the stock price process with a stochastic volatility as follows.

dS(s) = S(s){µds + σ(s, Y (s))dW1(s)}, S(t) = S, (2.1)

where Y is a certain state variable driven by

dY (s) = a(s, Y (s))ds + b(s, Y (s)){ρdW1(s) +
√

1− ρ2dW2(s)}, Y (t) = Y, (2.2)

for (0 6)t 6 s 6 T , where µ is a random variable on (Ωµ,Fµ, ν) with E
[
µ4

]
< ∞, E is an

expectation under P , P is defined later. Also, ν ◦ µ−1 is normally distributed with mean m0 and
variance Γ0. And then, W = (W1,W2)> is two-dimensional standard Brownian motion on a filtered
probability space (ΩW , {FW,s; s > 0}, φ), where FW,s is generated by informations of W up to s. In
this time, we can construct an filtered probability space (Ω, {Fs; t > 0}, P ), where Ω = Ωµ × ΩW，
Fs = Fµ ⊗ FW,s，P = ν ⊗ φ. Furthermore, we assume that investors only have informations
obtained from the stock price up to now. That is, the information available for them is described
by Gt = σ(S(u); 0 6 u 6 t), with Gt ⊂ Ft.

We would price a European type claim already mentioned above, and it’s payoff function is sup-
posed to g(T ) := g(T, S(T ), Y (T )). In the next section we consider utility maximization problems.
In order to ensure the existence of solutions for such problems, we set the following assumption.

Assmption 2.1. • The volatility function σ(·) and the diffusion coefficient b(·, ·) are smooth
and, bounded above and below away from zero.

• The drift coefficient a(·, ·) in (2.2) is Lipschitz continuous on [0, T ]× R.

• The payoff function g(T ) is a GT -measurable.
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2.2 Wealth Process

We denote by π(s) the amount of money held in stock at time s. So that, if the investor have a
wealth X at time s, then the amount of money invested in the bank account is X − π(s). The
negative value of π(·) usually means that he/she is short-selling the stock. It is assumed that π(·)
is an adapted process, i.e., π(s) is Gs-measurable for any s ∈ [t, T ]. This assumption means that
the investor cannot foresee the future, so π(s) is determined from the information up to time s. We
also require another technical conditions. We give them in the following definition.

Definition 2.1 (Admissible). We say that the portfolio strategy π(s) is admissible, if it is Gs-
measurable, and satisfies the integrability condition E

[∫ T

t
σ2(s, Y (s))π2(s)ds

]
< +∞ and the self-

financing condition. A denotes the set of all admissible policies. We also denote by X the wealth
process (or portfolio process) corresponding to an admissible strategy π ∈ A. The self-financing
condition is defined by the following equation:

dX(s) =
π(s)
S(s)

dS(s) +
X(s)− π(s)

B(s)
dB(s) =

π(s)
S(s)

dS(s), (2.3)

for t 6 s 6 T .

Substituting (2.1) into (2.3), we have the wealth equation

dX(s) = π(s){µds + σ(s, Y (s))dW1(s)}. (2.4)

3 Incomplete Information and Estimation for Drift

In this section, we consider the estimation of the drift µ. In order to use the indifference price
approach, we examine utility maximization problems for two different investment opportunities
respectively. The one is the problem without a claim, the another one is the problem with a claim.
We suppose that the preference of the market participant is an exponential type, i.e., the utility
function is u(x) = −e−γx where γ is a risk-aversion parameter. Therefore, the former problem is
presented by

U(t,X(t), Y (t)) = sup
π(t)∈A

Et

[
−e−γX(T )

]
, (3.1)

and the latter one is formulated as

V (t, S(t), X(t), Y (t); η) = sup
π(t)∈A

Et

[
−e−γ(X(T )+ηg(T ))

]
, (3.2)

where η = ±1, where Et denotes the expectation under P conditioned with informations up to t,
and η(= ±1) implies the position of the claim, namely η = 1 is a long position for the claim and
η = −1 is short one.

