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Abstract

This paper examines equilibrium determinacy of a discrete-time AK growth

model with a generalized Taylor rule under which interest rate responds to the

growth rate of real income as well as to the rate of inflation. We use the stan-

dard money-in-the-utility formulation in which money is superneutral on the

balanced-growth path. We show that even in such a simple environment, the

generalized Taylor rule may yield indeterminacy of equilibrium easily. We also

demonstrate that equilibrium determinacy depends on the timing of money

holding of households as well.
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1 Introduction

Taylor (1993) proposes a monetary policy rule for economic stabilization under which

the central bank adjusts the nominal interest rate in response to real income as well

as to the rate of inflation. However, the existing theoretical studies on the interest

control rules often assume that the interest rate responds to inflation alone 1. The

purpose of this paper is to explore the efficacy of the original Taylor rule in the

context of a model of endogenous growth. We introduce money into the basic AK

growth model via the money-in-the-utility-function formulation. In such a simple

environment, money is superneutral on the balanced growth path. In our setting,

however, money is not superneutral in the transition process and, hence, the selection

of monetary policy rule may have relevant effects on determinacy of equilibrium path

leading to the balanced-growth equilibrium.

We construct our model in a discrete-time setting, which enables us to consider

alternative timings of households’ money holdings and of the inflation rate used for

controlling nominal interest rate. As for money holding of the household, we can

distinguish the cash-in-advance (CIA) timing from the cash-when-I’m-done (CWID)

timing. The CIA (resp. CWID) timing means that real money balances in the

utility function is the stock of money the household holds before entering (resp.

after leaving) the final goods market 2. Moreover, in our discrete-time model we

find that the main results are also sensitive to the assumption whether the central

bank’s control rule is current-looking or forward-looking. Therefore, in a discrete-

time modelling, we can analyze four patterns of formulations: (i) CWID timing

with a forward-looking rule, (ii) CIA timing with a forward-looking rule, (iii) CWID

1In models of endowment economy as in Leeper (1991) or Benhabib et. al. (2001), real income

cannot be used as an index of monetary policy.
2The discrete-time monetary models usually assume the CWID timing of the money holdings.

However, as Carlstrom and Fuerst (2001) claim, it is difficult to justify CWID timing on theoretical

grounds, because this assumption means that the money held at the beginning of t + 1 reduces

transaction costs in period t.
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timing with a current-looking rule, and (iv) CIA timing with a current-looking rule.

We obtain two main findings. First, the response of the interest rate to the

growth rate of income may play a significant role for equilibrium determinacy. In

fact, if the monetary authority controls interest rate in response to inflation alone,

we obtain the standard results: equilibrium determinacy holds under the forward-

looking and active current-looking monetary rule, while the passive current-looking

interest-control rule generates equilibrium indeterminacy. If the interest rate re-

sponds to the growth rate of income as well, the possibility of emergence of equi-

librium indeterminacy may be enhanced. Second, the efficacy of the generalized

Taylor rule for macroeconomic stability depends upon the timings of money holding

of the households. These findings demonstrate that the monetary authority should

carefully select a specific interest rate control rule in order to attain stability even

if the economic environment is simple enough to hold superneutrality of money in

the long run.

Several studies are closely related to this paper. As for the equilibrium deter-

minacy in monetary growth model with an AK technology, Suen and Yip (2005)

and Chen and Guo (2007) introduce money into the model in the form of cash-in-

advance (CIA) constraint. Those authors show that the balanced-growth path may

be indeterminate under a constant money growth rule if the CIA constraint applies

not only to consumption but also to investment so that money is not superneutral

on the balanced growth path 3. Indeterminacy is generated by this form of the CIA

constraint rather than by monetary policy rule.

Li and Yip (2004) and Meng and Yip (2004) investigate the effect of Taylor-type

interest rate control in the neoclassical growth (i.e. exogenous growth) models. The

main message of these studies is that in the neoclassical growth models equilibrium

is mostly determinate regardless of the form of interest rate control rules. Such a

conclusion may not hold in endogenous growth models. Fujisaki and Mino (2007)

3Chen and Guo (2007) generalize Suen and Yip (2005) in a way that the CIA constraint applies

to consumption and to a certain fraction of gross investment.

2



use an AK growth model with a generalized Taylor rule to demonstrate that equilib-

rium indeterminacy may emerge more easily than in the exogenous growth models.

Since Fujisaki and Mino (2007) use a continuous-time formulation, our discrete-time

setting can provide us with a richer set of results concerning equilibrium determi-

nacy.

