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Abstract 

The sample-specificity and path-dependence of the data envelopment analysis (DEA) based 

technical change index as a component of Malmquist indexes prevent us from obtaining 

overall and systematic information on technical change. This paper develops a path-

independent method to estimate technical change using a systematized set of controlled input–

output vectors and visualization of the DEA frontiers. The application to the panel datasets of 

agricultural production in the Brazil Amazon in 1975–1995 indicates non-Hicks-neutral 

technical change, with crossings of frontiers in both the 1975–1985 and the 1985–1995 

periods. The alternative measure of overall technical change shows that moderate 

technological progress may have occurred on the whole in 1975–1995. The results also show 

heterogeneous trends across products. The mean of the sample-specific technical change 

scores are found to be quite different from the overall technical change measure. 

 

JEL classification: D24、O30 
Key words: Data envelopment analysis, Path dependence, Agricultural intensification 
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I. Introduction 

Data envelopment analysis (DEA) has been a widely used nonparametric method to estimate 

productivity. The popularity of this DEA-based Malmquist productivity change index rests in 

its decomposition into measures of technical change and change in technical efficiency in 

addition to the common advantage of DEA to accommodate multiple-input and multiple-

output technology. As the DEA-based method calculates the components of Malmquist 

indexes at the level of individual decision-making units (DMUs) (Färe et al. (FGNZ), 1994), 

the contribution of each component can be investigated for each DMU. When overall 

technical change, such as how the production frontier shifts over time, is of interest, however, 

the DMU-specific measures provide little information because information on each DMU is 

mutually-isolated. Also, in the case of non-Hicks-neutral technical change, the DMU-specific 

technical change indexes encounter the problem of path dependence, or non-transitivity, that 

stems from the path dependence of Malmquist indexes, which causes the estimate of technical 

change to take different values depending on the input-output levels at which technical 

change is measured. 

The DMU-specificity of DEA-based indexes prevents estimation of the production 

frontier as an integrated set of best-practice DMUs and, hence, estimation of overall technical 

change. While technical efficiency is attributable to individual DMU’s ability, technical 

change is a shift of production frontier that occurs exogenously and indiscriminately to all 

DMUs over the economy. Accordingly, the difference in technical change scores across 

DMUs is simply accounted for by the difference in their input-output bundles. Therefore, a 

method to estimate overall technical change would need to allow for the flexibility to measure 

technical change at arbitrary input-output bundles without being constrained to existing input-

output bundles. 
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Furthermore, path dependence of the technical change index makes it difficult to 

estimate overall technical change using actual data, when technical change is non-Hicks-

neutral. Färe et al. (FGR) (1998) showed that the Malmquist indexes are path dependent 

except when technical change is Hicks-neutral. The DMU-specific technical change index can 

take different values depending on which input-output levels are to be used between two 

different points of time for the same overall technical change. Färe et al. (FGGL) (1997) 

suggested further a decomposition of the technical change index into input and output bias 

indexes. Managi and Karameri (2004) is among recent empirical studies that estimate 

FGGL’s bias indexes, and they demonstrated using the US agricultural production data in 

1960-1996 that the size of the biases is large enough to attract attention. Chen and Ali (2004) 

indicated the possibility of having an opposite sign of technical change score for the same 

DMU due to the path dependence of the technical change index when frontiers of two periods 

cross each other. 

This paper develops a DEA-based method to estimate overall technical change using 

controlled input–output vectors while avoiding the DMU-specificity and the path-dependence 

problems. An application of the method is undertaken to assess technical change in the 

agricultural sector in the Brazil Amazon in 1975–1995.  

 

II. The Model 

Let 1( ,..., ) N
Nx x += ∈ℜx  and 1( ,..., ) M

My y += ∈ℜy  be the vectors of inputs and outputs, 

respectively. Let ( )tY x  be the output set in period t that is producible by x . The output set is 

assumed to be closed, bounded, and convex and to exhibit strong disposability of all outputs. 