We adopt Separating Principle [7] to solve these optimization problems. The separating principle
allows us to estimate the drift µ and optimize the expected utility separately. Then this method
stands in solving the above problems. In particularly, as shown latter, we utilize the continuous
Bayesian updating formula of Lipster-Shiryaev [14].

As mentioned above, the investors cannot know a true value of the drift µ. Given an information
Gt, the investor estimates µ as

m(t) := E[µ|Gt], (3.3)

Γ(t) := E
[
(µ−m(t))2

∣∣∣Gt

]
, (3.4)
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where Γ(t) implies the estimation error. From Theorem 12.7 in [14], using infinitesimal observations
dS(s), we can improve the estimation for µ and its error as

dm(s) := −Γ(s)
σ2

{
dS(s)
S(s)

−m(s)ds

}
, (3.5)

dΓ(s) := −
(

Γ(s)
σ

)2

ds (3.6)

for t 6 s 6 T . Now we set a Doleans-Dade exponential as follows

E(θ, ζ)(s) = exp
(
−1

2

∫ s

0

{
θ2(u) + ζ2(u)

}
du−

∫ s

0

θ(u)dW1(u)−
∫ s

0

ζ(u)dW2(u)
)

, (3.7)

for t 6 s 6 T , where θ(u) :=
µ−m(u)
σ(u, Y (u))

and ζ(u) :=
ρµ√

1− ρ2σ(u, Y (u))
.

Definition 3.1. We assume that (3.7) is a P -martingale. Then we define an equivalent martingale
measure (EMM) P̃ by

dP̃

dP

∣∣∣∣∣
Gs

= E(θ, ζ)(s). (3.8)

From Girsanov theorem,

W̃ (s) :=
(

W̃1(s)
W̃2(s)

)
:=

(
W̃1(s) +

∫ s

0
θ(u)du

W̃2(s) +
∫ s

0
ζ(u)du

)
(3.9)

is a two-dimensional standard Brownian motion under P̃ . Therefore, under measure P̃ , the stock
price process, it’s variance process and the wealth process introduced in the above, are rewritten
the form taken into account of Bayes updating. That is

dS(s)
S(s)

= m(s)ds + σ(s, Y (s))dW̃1(s), (3.10)

dY (s) =
[
a(s, Y (s)) +

ρb(s, Y (s))m(s)
σ(s, Y (s))

]
ds + b(s, Y (s))

(
ρdW̃1(s) +

√
1− ρ2dW̃2(s)

)
, (3.11)

dX(s) = π(s)
{

m(s)ds + σ(s, Y (s))dW̃1(s)
}

. (3.12)

Also, m satisfies

dm(s) = − Γ(s)
σ(s, Y (s))

dW̃1(s).

In the rest of the paper, we discuss based on these dynamics. And also, the value function (3.1)
and (3.2) are written as

U (t,m(t), X(t)) = sup
π(t)∈A

Ẽt

[
−e−γX(T )

]
, (3.13)

V (t,m(t), S(t), X(t); η) = sup
π(t)∈A

Ẽt

[
−e−γ(X(T )+ηg(T ))

]
, (3.14)

where Ẽt denotes the expectation under P̃ conditioned with informations up to t.
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4 Optimization Problems

4.1 Operators

To facilitate the presentation, we define the following operators: for any smooth function f ,

A〈m,Y 〉f :=
(

a(t, Y (t)) +
ρb(t, Y (t))m(t)

σ(t, Y (t))

)
fY

+
1
2

(
Γ(t)

σ(t, Y (t))

)2

fmm +
1
2
b2(t, Y (T ))fY Y − ρΓ(t)b(t, Y (t))

σ(t, Y (t))
fmY ,

A〈m,S,Y 〉f := m(t)S(t)fS +
(

a(t, Y (t)) +
ρb(t, Y (t))m(t)