2 The Model

2.1 Households

The economy consists of a continuum of identical households with a unit mass. The

agent maximizes her lifetime utility

∞∑
t=0

βtu(ct,mt−J), 0 < β < 1, J = 0, 1 (1)

subject to the flow budget constraint such that

kt+1 − (1− δ)kt + ct + mt + bt + τt = yt +
mt−1

πt

+
Rt−1bt−1

πt

, 0 < δ < 1. (2)

Each variable means the following: β=time discounting rate; δ=capital depreciation

rate; ct =real consumption; mt−J=real money balances at the beginning of period

t − J + 1; kt=(per capita) stock of capital; bt=real stock of bonds at the end of

period; τt=lump-sum tax; yt=real income; πt ≡ Pt/Pt−1=gross rate of inflation;

Pt=nominal price level; Rt−1=gross nominal interest rate in period t − 1. In this

paper, we specify the utility function as follows:

u(ct,mt−J) =
(cρ1

t mρ2

t−J)1−σ

1− σ
, ρ1 + ρ2 = 1, σ > 0,

where σ is the inverse of intertemporal elasticity of substitution 4. This felicity

function satisfies sign(ucm) = sign(1 − σ), so that consumption and real money
4This instantaneous utility function satisfies uc > 0, um > 0, ucc < 0, umm < 0, uccum −

ucmuc < 0, and ummuc−ucmum < 0. That is, the utility function is strictly increasing and strictly

concave in c and m, and consumption c and real money balances m are both normal goods.
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balances are Edgeworth complements if 0 < σ < 1, while they are Edgeworth

substitutes if σ > 1. We define J = 1 as cash-in-advance (CIA) timing, and J = 0

as cash-when-I’m-done (CWID) timing.

We assume that the production function of the representative firm is given by a

simple AK technology, yt = Akt. Thus the competitive rate of return to capital is

fixed at A.

To derive the optimality conditions for the household’s consumption plan, set up

the following Lagrangian function:

L ≡
∞∑

t=0

βt

{
u(ct,mt−J)+λt

[
−kt+1+(1−δ)kt−ct−mt−bt−τt+Akt+

mt−1

πt

+
Rt−1bt−1

πt

]}
.

The first-order conditions for the household’s optimization problem are:

λt = uc(ct,mt−J) = (cρ1
t mρ2

t−J)(1−σ)ρ1

ct

; (3)

um(ct,mt) = (cρ1
t mρ2

t )(1−σ) ρ2

mt

= λt − βλt+1

πt+1

when J = 0; (4)

um(ct+1,mt) = (cρ1

t+1m
ρ2
t )(1−σ) ρ2

mt

=
λt

β
− λt+1

πt+1

when J = 1; (5)

λt−1 = βλt(A + 1− δ); (6)

λt =
βλt+1Rt

πt+1

; (7)

lim
t→∞

βt+1λt+1kt+1 = 0; (8)

lim
t→∞

βtλtmt = 0; (9)

lim
t→∞

βtλtbt = 0. (10)

Equations (8), (9) and (10) are the transversality conditions.

From (6) and (7), we obtain the following Fisher equation:

Rt

πt+1

= A + 1− δ. (11)

This represents the non-arbitrage condition, under which the real interest rate of

bond is equal to the net real rate of return on capital. From (3), (4), (5), (7) and
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(11), we obtain

um(ct,mt)

uc(ct,mt)
=

ρ2

ρ1

ct

mt

=
1

A + 1− δ

Rt − 1

πt+1

when J = 0, (12)

um(ct+1, mt)

uc(ct+1,mt)
=

ρ2

ρ1

ct+1

mt

=
Rt − 1

πt+1

when J = 1. (13)

Equations (12) and (13) show that the marginal rate of substitution between con-

sumption and real money holdings is equal to the opportunity cost of holding money.

2.2 Capital Formation

The government budget constraint is

mt + bt + τt =
mt−1

πt

+
Rt−1bt−1

πt

. (14)

From (2), (14), and the production function yt = Akt , we obtain the goods-market

equilibrium condition:

kt+1 = Akt + (1− δ)kt − ct. (15)

Denoting zt ≡ ct

kt

, we can rewrite the condition (15) as

kt+1

kt

= A + 1− δ − zt. (16)

2.3 Policy Rules

We consider the Taylor-type monetary policy rule under which the central bank

controls the nominal interest rate in response to the growth rate of income as well

as to the rate of either current or expected inflation. Formally, we assume that

Rt = R(πt+i, gt+i),
∂Rt

∂πt+i

≥ 0,
∂Rt

∂gt+i

≥ 0, i = 0 or 1, (17)

where gt+i ≡ yt+1+i

yt+i

=
kt+1+i

kt+i

= A+1−δ−zt+i is the gross rate of real income growth.

If i = 0 (resp. i = 1), the interest rate rule is said to be current-looking (resp.
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forward-looking), in which monetary authority uses the current (resp. expected)

values of economic variables as indices to stabilize economy 5.

For analytical simplicity, we specify (17) as

Rt = π∗
(

πt+i

π∗

)φ

(A + 1− δ)

(
gt+i

g∗

)η

, φ ≥ 0, φ 6= 1, η ≥ 0. (18)

In the above, x∗ is the steady-state value of a variable xt, and π∗ is the target rate of

inflation. If φ > 1, the nominal interest rate rises more than one for one in response

to a change in the rate of inflation. Then, the interest control rule is said to be

active as to inflation. Conversely, the rule (18) with φ < 1 is defined as passive

monetary policy. From (11) and (18),

φ
dπt+i

πt+i

+ η
dgt+i

gt+i

=
dRt

Rt

=
dπt+1

πt+1

. (19)

If i = 1, (19) becomes
dRt

Rt

=
dπt+1

πt+1

= − η

φ− 1

dgt+1

gt+1

. When the expected

growth rate of income increases, the central bank should raise the nominal interest

rate to stabilize economy. However, since the net real rate of return to capital

is constant due to the assumption of AK technology, the real interest rate also

should be kept constant by controlling the rate of inflation to satisfy non-arbitrage

condition. Formally, (φ − 1)
dπt+1

πt+1

< 0, that is, an active (resp. a passive) policy

lowers (resp. raises) rate of inflation. If i = 0, (19) is rewritten as

dπt+1

πt+1

− dπt

πt

= (φ− 1)
dπt

πt

+ η
dgt

gt

.