The output-oriented Malmquist index under the Caves et al. (1982) (CCD) definition is a ratio 

of the following two distance functions: 
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( , ) inf{ : / ( )}t t t t t tD Yθ θ= ∈y x y x                             (1) 

and 

1 1 1 1( , ) inf{ : / ( )}t t t t t tD Yθ θ+ + + += ∈y x y x .                   (2) 

Assuming constant returns to scale (CRS), the solution of DEA for the distance 

function in (1) is obtained for the kth DMU using the following linear programming: 

1

, 1 1
{ ( , ) } sup{ : . . , ,

1,..., , 1,..., , 0, 1,..., }
j

J J
t t t t t t t t

k k j mj mk j nj nk
z j j

j

D s t z y y z x x

m M n N z k J
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θ θ−

= =

= ≥ ≤

= = ≥ =

∑ ∑y x
        (3)  

The value of 1 1( , )t t tD + +y x  is calculated by replacing t
mky  and t

nkx  with 1t
mky +  and 1t

nkx +  

from (3), respectively. Thus, the Malmquist index is given as 
1 1

1
( , )

( , )

t t t

CCD t t t

DM
D

+ +

=
y x

y x
. It is 

constructed based on the period t reference technology. Alternatively, the Malmquist index 

can adopt the reference technology in period t+1, 
1 1 1

2 1

( , )
( , )

t t t

CCD t t t

DM
D

+ + +

+=
y x

y x
. 

The CCD Malmquist index can be decomposed into technical change (TC) and 

efficiency change (EC) components: 

1 1 1 1 1

1 1 1 1 1 1

( , ) ( , )
( , ) ( , )

t t t t t t

CCD CCD CCD t t t t t t

D DM TC EC
D D

+ + + + +

+ + +

   
= ⋅ =    

   

y x y x
y x y x

,   (4) 

Thus, technical change can be defined as a ratio of values of distance functions at periods t 

and t+1 evaluated at the same input–output bundle. When the values of distance functions are 

based on the input–output bundle in period t, then 2 1

( , )
( , )

t t t

CCD t t t

DTC
D +=

y x
y x

. Likewise, the FGNZ 
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Malmquist index can be decomposed into TC and EC while TC is a geometric mean of 

1CCDTC  and 2CCDTC . 

The path dependence of the technical change index implies the difference between  

1CCDTC  and 2CCDTC , and vise versa, when the technology does not exhibit the Hicks-neutrality. 

FGGL (1997) showed that the ratio of 1CCDTC  to 2CCDTC  can be expressed as the product of an 

input and an output bias indexes (IB and OB, respectively), where OB (IB) measures the 

departure from the Hicks-output(input)-neutrality of technical change. When the technology does 

not exhibit the Hicks-output-neutrality, their Proposition 1 implies that OB equals unity (i.e. 

there is no output bias) only if  1t tλ+ =y y , 0λ >  (temporal constancy of the output mix). When 

the technology does not exhibit the Hicks-input-neutrality, their Proposition 2 implies that IB 

equals unity (i.e. no input bias) only if 1t t+ =x x  under the CRS assumption. Thus, path-

dependence problem is inevitable in practice as the above conditions on input-output bundle are 

seldom satisfied.  

This path-dependence problem can be avoided by using common input–output bundles 

at which technical change is measured. Such input-output bundles need not to coincide with the 

sample ones, and they can be controlled by the researcher. Thus, the input–output bundles can be 

set systematically such that technical change is measured in overall directions. Let us denote a 

controlled input–output vector ( , )u v , where M
+∈ℜu , 1{ ,..., }Mu u=u  and N

+∈ℜv , 

1{ ,..., }Nv v=v . Distance functions at t and t+1 can be defined as ( , ) inf{ : / ( )}t tD Yθ θ= ∈u v u v  

and 1 1( , ) inf{ : / ( )}t tD Yθ θ+ += ∈u v u v . Then, accordingly: 

1( , )
( , )

t

t

DTC
D

+

=
u v

u v
.                                                        (5) 
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The value of the distance function for lth controlled vector ( , )t
l lD u v  , where 1,...,l L= , can 

be calculated by  

1

, 1 1
{ ( , ) } su p{ : . . , ,

1,..., , 1,..., , 0, 1,..., }.
j

J J
t t t t

l l j mj ml j nj nl
z j j

j

D v s t z y u z x v

m M n N z l L

θ
θ θ−

= =

= ≥ ≤

= = ≥ =

∑ ∑u
         (6) 

The value for 1( , )t
l lD + u v  can be calculated by replacing t

mjy  and t
njx  with 1t

mjy +  and 1t
njx + , 

respectively. 