σ(t, Y (t))

)
fY

+
1
2

(
Γ(t)

σ(t, Y (t))

)2

fmm +
1
2
σ2(t, Y (t))S2fSS +

1
2
b2(t, Y (T ))fY Y

− Γ(t)S(t)fmS − ρΓ(t)b(t, Y (t))
σ(t, Y (t))

fmY + ρσ(t, Y (t))b(t, Y (t))S(t)fSY ,

H〈m,Y 〉(fX , fXX , fmX , fXY ) := max
π(t)∈A

[
π(t)m(t)fX +

1
2

(π(t))2 σ2(t, Y (t))fXX

− π(t)Γ(t)fmX + π(t)ρσ(t, Y (t))b(t, Y (t))fXY

]
,

H〈m,S,Y 〉(fX , fXX , fmX , fSX , fXY ) := max
π(t)∈A

[
π(t)m(t)fX +

1
2

(π(t))2 σ2(t, Y (t))fXX

− π(t)Γ(t)fmX + π(t)σ2(t, Y (t))SfSX + π(t)ρσ(t, Y (t))b(t, Y (t))fXY

]
,

J 〈m,Y 〉(fX , fXX , fmX , fXY ) := −1
2

(
m(t)

σ(t, Y (t))

)2
f2

X

fXX
− 1

2

(
Γ(t)

σ(t, Y (t))

)2
f2

mX

fXX
− 1

2
ρ2b2(t, Y (t))

f2
XY

fXX

+
Γ(t)m(t)

σ(t, Y (t))2
fmXfX

fXX
− ρb(t, Y (t))m(t)

σ(t, Y (t))
fXY fX

fXX
+

ρΓ(t)b(t, Y (t))
σ(t, Y (t))

fmXfXY

fXX
,

J 〈m,S,Y 〉(fX , fXX , fmX , fSX , fXY ) := −1
2

(
m(t)

σ(t, Y (t))

)2
f2

X

fXX
− 1

2

(
Γ(t)

σ(t, Y (t))

)2
f2

mX

fXX

− 1
2
σ2(t, Y (t))S2 f2

SX

fXX
− 1

2
ρ2b2(t, Y (t))

f2
XY

fXX
+

Γ(t)m(t)
σ(t, Y (t))2

fmXfX

fXX
−m(t)S(t)

fXfSX

fXX

− ρb(t, Y (t))m(t)
σ(t, Y (t))

fXY fX

fXX
+ Γ(t)S(t)

fmXfSX

fXX
+

ρΓ(t)b(t, Y (t))
σ(t, Y (t))

fmXfXY

fXX

− ρσ(t, Y (t))b(t, Y (t))S(t)
fSXfXY

fXX
,

L〈m,Y 〉f := A〈m,Y 〉f +
Γ(t)m(t)

σ2(t, Y (T ))
fm − ρb(t, Y (t))m(t)

σ(t, Y (t))
fY ,

L〈m,S,Y 〉f := A〈m,S,Y 〉f −m(t)S(t)fS +
Γ(t)m(t)

σ2(t, Y (T ))
fm − ρb(t, Y (t))m(t)

σ(t, Y (t))
fY ,
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M〈m,Y 〉(fm, fY , f) :=
1
2

(
Γ(t)

σ(t, Y (t))

)2
f2

m

f
− ρΓ(t)b(t, Y (t))

σ(t, Y (t))
fmfY

f
+

1
2
ρ2b2(t, Y (t))

f2
Y

f
,

M〈m,S,Y 〉(fm, fS , fY , f) :=
1
2

(
Γ(t)

σ(t, Y (t))

)2
f2

m

f
+

1
2
σ2(t, Y (t))S2(t)

f2
S

f
+

1
2
ρ2b2(t, Y (t))

f2
Y

f

− Γ(t)S(t)
fmfS

f
− ρΓ(t)b(t, Y (t))

σ(t, Y (t))
fmfY

f
+ ρσ(t, Y (t))b(t, Y (t))S(t)

fSfY

f
.