For a positive value of η, the growth rate of inflation may be higher when the rates

of inflation and income growth rise, even if the interest control rule is passive.

From (11), (18) and gt = 1 + A− δ − zt, the equilibrium rate of inflation is

πt+1 = πF (zt+1) = π∗
(

1 + A− δ − zt+1

1 + A− δ − z∗

)− η
φ−1

for i = 1,

πt+1 = πC(πt, zt) = (π∗)−(φ−1)(πt)
φ

(
1 + A− δ − zt

1 + A− δ − z∗

)η

for i = 0,

5Since we deal with a growing economy in which real income continues expanding, our formu-

lation of interest-rate control rule is a natural extension of Taylor’s (1993) original proposal.
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where

sign[πF
′(zt+1)] = sign(φ− 1),

∂πC(πt, zt)

∂πt

> 0,
∂πC(πt, zt)

∂zt

< 0, and sign

[
∂πC(πt, zt)/πt

∂πt

]
= sign(φ− 1).

Using these functions, we obtain the following:

Rt − 1

πt+1

= A + 1− δ − 1

πF (zt+1)
= oF (zt+1) for i = 1, (20)

Rt − 1

πt+1

= A + 1− δ − 1

πC(πt, zt)
= oC(πt, zt) for i = 0, (21)

where

oF
′(zt+1) =

πF
′(zt+1)

[πF (zt+1)]2
: sign[oF

′(zt+1)] = sign(φ− 1),

∂oC(πt, zt)

∂πt

=
∂πC(πt, zt)

∂πt

1

[πC(πt, zt)]2
> 0,

∂oC(πt, zt)

∂zt

=
∂πC(πt, zt)

∂zt

1

[πC(πt, zt)]2
< 0.

Hence, the opportunity cost of holding money is positively related to the equilibrium

rate of inflation.

3 Forward-looking Rule

3.1 The CWID timing

When we assume CWID timing of money holding and forward-looking monetary

policy rule, a complete dynamic equation is given by the following 6:

zt+1 = [θ∗θFW (zt+2, zt+1)− A + δ + zt]zt, (22)

where θ∗ ≡ {β(1+A−δ)} 1
σ = 1+A−δ−z∗ and θFW (zt+2, zt+1) =

(
oF (zt+2)

oF (zt+1)

)− 1−σ
σ

ρ2

.

In the following, we focus on the balanced-growth path with a positive growth rate.

Linearizing (22) at the steady state where θ∗ > 1 and z∗ > 0, we obtain 7

ẑt+2 =

(
1− 1

z∗θ∗θ̄FW
z

)
ẑt+1 +

1 + z∗

z∗θ∗θ̄FW
z

ẑt, (23)

6A derivation of the dynamics of zt in each case is shown in Appendix 1.
7We assume that 0 < z∗ < A− δ.
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Table 1: The Property of Equilibrium Path under Two Variables

p(−1) > 0 p(−1) < 0

p(1) > 0 1)Unstable: p(0) > 1 Saddle

2)Stable: p(0) < 1

p(1) < 0 Saddle Unstable

where ẑt ≡ zt − z∗ and

θ̄FW
z ≡ ∂θFW

∂zt+1

∣∣∣∣
ss

= −∂θFW

∂zt+2

∣∣∣∣
ss

=
1− σ

σ

ρ2η

[π∗(1 + A− δ)− 1](φ− 1)θ∗
.

Equation (23) is derived from ẑt+1 = z∗θ∗θ̄FW
z (ẑt+1 − ẑt+2) + (1 + z∗)ẑt. If θ̄FW

z = 0,

that is, if
(1− σ)ρ2η

φ− 1
= 0, this becomes ẑt+1 = (1 + z∗)ẑt, which implies that there

is a unique equilibrium path.

When θ̄FW
z 6= 0, the corresponding characteristic equation is

pFW (µ) = µ2 −
(

1− 1

z∗θ∗θ̄FW
z

)
µ− 1 + z∗

z∗θ∗θ̄FW
z

= 0. (24)

The properties of equilibrium path are summarized in Table 1. In this dynamic

system, there are two jump variables, zt+1 and zt. Thus equilibrium determinacy

holds if the two roots of (24) are out of the unit circle. The critical equations for

checking the characteristic roots are the following:

pFW (1) = − 1

θ∗θ̄FW
z

= − σ

1− σ

[π∗(1 + A− δ)− 1](φ− 1)

ρ2η
,

pFW (−1) = 2− z∗ + 2

z∗
1

θ∗θ̄FW
z

= 2− z∗ + 2

z∗
σ

1− σ

[π∗(1 + A− δ)− 1](φ− 1)

ρ2η
,

pFW (0) = −1 + z∗

z∗
1

θ∗θ̄FW
z

= −1 + z∗

z∗
σ

1− σ

[π∗(1 + A− δ)− 1](φ− 1)

ρ2η
.