By definition, the point on the period t frontier is given by: 

*
( , )

t l
l t

l lD
=

uy
u v

 and 1*
( , )

t l
l t

l lD
+ =

uy
u v

.                            (7) 

This projection is repeated for all 1,...,l L=  to obtain sufficient points to recover the frontiers 

for all time points. The input vector v  is kept constant to normalize the output set and to rule 

out the presence of input bias.    

Once *ty  and 1*t+y  are obtained for each controlled vector, those points are used to 

construct a convex hull for the each year’s frontier, and the frontiers are visualized using 2-D 

or 3-D graphs as long as 3m ≤ . Aoki et al.’s (2005) introduced a method of visualizing DEA 

frontiers while their method used only the existing data points in a single time period. This 

paper extends their method using controlled vectors to allow for comparison of frontiers in 

multiple time points.  

 Technical change in individual sectors can be visually compared in 2-D or 3-D 

space. Also, we can quantify technical change on the whole by comparing the space bounded 

by the frontier and the three planes that are formed by the coordinate axes. Let us denote the 

volume of the bounded space by ( ( ))Vol Y ⋅  in the case 3m = . The value of the ratio 
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1( ( ))
( ( ))

t

t

Vol Y
Vol Y

δ
+

=
v

v
  greater (less) than one means positive (negative) technical change. 

Assuming that technical change had occurred in a Hicks-neutral fashion, a homothetic ratio 

that is given by 
1
3δ  can be considered as an alternative measure of technical change.   

 

III. Application to the Agricultural Sector in the Brazil Amazon 

I apply the above method to estimating technical change in the agricultural sector in the Brazil 

Amazon using a cross-county dataset for 255 counties in 1975, 1985 and 1995 that are 

available from the online data that were compiled by Instituto de Pesquisa Econômica 

Aplicada (IPEA). The counties in this region are reasonably homogeneous in geoclimatic 

conditions and production profiles, which allows us to assume that they face the same 

technology at a given point of time. Agricultural intensification through technological 

progress is thought to contribute to both economic development and environmental 

conservation.* Furthermore, this is one of the few datasets in developing countries that are 

available for a large number of cross-section units for multiple-year periods.†

For analytical tractability, I aggregate four annual crops (rice, cassava, beans and 

maize) into one category, “annual crop,” measured in 2000 US dollar. “Perennial crop” 

includes only bananas, measured in tons. “Cattle” measures the number of head of cattle. The 

two inputs comprise labor and land.

  

‡

The input levels of the controlled vectors are fixed at the regions’ average in 1985. 

Figures 1 and 2 show the visualized frontiers in 1975 and 1985, and in 1985 and 1995, 

  

                                                 
* See Lee et al. (2006) for extensive discussion on definitions for agricultural intensification. 
† IPEA established a geographical definition for the analytical units of the dataset that remained consistent 
throughout the period despite the rearrangements of counties that occasionally took place.  
‡ While it would be ideal to have capital data, they are not available.  The major products in the region are not 
capital intensive and, hence, it is unlikely that the omission of capital data will lead to large biases. 
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respectively, where levels of outputs are normalized such that the intercepts of the 1975 

frontier are unity.  