4.2 Optimizations

Recall that, the utility maximization problem without any claims is

U (t,m(t), X(t), Y (t)) = sup
π∈A

Ẽt

[
−e−γX(T )

]
. (4.1)

The HJB equation of U is




Ut +A〈m,Y 〉U +H〈m,Y 〉(UX , UXX , UmX , UXY ) = 0,

U (T, m(T ), X(T ), Y (T )) = −e−γX(T ).
(4.2)

The maximum in (4.2) is achieved at

π∗ = − m(t)
σ2(t, Y (t))

UX

UXX
+

Γ(t)
σ2(t, Y (t))

UmX

UXX
− ρb(t, Y (T ))

σ(t, Y (t))
UXY

UXX
. (4.3)

Plugging (4.3) into (4.2) gives us the following non-linear partial differential equation (PDE):




Ut +A〈m,Y 〉U + J 〈m,Y 〉(UX , UXX , UmX , UXY ) = 0,

U (T, m(T ), X(T ), Y (T )) = −e−γX(T ).
(4.4)

From Section 3 in Pham [16] or Theorem 2.5 in Sircar and Zariphopoulou [17], U is given by

U (t,m(t), X(t), Y (t)) = −e−γX(t)F (t,m(t), Y (t)) (4.5)

where F ∈ C1,2,2([0, T ]×R×R) is the unique bounded solution of the quasi linear partial differential
equation 




Ft + L〈m,Y 〉F =
1
2

(
m(t)

σ(t, Y (t))

)2

+M〈m,Y 〉(Fm, FY , F ),

F (T,m(T ), Y (T )) = 1.

(4.6)

Note that (4.6) is obtained by substituting (4.5) into (4.4), and F is a non-negative because U is
an indirect utility function of u.

Next we consider the optimization problem with a claim. This problem is formulated as

V (t, m(t), S(t), X(t), Y (t); η) = sup
π∈A

Ẽt

[
−e−γ(X(T )+ηg(T ))

]
, (4.7)
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where g(T ) := g (T, S(T ), Y (T )), and recall that η(= ±1) implies the position of the claim. The
HJB equation of (4.7) is





Vt +A〈m,S,Y 〉U +H〈m,S,Y 〉(VX , VXX , VmX , VSX , VXY ) = 0,

V (T,m(T ), S(T ), X(T ), Y (T ); η) = −e−γ(X(T )+ηg(T )).
(4.8)

The maximum in (4.8) is achieved at

π∗ = − m(t)
σ2(t, Y (t))

VX

VXX
+

Γ(t)
σ2(t, Y (t))

VmX

VXX
− S

VSX

VXX
− ρb(t, Y (T ))

σ(t, Y (t))
VXY

VXX
. (4.9)

Plugging (4.9) into (4.8) gives us the following PDE:




Vt +A〈m,S,Y 〉V + J 〈m,S,Y 〉(VX , VXX , VmX , VSX , VXY ) = 0,

V (T,m(T ), S(T ), X(T ), Y (T ); η) = −e−γ(X(T )+ηg(T )).
(4.10)

From Pham [16], V is given by

V (t,m(t), S(t), X(t), Y (t); η) = −e−γX(t)G (t,m(t), S(t), Y (t); η) (4.11)

where G ∈ C1,2,2,2([0, T ]× R× R+ × R) is the unique bounded solution of the quasi linear partial
differential equation





Gt + L〈m,S,Y 〉G =
1
2

(
m(t)

σ(t, Y (t))

)2

+M〈m,S,Y 〉(Gm, GS , GY , G),

G (T,m(T ), S(T ), Y (T ); η) = e−γηg(T ).

(4.12)

PDE (4.12) is also obtained by substituting (4.11) into (4.10), and G must be a non-negative if V
maintain a property of the indirect utility function for u.