Let us focus on the case of 0 < σ < 1. We can discuss the case of σ > 1 in

a similar manner. When φ > 1, pFW (1) < 0 is satisfied. Note that if η is high

pFW (−1) > 0 so that the steady state is a saddle point, otherwise the steady state

equilibrium becomes unstable. If φ < 1, then pFW (1) > 0, pFW (−1) > 0, and
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pFW (0) > 1 with low η. The following proposition and Figure 1 summarize our

result 8.

Proposition 1 Consider the economy with the CWID timing under the forward-

looking interest rate rule. Then, regardless of the sign of (1− σ), equilibrium inde-

terminacy tends to hold if
η

|φ− 1| is high.

3.2 The CIA timing

In this case, we can derive a complete dynamic system as a single equation such

that

zt+1 = [θ∗θFI(zt+1, zt)− A + δ + zt]zt, (25)

where θFI(zt+1, zt) =

(
oF (zt+1)

oF (zt)

)− 1−σ
σ

ρ2

. Linearizing the system around the steady

state, we obtain

ẑt+1 =

(
1 +

z∗

1 + z∗θ∗θ̄FW
z

)
ẑt. (26)

To derive (26), we use ẑt+1 = (1 + z∗)ẑt − z∗θ∗θ̄FW
z (ẑt+1 − ẑt).

Since zt is a jump variable, the condition for indeterminacy is

(
1+

z∗

1 + z∗θ∗θ̄FW
z

)2

<

1, that is,
z∗(z∗ + 2 + 2z∗θ∗θ̄FW

z )

(1 + z∗θ∗θ̄FW
z )2

< 0.

Since z∗ > 0, the condition can be rewritten such that z∗ + 2 + 2z∗θ∗θ̄FW
z < 0.

This can be satisfied when θ̄FW
z < 0. We summarize the result in the following

proposition and Figure 2.

Proposition 2 In the economy with the CWID timing under the forward-looking

interest rate rule, equilibrium path is determinate if
(1− σ)ρ2η

φ− 1
≥ 0. Otherwise,

equilibrium indeterminacy may emerge 9.

8Section 5 and Appendix 2 show how to draw Figures 1 to 4.
9This result is close to the finding in Fujisaki and Mino (2007) who use a continuous-time

formulation.
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φ

η

(1a)0 < σ < 1

1

0

Figure 1. The CWID timing with forward-looking rule

determinacy indeterminacy

(1b)1 < σ

φFW1

φ

η

1

0
φFW1

φFW2

φFW2

φ

η

(2a)0 < σ < 1

1

0

Figure 2. The CIA timing with forward-looking rule

determinacy indeterminacy

(2b)1 < σ

φFI1

φ

η

1

0

φFI1
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4 Current-looking Rule

4.1 The CWID timing

A complete dynamic system in this case consists of the following difference equations:

πt+1 = (π∗)−(φ−1)(πt)
φ

(
1 + A− δ − zt

1 + A− δ − z∗

)η

, (27)

zt+1 = [θ∗θCW (πt, zt+1, zt)− A + δ + zt]zt, (28)

where θCW (πt, zt+1, zt) =

(
oC(πt+1, zt+1)

oC(πt, zt)

)− 1−σ
σ

ρ2

, because πt+1 = πC(πt, zt). The

system linearized at the steady state is

π̂t+1

ẑt+1


 =


 φ −ηπ∗

θ∗

Xπ Xz





π̂t

ẑt


 , (29)

where

Xπ = −φ

η

z∗

π∗
(θ∗)2θ̄CW

z (φ− 1)

(φ− 1)− z∗θ∗θ̄CW
z

and Xz =
(1 + z∗ + z∗θ∗θ̄CW

z )(φ− 1)

(φ− 1)− z∗θ∗θ̄CW
z

.

The linearized dynamic equation of zt in (29) is derived from
(

1− z∗

φ− 1
θ∗θ̄CW

z

)
ẑt+1 = (1 + z∗ + z∗θ∗θ̄CW

z )ẑt − φ

η

z∗

π∗
(θ∗)2θ̄CW

z π̂t,

where

θ̄CW
z ≡ ∂θCW

∂zt

∣∣∣∣
ss

=
1− σ

σ

η(φ− 1)

(π∗(1 + A− δ)− 1)θ∗

= (φ− 1)
∂θCW

∂zt+1

∣∣∣∣
ss

= −ρ2η

φ

π∗

θ∗
∂θCW

∂πt

∣∣∣∣
ss

= (φ− 1)2θ̄FW
z .