Both figures suggest non-Hicks-neutrality in technical change. From 1975 to 1985, 

crossing of the two frontiers is observed around the middle of the frontiers in Figure 1. The 

1985 frontier dominates the 1975 frontier as we approach the cattle (CT) and the annual crop 

(AC) axes, which is likely to be the result of positive technical change in the CT and AC 

sectors. On the other hand, the dominance of the 1975 frontier around the perennial crop (PC) 

axis implies a technological regress in that product sector. The first three columns of Table 1 

show the degree of frontier shifts along each axis. The shift of the frontier along the CT, AC 

and PC axes from 1975 to 1985 is found to be 33.4%, 21.3% and –14.6%, respectively.   

From 1985 to 1995, the overall dominance of the frontier is not obvious as, again, the 

frontiers cross in the middle. The frontier shift is –6.9%, 6.7% and –14.3% along the cattle, 

annual crop and perennial crop axes, respectively. The Hicks-neutral equivalent of frontier 

shift is calculated by 
1
3δ . The growth rates are found to be –3.1% (technological regress) in 

1975–1985 and 4.8% (technological progress) in 1985–1995. 

For comparison purposes, CCD and FGNZ’s DMU-specific technical change 

measures are calculated and the descriptive statistics are presented in Table 2. The mean value 

of FGLZTC  is 7.7 (28) percentage points smaller (greater) than the Hicks-neutral equivalent 

measure in 1975–1985 (1985–1995). Potentially, this may be because the DMU-specific 

measures tend to be more heavily weighted by the sectors with higher sample 

concentrations—perennial crops for the former period and annual crops for the latter period. 

Further, the last column of Table 2 shows that only 32.9% of the counties benefited from 

technological progress, whereas 90.6% benefited from technological progress in 1985–1995 

based on the FGNZ measure. 
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The last column of Table 2 also indicates that there is a large difference between 

1CCDTC  and 2CCDTC . This implies that one can reach quite different conclusions on technical 

change depending on the choice of the input–output bundle between two points in time. 

IV. Conclusions 

This paper develops a path-independent method to estimate technical change using a 

systematized set of controlled input–output vectors and visualization of the DEA frontiers. 

The application to the panel datasets of agricultural production in the Brazil Amazon in 1975–

1995 indicates non-Hicks-neutral technical change, with crossings of frontiers in both the 

1975–1985 and the 1985–1995 periods. The alternative measure of overall technical change 

shows that moderate technological progress may have occurred in 1975–1995; thereby 

suggesting that agricultural intensification was in progress. The results also show 

heterogeneous trends across products—moderate progress in cattle and annual crops, and a 

decline in perennial crops (bananas). The mean DMU-specific technical change scores are 

found to be quite different from the overall technical change measure and, thus, one should 

not rely solely on the DMU-specific measures.        
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Table 1. Technical change estimates along coordinate axes and volume-based indexes 

 Cattle Annual 

crop 

Perennial 

crop 

Hicks-neutral 

equivalent growth 

rate (based on 

homothetic ratio) 

1985 level (1975=1) 1.334 1.213 0.854  

Growth in 1975–1985 +33.4% +21.3% –14.6% –3.1% 

1995 level (1975=1) 1.242 1.294 0.732  

Growth in 1985–1995 –6.9% +6.7% –14.3% +4.8% 

 

Table 2. FGNZ- and CCD-based technical change estimates 

  Obs Mean SD Min Max Median Number of counties 

with non-negative 

growth ( 0TC ≥ ) 

1975–

1985 

FGLZTC  255 0.892 0.227 0.432 1.986 0.930 84(32.9%) 

1CCDTC  255 0.858 0.252 0.383 1.922 0.900 73(28.6%) 

2CCDTC  255 0.944 0.271 0.402 2.421 0.959 102(40.0%) 

1985–

1995 

FGLZTC  255 1.328 0.288 0.875 2.429 1.263 231(90.6%) 

1CCDTC  255 1.300 0.299 0.576 2.055 1.250 220(86.3%) 

2CCDTC  255 1.380 0.425 0.839 4.348 1.290 221(86.7%) 
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Figure 1. Visualized production frontiers in 1975 and 1985 

 

Figure 2. Visualized production frontiers in 1985 and 1995 
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