5 Indifference Prices and Bounds

5.1 Bounds for the Utility Indifference Prices

In this section, we provide utility indifference prices and their bounds. We derive bounds of indiffer-
ence prices using the method of super/sub solution of non-linear PDE as Sircar and Zariphopoulou
[17]. At first we define the utility indifference price.

Definition 5.1 (Utility Indifference Pirce). The buyer’s utility indifference price pb(t) :=
pb (t, m(t), S(t), Y (t)) at time t is defined as the solution of

U (t,m(t), X(t), Y (t)) = V (t,m(t), S(t), X(t)− pb(t), Y (t); 1) .

While the seller’s utility indifference price ps(t) := ps (t,m(t), S(t), Y (t)) at time t is defined as the
solution of

U (t,m(t), X(t), Y (t)) = V (t,m(t), S(t), X(t) + ps(t), Y (t);−1) .
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In the previous subsection, we derived solutions for utility maximization problems with or
without a claim and corresponding PDEs. By consider a super/sub solutions for these PDEs, we
introduce bounds of the buyer’s/seller’s indifference price respectively. Before that, we additionally
construct an EMM. Define

Ẽ(λ, 0)(s) = exp
(
−1

2

∫ s

0

λ2(u)du−
∫ s

0

λ(u)dW̃1(u)
)

(5.1)

where λ(s) :=
m(s)

σ(s, Y (s))
. From Assumption 2.1, this is a P̃ -martingale.

Definition 5.2. We define an equivalent measure Q according to

dQ

dP̃

∣∣∣∣
Gs

= Ẽ (0, λ) (s).

In this time,

M(s) :=
(

M1(s)
M2(s)

)
:=

(
W̃1(s) +

∫ s

0
λ(u)du

W̃2(s)

)
(5.2)

is a two-dimensional standard Brownian motion under Q. Under this, dynamics become

dS(s)
S(s)

= σ(s, Y (s))dM1(s), (5.3)

dY (s) = a(s, Y (s))ds + b(s, Y (s))
(
ρdM1(s) +

√
1− ρ2dM2(s)

)
, (5.4)

dm(s) =
Γ(s)m(s)
σ2(s, Y (s)

− Γ(s)
σ(s, Y (s))

dM1(s). (5.5)

Proposition 5.1. The solution F of (4.6) has a bound. That is

F̄ (t,m(t), Y (t)) < F (t,m(t), Y (t)) < F̂ (t, m(t), Y (t)) (5.6)

where F̄ and F̂ are given by

F̄ (t,m(t), Y (t)) = exp

(
EQ

t

[
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

])
,

F̂ (t,m(t), Y (t)) = EQ
t

[
exp

(
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)]
,

(5.7)

where EQ
t denotes the expectation under Q conditioned with informations up to time t.

Proof. Let us consider a lower bound. By F > 0 and ρ2 < 1, it holds that

Ft + L〈m,Y 〉F <
1
2

(
m(t)

σ(t, Y (t))

)2

F +
1
2

(
Γ(t)

σ(t, Y (t))

)2
F 2

m

F
+

1
2
b2(t, Y (t))

F 2
Y

F

− ρΓ(t)b(t, Y (t))
σ(t, Y (t))

FmFY

F
.

(5.8)
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So F is a super solution of F̄ which solves to

F̄t + L〈m,Y 〉F̄ =
1
2

(
m(t)

σ(t, Y (t))

)2

F̄ +
1
2

(
Γ(t)

σ(t, Y (t))

)2
F̄ 2

m

F̄
+

1
2
b2(t, Y (t))

F̄ 2
Y

F̄

− ρΓ(t)b(t, Y (t))
σ(t, Y (t))

F̄mF̄Y

F̄
,

(5.9)

and F̄ (T,m(T ), Y (T )) = 1. That is

F (t, m(t), Y (t)) > F̄ (t,m(t), Y (t)) . (5.10)

We transform F̄ as
F̄ (t,m(t), Y (t)) = eφF (t,m(t),Y (t)), (5.11)

where φF ∈ C1,2,2([0, T ]× R× R+) and φF (T, m(T ), Y (T )) = 0. Then φF solves to




φF
t + L〈m,Y 〉φF =

1
2

(
Γ(t)

σ(t, Y (t))

)2

,

φF (T, m(T ), Y (T )) .