The characteristic equation is

pCW (µ) = µ2 − (φ + Xz)µ + φXz +
ηπ∗

θ∗
Xπ = 0. (30)

There are two jump variables, πt and zt, in this system so that equilibrium determi-

nacy emerges when two roots of (30) are out of the unit circle. From (30), we find

the following:

pCW (1) =
(φ− 1)z∗

Q(η; π∗, σ)
,

11



pCW (−1) =
φ(2 + z∗) + 1 + z∗ + Q(η; π∗, σ)

Q(η; π∗, σ)
,

pCW (0) =
φ(1 + z∗)
Q(η; π∗, σ)

,

where Q(η; π∗, σ) ≡ 1− z∗θ∗(φ− 1)θ̄FW
z = 1− 1− σ

σ

ρ2ηz∗

π∗(A + 1− δ)− 1
.

We examine the properties of pCW (µ) when monetary policy is active (φ > 1).

Consider the case of 0 < σ < 1. If η is low enough that Q(·) > 0, the equilibrium

path is determinate, since pCW (1) > 0, pCW (−1) > 0 and pCW (0) > 1. When

Q(·) < 0 is satisfied, pCW (1) < 0 and pCW (0) < 0. Therefore, equilibrium path is

unstable or saddle. Under σ ≥ 1, Q(·) > 0 always holds. Then, pCW (1) > 0 and

pCW (−1) > 0 if φ > 1. Determinacy holds if pCW (0) > 1, which requires that φ is

large enough relative to η.

We can discuss the case of passive policy rule (φ < 1) in the same way. These

results are summarized in the propositions below and in Figure 3.

Proposition 3 Suppose that money holding satisfies the CWID timing and that

the interest-rate control is active (φ > 1) and current-looking. Then, the equilibrium

path is determinate either if η is small or if (1−σ)ρ2η = 0. If η is sufficiently large,

indeterminacy may emerge.

Proposition 4 In the case of the CWID timing and the passive current-looking

monetary policy rule (φ < 1), equilibrium indeterminacy is generated.

4.2 The CIA timing

Since oC(πt−1, zt−1) = A+1−δ− 1

πt

, a complete dynamic system in this case consists

of (27) and

zt+1 = [θ∗θCI(πt, zt)− A + δ + zt]zt, (31)

12



where θ∗θCI(πt, zt) =

(
oC(πt, zt)

oC(πt−1, zt−1)

)− 1−σ
σ

ρ2

. Linearizing (27) and (31) around the

steady state yields


π̂t+1

ẑt+1


 =




φ −ηπ∗

θ∗

−φ− 1

ηπ∗
(θ∗)2θ̄CI

z z∗ 1 + z∗ + z∗θ∗θ̄CI
z





π̂t

ẑt


 , (32)

where

θ̄CI
z ≡ ∂θCI

∂zt

∣∣∣∣
ss

=
1− σ

σ
ρ2

η

(π∗(1 + A− δ)− 1)θ∗

= − η

φ− 1

π∗

θ∗
∂θCI

∂πt

∣∣∣∣
ss

=
θ̄CW

z

φ− 1

= (φ− 1)θ̄FW
z .

The characteristic equation is

pCI(µ) = µ2 − (φ + 1 + z∗ + z∗θ∗θ̄CI
z )µ + φ(1 + z∗) + z∗θ∗θ̄CI

z = 0. (33)

There are two jump variables πt and zt in this system so local equilibrium determi-

nacy requires that the steady state equilibrium is a source. From (33),

pCI(1) = z∗(φ− 1) ≷ 0 if φ ≷ 1,

pCI(−1) = (2 + z∗)(φ + 1) + 2z∗θ∗(φ− 1)θ̄FW
z

= (2 + z∗)(φ + 1) + 2
1− σ

σ

ρ2ηz∗

π∗(A + 1− δ)− 1
,

pCI(0) = φ(1 + z∗) + z∗θ∗(φ− 1)θ̄FW
z = φ(1 + z∗) +

1− σ

σ

ρ2ηz∗

π∗(A + 1− δ)− 1
.

We consider the case of φ < 1 in which the result seems to be interesting.

When 0 < σ ≤ 1, pCI(−1) > 0 is satisfied, and therefore equilibrium indeterminacy

holds. If σ > 1, equilibrium determinacy is generated if η is large enough to satisfy

pCI(−1) < 0.

The main results obtained in this system are summarized as the following propo-

sitions and Figure 4.
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determinacy indeterminacy
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0

Figure 4. The CIA timing with current-looking rule

determinacy indeterminacy
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φCI2

φ

η

1

0

φCI2

φCI1
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Proposition 5 Assume that the money holdings satisfies the CIA timing and that

the interest-rate control is active current-looking (φ > 1). Then equilibrium determi-

nacy holds if (1− σ)ρ2η ≥ 0. Otherwise, the equilibrium path can be indeterminate

when η is large.

Proposition 6 Assume that the economy with the CIA timing under the passive

current-looking interest-rate control rule (φ < 1). If (1−σ)ρ2η ≥ 0, balanced growth

path is a saddlepoint so that indeterminacy emerges. Otherwise, the equilibrium path

is determinate when η is large.

5 A Numerical Example

As shown above, whether the equilibrium path is determinate or not critically de-

pends on the magnitudes of σ, η, and φ. To check the plausibility of our analytical

results, we examine a numerical example. Let us set:

A = 0.08, β = 0.98, δ = 0.04, π∗ = 1.02, ρ1 = 0.7, ρ2 = 0.3.

In addition, in order to draw the figures in (η, φ)-plane, we set σ = 0.5 or σ = 2,

which respectively implies (θ∗, z∗) = (1.0388, 0.0012) or (θ∗, z∗) = (1.0096, 0.0304)

From the critical equations for equilibrium determinacy in Sections 3 and 4, we derive

loci and substitute the numerical example into these loci as shown in Appendix 2.

According to Taylor (1993), φ = 1.5 and η = 0.5 are empirically plausible values.

Since φ and η are respectively the elasticity of nominal interest rate to the inflation

rate and to the rate of income growth, these values cannot be extremely high. We

calculate percentage of the area in which equilibrium determinacy holds within the

range 0 < φ ≤ 3 and 0 ≤ η ≤ 3. We denote the value of this range by L(σ). For

example, LF (1) = 100 and LC(1) =
2 ∗ 3

9
∗ 100 = 66.67 in the forward-looking and

current-looking rules respectively regardless of the timing of real money balances in

the MIUF. These values are the criterions to compare the numerical results. The
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Table 2: The Values of L(σ)

σ = 0.5 σ = 1 σ = 2

LFW (σ) 99.41 100.00 92.67

LFI(σ) 99.71 100.00 96.31

LCW (σ) 66.67 66.67 63.95

LCI(σ) 66.67 66.67 63.95

Table 3: Equilibrium Determinacy (1)

θ̄FW
z < 0 θ̄FW

z = 0 θ̄FW
z > 0

CWID, FL D, I D D, I

CIA, FL D, I D D

CWID, CL (φ > 1) D, I D D, I

CWID, CL (φ < 1) I I I

CIA, CL (φ > 1) D, I D D

CIA, CL (φ < 1) I I D, I

FL=forward-looking rule, CL=current-looking rule

D=determinate, I=indeterminate

values of L(σ) are calculated in Appendix 2 and summarized in Table 2, which show

that the positive response of the interest rate to the income growth and the timing

of money holdings have small impacts on equilibrium determinacy.

6 Discussion

Tables 3 and 4 summarize the results shown in Sections 3 and 4. In this section, we

discuss the intuitive implication of our findings.
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Table 4: Equilibrium Determinacy (2)

CWID, FL σ < 1 σ = 1 1 < σ FL with η = 0 CWID CIA

φ > 1 D, I D D, I φ > 1 D D

φ < 1 D, I D D, I φ < 1 D D

CIA, FL σ < 1 σ = 1 1 < σ CL with η = 0 CWID CIA

φ > 1 D D D, I φ > 1 D D

φ < 1 D, I D D φ < 1 I I

CWID, CL σ < 1 σ = 1 1 < σ φ = η = 0 σ < 1 σ = 1 1 < σ

φ > 1 D, I D D, I CWID D D D

φ < 1 I I I CIA D D D

CIA, CL σ < 1 σ = 1 1 < σ

φ > 1 D D D, I

φ < 1 I I I, D

FL=forward-looking rule, CL=current-looking rule

D=determinate, I=indeterminate

6.1 θ̄FW
z = 0

If (1 − σ)ρ2η = 0 is satisfied, θ̄FW
z becomes zero. Then, we obtain the standard

results in the AK growth model with the Taylor rule under which the nominal

interest rate responds to inflation alone. Namely, both the forward-looking and

active current-looking rules generate equilibrium determinacy, while indeterminacy

holds under the passive current-looking rule, regardless of the timings of agent’s

money holdings. Two factors neutralizing the effect of the opportunity cost of

holding money eliminate the efficacy of the generalized Taylor rule. The first is

17



ρ2 = 0, which means no need for money. Secondly, when the utility is additively

separable (σ = 1), the optimal consumption is independent from the demand for

real money holdings.

Moreover, let us consider the case in which the nominal interest rate is pegged

(φ = η = 0). From the non-arbitrage condition (11), the rate of inflation is also

fixed in the case of AK technology. Therefore, the dynamics of zt is the same as in

the standard AK model and, hence, equilibrium determinacy around the balanced

growth path always holds.

6.2 Intuitive Implication

From Table 3, we obtain two significant messages. First, under the forward-looking

and active current-looking interest control rules, θ̄FW
z > 0 is a sufficient condition

for equilibrium determinacy in the case of CIA timing, while it is not in the case of

CWID timing. Second, if the passive current-looking rule is adopted, determinacy

does not hold in the CWID timing and it may emerge in the CIA timing when

θ̄FW
z > 0.

For example, we consider the case under which agents have a preference with

0 < σ < 1 and monetary policy rule is active and forward-looking so that θ̄FW
z > 0 is

satisfied. Suppose that the economy initially stays in the balanced-growth equilib-

rium and that a rise of the growth rate of consumption is anticipated. According to

this anticipation, each agent increases consumption and thus the ratio of consump-

tion to capital z becomes larger (zt+1 > zt). Under the active interest control rule,

this means an increase of the growth rate of inflation to satisfy the non-arbitrage

condition. As shown in Section 2.3, this effect results from the generalization of the

interest control rule.