(5.12)

Therefore, by Feynman-Kac formula and under Q, we have

φF (t,m(t), Y (t)) = EQ
t

[
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

]
. (5.13)

The lower bound is obtained from (5.10), (5.11) and (5.13).
We turn to derive an upper bound of F . From (4.6) it holds that

Ft + L〈m,Y 〉F >
1
2

(
Γ(t)

σ(t, Y (t))

)2

F.

It is following that F is a sub solution of F̂ , that is, F < F̂ . Where F̂ is a solution of




F̂t + L〈m,Y 〉F̂ =
1
2

(
Γ(t)

σ(t, Y (t))

)2

F̂ ,

F̂ (T,m(T ), Y (T )) = 1.

(5.14)

Again, by using Feynman-Kac formula to (5.14), we obtain the upper bound F̂ as

F̂ (t,m(t), Y (t)) = EQ
t

[
exp

(
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)]
.

On the other hand, the bound of G is given by the following proposition.
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Proposition 5.2. The solution G of (4.12) has a bound. That is

Ḡ (t,m(t), S(t), Y (t); η) < G (t,m(t), S(t), Y (t); η) < Ĝ (t,m(t), S(t), Y (t); η) (5.15)

where Ḡ and Ĝ are given by

Ḡ (t,m(t), S(t), Y (t); η) = exp

(
EQ

t

[
−γηg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

])
,

Ĝ (t,m(t), S(t), Y (t); η) = EQ
t

[
exp

(
−γηg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)]
,

(5.16)

where η = ±1.

Proof. Let us consider a lower bound. By G > 0 and ρ2 < 1, it holds that

Gt + L〈m,S,Y 〉G <
1
2

(
m(t)

σ(t, Y (t))

)2

G +
1
2

(
Γ(t)

σ(t, Y (t))

)2
G2

m

G
+

1
2
σ2(t, Y (t))S2(t)

G2
S

G

+
1
2
b2(t, Y (t))

G2
Y

G
− Γ(t)S(t)

GmGS

G
− ρΓ(t)b(t, Y (t))

σ(t, Y (t))
GmGY

G
− ρσ(t, Y (t))b(t, Y (t))S(t)

GSGY

G
.

(5.17)

So G is a super solution of Ḡ which solves to

Ḡt + L〈m,Y 〉Ḡ =
1
2

(
m(t)

σ(t, Y (t))

)2

Ḡ +
1
2

(
Γ(t)

σ(t, Y (t))

)2
Ḡ2

m

Ḡ
+

1
2
σ2(t, Y (t))S2(t)

Ḡ2
S

Ḡ

+
1
2
b2(t, Y (t))

Ḡ2
Y

Ḡ
− Γ(t)S(t)

ḠmḠS

Ḡ
− ρΓ(t)b(t, Y (t))

σ(t, Y (t))
ḠmḠY

Ḡ
− ρσ(t, Y (t))b(t, Y (t))S(t)

ḠSḠY

Ḡ
,

(5.18)

and Ḡ (T, m(T ), S(T ), Y (T ); η) = e−γηg(T ). That is

G (t, m(t), S(t), Y (t); η) > Ḡ (t,m(t), S(t), Y (t); η) . (5.19)

We transform Ḡ as
Ḡ (t,m(t), S(t), Y (t); η) = eφG(t,m(t),S(t),Y (t);η), (5.20)

where φG ∈ C1,2,2([0, T ]×R×R++ ×R+) and φG (T, m(T ), Y (T ); η) = −γηg(T ). Then φG solves
to 




φG
t + L〈m,S,Y 〉φG =

1
2

(
Γ(t)

σ(t, Y (t))

)2

,

φG (T,m(T ), Y (T ); η) = −γηg(T ).

(5.21)

Therefore, by Feynman-Kac formula and under Q, we have

φG (t, m(t), S(t), Y (t); η) = EQ
t

[
−γηg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

]
. (5.22)

The lower bound is obtained from (5.19), (5.20) and (5.22).
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We turn to derive an upper bound of G. From (4.12) it holds that

Gt + L〈m,S,Y 〉G >
1
2

(
Γ(t)

σ(t, Y (t))

)2

G.

It is following that G is a sub solution of Ĝ, that is, G < Ĝ. Where Ĝ is a solution of




Ĝt + L〈m,S,Y 〉Ĝ =
1
2

(
Γ(t)

σ(t, Y (t))

)2

Ĝ,

Ĝ (T, m(T ), Y (T )) = 1.

(5.23)

Again using Feynman-Kac formula to (5.23), we obtain the upper bound Ĝ as

Ĝ (t,m(t), S(t), Y (t); η) = EQ
t

[
exp

(
−γηg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)]
.

From the above calculations, we derive bounds for indifference prices. Recall that pb (t,m(t), S(t), Y (t))
and ps (t,m(t), S(t), Y (t)) respectively denote the buyer’s indifference price and the seller’s one at
time t. By (5.1), (5.6) and (5.15), it holds that

1
γ

ln
F̄ (t)

Ĝ(t; 1)
< pb <

1
γ

ln
F̂ (t)

Ḡ(t; 1)
,

1
γ

ln
Ḡ(t;−1)

F̂ (t)
< ps <

1
γ

ln
Ĝ(t;−1)

F̄ (t)
,

(5.24)

where F (t) ≡ F (t,m(t), Y (t)) and G(t; η) ≡ G (t,m(t), S(t), Y (t); η). Substituting (5.7) and (5.16)
into both of (5.24), we obtain the following theorem.

Theorem 5.1. (i) The buyer’s indifference price of the claim g(T ), has a bound as follows.

1
γ

(
EQ

t

[
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

]

− ln EQ
t

[
exp

(
−γg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)])

< pb(t) <

1
γ

(
ln EQ

t

[
exp

(
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)]

− EQ
t

[
−γg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

])

(5.25)
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(ii) The seller’s indifference price lies in a bound as follows.

1
γ

(
EQ

t

[
γg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

]

− ln EQ
t

[
exp

(
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)])

< ps(t) <

1
γ

(
ln EQ

t

[
exp

(
γg(T )− 1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

)]

− EQ
t

[
−1

2

∫ T

t

(
m(s)

σ(s, Y (s))

)2

ds

])

(5.26)

From Theorem 5.1, under the incomplete information, we observe that bounds of utility indif-
ference prices include estimated drift term. Compared to Theorem 3.1 in [17], it is replaced µ with
m(s) = Es[µ].

5.2 Utility Indifference Pricing Equation

It is not clear the relationship of the buyer’s indifference price and the seller’s one from (5.25)
and (5.26) under the assumption that the buyer of the derivative and seller have same preference
(i.e., the risk-aversion parameters for the buyer and seller are equal). In this section, we derive
PDEs satisfied by the indifference prices1, then we describe the relationship between the buyer’s
indifference price and seller’s one by finding super/sub solution of these PDEs.

Assmption 5.1. We assume that FY /F is smooth and bounded, where F is given by (4.5).

Proposition 5.3. (i) The buyer’s indifference price pb is a unique and bounded solution of the
pricing equation

pb
t + L〈m,S,Y 〉pb + (1− ρ2)b2 FY

F
pb

Y =
1
2
b2γ(1− ρ2)(pb

Y )2 (5.27)

with pb(T ) = g(T ).
(ii) The seller’s indifference price ps is a unique and bounded solution of the pricing equation

ps
t + L〈m,S,Y 〉ps + (1− ρ2)b2 FY

F
ps

Y = −1
2
b2γ(1− ρ2)(ps

Y )2 (5.28)

with ps(T ) = g(T ).