When the timing of money holdings is CIA, the growth rate of the opportunity

cost of holding money becomes higher and that of consumption falls, because con-

sumption and real money balances are complements. It contradicts to the above

18



anticipation, so that determinacy holds. In the CWID timing, this mechanism is

not effective, because the timing of the growth rate of the opportunity cost of hold-

ing money which affects the rate of consumption growth is different from the case

of CIA. Therefore, a larger z can be realized and indeterminacy may be generated.

This argument can be also applied in other cases.

6.3 Endogenous vs Exogenous Growth

Meng and Yip (2004) claim that a generalized Taylor rule may not yield indeter-

minacy in the standard neoclassical growth model. In contrast, we have shown

that the generalized Taylor rule has a pivotal effect on economic stability in the

AK growth model. To see the reason for the presence of such a difference, we

consider a continuous-time model 10. Substituting the interest-rate control rule

R = R(π, f(k), g) into the non-arbitrage condition, R− π = f ′(k)− δ, and lineariz-

ing it around the steady state, we obtain:

(R1 − 1)π̂ +R2f
′k̂ +R3ĝ = f ′′k̂. (34)

Suppose that R1 > 1. In an exogenous growth model, it holds that R3 = 0 and

f ′′ < 0 < f ′, so that (34) becomes π̂ =
f ′′ −R2f

′

R1 − 1
k̂, which satisfies

dπ̂

dk̂
< 0,

regardless whether R2 is zero or positive. When the AK technology is assumed

(R2 = 0 and f ′′ = 0 < f ′), (34) is rewritten as π̂ =
−R3

R1 − 1
ĝ. Hence, π̂ = 0 if

R3 = 0 and
dπ̂

dĝ
< 0 if R3 > 0.

Therefore, when the Taylor rule is generalized, the property of equilibrium rate

of inflation is dramatically changed in the AK growth model. Such a difference is

the main reason for a stark contrast in equilibrium determinacy conditions between

the neoclassical and AK growth models.

10Notations are the same, and time index is omitted.
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7 Conclusion

By use of a discrete-time AK growth model with money, we have investigated the

stabilization effect of a generalized Taylor rule under which the nominal interest

rate responds to the growth rate of income as well as to the rate of inflation. The

central messages of our study are as follows. First, if the interest-rate control is

sensitive to the growth rate of income, monetary policy rule may play a pivotal role

for economic stability even in a simple environment in which money is superneutral

in the balanced growth equilibrium. Second, our discrete-time modelling clearly

demonstrates that the timings of money holding of the households and the time

perspective of the monetary authority critically affect the efficacy of interest control

rules. This aspect cannot be considered in the foregoing studies on equilibrium

determinacy of monetary AK growth models in continuous-time settings.

Appendix 1: Step for Deriving the Euler Equation

In all four cases of Sections 3 and 4, we use the same step for obtaining the reduced

dynamic system. First, using (12), (13), (20) and (21), we derive the demand for real

money balances in each case. Second, we substitute this money demand function

into (3), which gives the Euler equation. The growth rate of consumption in each

case consists of two parts: a common balanced growth rate of consumption obtained

in the standard AK growth model, θ∗ ≡ {β(1 + A − δ)} 1
σ , and the part related to

the growth rate of the opportunity cost of holding money.

As an example, we show this step formally in the case of CWID with forward-

looking rule (Section 3.1). From (12) and (20),

mt =
ρ2

ρ1

(1 + A− δ)
ct

oF (zt+1)
. (35)

Substituting this into (3), we obtain

λt = ρ1

{
ρ2

ρ1

(1 + A− δ)

}ρ2(1−σ)
oF (zt+1)

−ρ2(1−σ)

cσ
t

. (36)
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Thus the Euler equation can be expressed as

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oF (zt+2)

oF (zt+1)

)− 1−σ
σ

ρ2

= θ∗θFW (zt+2, zt+1). (37)

The Euler equations in Sections 3.2, 4.1, and 4.2 are respectively given by:

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oF (zt+1)

oF (zt)

)− 1−σ
σ

ρ2

= θ∗θFI(zt+1, zt), (38)

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oC(πt+1, zt+1)

oC(πt, zt)

)− 1−σ
σ

ρ2

= θ∗θCW (πt, zt+1, zt), (39)

ct+1

ct

= {β(1 + A− δ)} 1
σ

(
oC(πt, zt)

oC(πt−1, zt−1)

)− 1−σ
σ

ρ2

= θ∗θCI(πt, zt). (40)

We use πt+1 = πC(πt, zt) in (39) and oC(πt−1, zt−1) = A + 1− δ − 1

πt

in (40). Note

that the timing of the growth rate of the opportunity cost of holding money is one

period ahead in the case of CIA than that of CWID. Using these Euler equations

and the capital dynamics (16), we obtain the dynamics of zt in each case.

Appendix 2: Preparation for Drawing Figures

The CWID timing with forward-looking rule

The loci of pFW (−1) = 0 and pFW (0) = 1 are respectively given by

φFW1(η; σ) = 1 +
1− σ

σ

2z∗

z∗ + 2

ρ2

π∗(1 + A− δ)− 1
η. (41)

φFW2(η; σ) = 1− 1− σ

σ

z∗

z∗ + 1

ρ2

π∗(1 + A− δ)− 1
η. (42)

Figure (1a) displays the general loci in the case of 0 < σ < 1. According to a

numerical example in Section 5, we obtain

φFW1(η; 0.5) = 0.0059η + 1,

φFW2(η; 0.5) = −0.0059η + 1.
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Then, we can calculate LFW (0.5) in such a way that

LFW (0.5) =

(
9− 2 ∗ (0.0059 ∗ 3) ∗ 3

2

)
∗ 1

9
∗ 100 = 99.41.

When σ > 1, we can draw the loci as in Figure (1b). Substituting the numerical

example into these loci, we obtain

φFW1(η; 2) = −0.0739η + 1,

φFW2(η; 2) = 0.0728η + 1.

In this case, LFW (2) is as follows;

LFW (2) =

(
9−

{
(0.0739 ∗ 3) ∗ 3

2
+

(0.0728 ∗ 3) ∗ 3

2

})
∗ 1

9
∗ 100 = 92.67.

The CIA timing with forward-looking rule

The locus of z∗ + 2 + 2z∗θ∗θ̄FW
z = 0 which is significant for equilibrium determinacy

is

φFI1(η; σ) = 1− 1− σ

σ

2z∗

z∗ + 2

ρ2

π∗(1 + A− δ)− 1
η. (43)

φFI1 is a mirror image of φFW1. We draw this locus in Figure 2.

Using the numerical example, we see that the locus (43) becomes

φFI1(η; 0.5) = −0.0059η + 1, or

φFI1(η; 2) = 0.0739η + 1.

We can calculate LFI(σ) in the following manner:

LFI(0.5) = 100− (0.0059 ∗ 3) ∗ 3

2
∗ 1

9
∗ 100 = 99.705, or

LFI(2) = 100− (0.0739 ∗ 3) ∗ 3

2
∗ 1

9
∗ 100 = 96.305.

22



The CWID timing with current-looking rule

The loci of Q(·) = 0, pCW (−1) = 0, and pCW (0) = 1 are respectively given by

ηCW1(σ) =
σ

1− σ

π∗(A + 1− δ)− 1

ρ2z∗
, (44)

φCW2(η; σ) =
1− σ

σ

2z∗

2 + z∗
ρ2

π∗(A + 1− δ)− 1
η − 1, (45)

φCW3(η; σ) =
1

1 + z∗

[
1− 1− σ

σ

ρ2z
∗

π∗(A + 1− δ)− 1
η

]
. (46)

In the case of 0 < σ < 1. these loci are generally shown in Figure (3a). (44)-(46)

with the numerical example are the following:

ηCW1(0.5) = 168.888,

φCW2(η; 0.5) = 0.0059η − 1,

φCW3(η; 0.5) = −0.0059η + 0.9988.

ηCW1(0.5) and φCW2(η; 0.5) do not appear in the area 0 ≤ η ≤ 3. This means that

LCW (0.5) = 66.67.

Figure (3b) displays the loci when σ > 1. Substituting the numerical example

into (44)-(46), we obtain

ηCW1(2) = −13.3351,

φCW2(η; 2) = −0.0739η − 1,

φCW3(η; 2) = 0.0728η + 0.9704.

Within the area 0 ≤ η ≤ 3, ηCW1(2) and φCW2(η; 2) are not seen. Then, LCW (2) is

calculated as

LCW (2) = 100−100∗ 1

9
∗
{

1∗0.4066+
(1 + 0.0728 ∗ 3 + 0.9704) ∗ 2.5934

2

}
= 63.95.
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The CIA timing with current-looking rule

We obtain the loci of pCI(−1) = 0 and pCI(0) = 1:

φCI1(η; σ) = −1− σ

σ

2z∗

2 + z∗
ρ2

π∗(A + 1− δ)− 1
η − 1, (47)

φCI2(η; σ) =
1

1 + z∗

[
1− 1− σ

σ

ρ2z
∗

π∗(A + 1− δ)− 1
η

]
. (48)

(47) is a mirror image of (45), and (48) is the same equation as (46).

These loci in the case of 0 < σ < 1 are generally drawn in Figure (4a). Substi-

tuting the numerical example into these loci, we find

φCI1(η; 0.5) = −0.0059η − 1,

φCI2(η; 0.5) = −0.0059η + 0.9988.

φCI1(η; 0.5) does not exist in the area 0 ≤ η ≤ 3. This means that LCI(0.5) = 66.67.

If σ > 1, Figure (4b) generally represents these loci. Using the numerical exam-

ple, we obtain

φCI1(η; 2) = 0.0739η − 1,

φCI2(η; 2) = 0.0728η + 0.9704.

φCI1(2) does not appear in the area 0 ≤ η ≤ 3. Then, LCI(2) is calculated in the

same way as LCW (2) so that LCI(2) = 63.95. In sum, LCI(σ) = LCW (σ) when η

takes plausible values.
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