Proof. We only show (i). The second statement is derived by the same way. From Definition 5.1,
(4.5) and (4.11), we have

G(t, m, S, y) = e−γpb

F (t,m, y). (5.29)

Substituting (5.29) into (4.12) together with (4.6), it holds that (5.27). The uniqueness and bound-
edness follow by proof of Theorem 2.6 in [17].

1Sircar and Zariphopoulou [17] call this PDE the indifference pricing equation.
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From Assumption 2.1 and 5.1, κ(s) := −
√

1− ρ2b(s, Y (s))
FY

F
is smooth and bounded. Thus,

it holds that

EM (0, κ)(s) := exp
(
−1

2

∫ s

0

κ2(u)ds−
∫ s

0

κ(u)dM2(u)
)

(5.30)

is a Q-martingale.

Definition 5.3. We define an equivalent measure Q̂ according to

dQ̂

dQ

∣∣∣∣∣
Gs

= EM (0, κ) (s)

for t 6 s 6 T .

In this time,

M̂(s) :=
(

M̂1(s)
M̂2(s)

)
:=

(
M1(s)

M2(s) +
∫ s

0
κ(u)du

)
(5.31)

is a two-dimensional standard Brownian motion under Q̂. Under this measure, the dynamics of Y
become

dY (s) =
[
a(s, Y (s)) + (1− ρ2)b2(s, Y (s))

FY

F

]
ds + b(s, Y (s))

(
ρdM̂1(s) +

√
1− ρ2dM̂2(s)

)
.

Proposition 5.4. The buyer’s indifference price and seller’s price have the following relationship:

pb(t) < ps(t)

for 0 6 t < T .

Proof. We observe that

pb
t + L〈m,S,Y 〉pb + (1− ρ2)b2 FY

F
pb

Y =
1
2
b2γ(1− ρ2)(pb

Y )2 > 0.

So pb is a sub solution of q, i.e., pb(t,m, S, y) < q(t,m, S, y) where q is a solution of

qt + L〈m,S,Y 〉q + (1− ρ2)b2 FY

F
qY = 0

with q(T ) = g(T ). Under Q̂-measure, Feynman-Kac formula gives the following representation:

q(t,m, S, y) = EQ̂
t [g(T )].

On the other hand, since it holds that

ps
t + L〈m,S,Y 〉ps + (1− ρ2)b2 FY

F
ps

Y = −1
2
b2γ(1− ρ2)(ps

Y )2 < 0,

hence ps is a super solution of q, i.e., ps(t,m, S, y) > q(t,m, S, y). Therefore, we have

pb(t,m, S, y) < EQ̂
t [g(T )] < ps(t, m, S, y)

as required.

Remark 5.1. The result of Proposition 5.4 is not restricted to the incomplete information model. It
might hold same relationship for other incomplete market models with respect to appropriate EMMs.
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6 Summary

In this paper, we considered the utility indifference pricing for the derivative written on the stock
with stochastic volatility under incomplete information, i.e., the drift parameter of the stock is
assumed to be a normally distributed random variable. In order to derive the indifference price, we
should solve expected utility maximization problems, although Separating principle and Bayesian
updating formula make them easy to treat. By using HJB equation for optimization problems, we
obtained non-linear PDEs. Since it is so hard to find an explicit solution for such PDEs, we provide
bounds of indifference prices by solve super/sub solutions of corresponding PDEs. Furthermore,
under the incomplete information, bounds of utility indifference prices include estimated drift term
instead the true drift parameter µ. This is the main result in this paper. Also we found the
relationship between the buyer’s indifference price and the seller’s one by the indifference pricing
equations.
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