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Abstract

The objective of this paper is to examine effects of realized covariance matrix estimators

based on intraday returns on large-scale minimum-variance equity portfolio optimization. We

empirically assess out-of-sample performance of portfolios with different covariance matrix

estimators: the realized covariance matrix estimators and Bayesian shrinkage estimators based

on the past monthly and daily returns. The main results are: (1) the realized covariance matrix

estimators using the past intraday returns yield a lower standard deviation of the large-scale

portfolio returns than the Bayesian shrinkage estimators based on the monthly and daily histor-

ical returns; (2) gains to switching to strategies using the realized covariance matrix estimators

are higher for an investor with higher relative risk aversion; and (3) the better portfolio perfor-

mance of the realized covariance approach implied by ex-post returns in excess of the risk-free

rate, the standard deviations of the excess returns, the return per unit of risk (Sharpe ratio) and

the switching fees seems to be robust to the level of transaction costs.
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1 Introduction

Measuring and controlling the risk of assets are important factors in portfolio management, to-

gether with option pricing and value-at-risk analysis. In the finance literature, risk is usually indi-

cated by the variability of asset returns. Thus, estimating their covariance matrix plays a key role

for determining the portfolio allocation, for example, using mean-variance portfolio optimization

based on the investment theory of Markowitz (1952). High-frequency financial data, which have

become widely available by the development of computers and data recording systems, potentially

include much information about the dynamics of asset prices. In addition, nonparametric variance

and covariance measures have attracted the attention of financial econometricians. The measures

are called realized variance and covariance, which are constructed by summing outer-products of

intraday return data. They potentially provide very accurate estimates of the underlying quadratic

variation and covariation. Also, the covariance matrix of asset returns becomes observable by the

realized covariance approach.

There are some earlier studies for evaluating the economic benefit of the realized covariance

approach in the context of investment decisions. Recent work is used to construct estimates of the

daily covariance matrix using the intraday historical returns and to examine the performance of

small- or medium-scale portfolios. Fleming et al. (2003) consider that a risk-averse investor uses

conditional mean-variance analysis to allocate funds composed of three assets: S&P 500 futures,

Treasury bond futures, and gold futures. They empirically show that the economic gains yielded by

rolling covariance matrix estimators, based on intraday returns, are economically large. It is well

known that the realized variance and covariance measures deteriorate with market microstructure

effects that are induced by various market frictions such as the discreteness of price changes, bid-

ask bounces, and asymmetric information across traders, inter alia. Bandi et al. (2008) and Pooter

et al. (2008) examine the effect of the realized covariance estimators that are constructed under

optimal sampling frequency on optimized portfolios using three stocks and 78 stocks in S&P 100

index constituents, respectively.

This paper examines the economic benefit of large-scale minimum variance equity portfolio
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optimized using the realized covariance approach. For the analysis of a large-scale portfolio, Chan

et al. (1999) construct a portfolio made up of 250 stocks randomly selected from domestic common

stock issues on the New York Stock Exchange and the American Stock Exchange. They show that

the large-scale portfolio optimization using a factor model with the monthly historical returns is

helpful for risk control. Clarke et al. (2006) construct a minimum-variance portfolio consisting of

the 1,000 largest market capitalization U.S. stocks using Bayesian shrinkage estimators proposed

in Ledoit and Wolf (2003) with the past monthly and daily returns, and conduct an empirical

research that is independent of any particular assumption about target expected returns.

Overall, there has been a shortage of empirical evidence evaluating portfolio performance using

the intraday returns and different risk optimization methods. To our knowledge, there has been no

research that applies the realized covariance approach to the large-scale portfolio optimization. It is

important to compare the realized covariance approach with current monthly or daily return-based

covariance matrix structuring methodology suited for the large-scale portfolio optimization.

We construct large-scale realized covariance matrix estimators based on the past intraday re-

turns for 500 of the largest market capitalization JPN stocks and assess the out-of-sample per-

formance of the minimum-variance portfolios by comparing with portfolios based on Bayesian

shrinkage estimators using the past monthly and daily returns. The empirical results report the

statistics, including annualized ex-post returns in excess of the risk-free rate, a standard deviation

of the portfolio excess returns, the return per unit of risk (Sharpe ratio), and the net excess return

with transaction costs. In addition, we estimate how much a risk-averse investor would be willing

to pay to use the realized covariance estimators based on the intraday returns.

Our main findings are: (1) the realized covariance matrix estimators using the past intraday

returns yield a lower standard deviation of the large-scale portfolio than the Bayesian shrinkage

estimators based on the monthly and daily historical returns; (2) gains to switching to strategies

using realized covariance matrix estimators are higher for an investor with higher relative risk

aversion; and (3) the better performance using the realized covariance matrix estimators seems to

be robust to the level of transaction costs.

The remainder of the paper is organized as follows. Section 2 describes the data and our
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methodology, including the construction of the large-scale covariance matrix estimators based on

the past monthly, daily, and intraday returns, the minimum-variance methodology, and the perfor-

mance measurement criteria. Empirical results are discussed in Section 3. Section 4 concludes.

2 Data and Methodology

The data set was obtained from the Nikkei NEEDS-TICK data and the Nikkei NEEDS Financial

Quest. We analyze large-scale minimum variance equity portfolios optimized from covariance

matrix estimators that are constructed by different frequency data such as intraday, daily, and

monthly data. On the assessment of the three different strategies, the sample consists of intraday

and daily returns from November 1999 to February 2007 and monthly returns from November

1995 to February 2007. The out-of-sample period for an examination of the portfolios is every

month (76 months) from November 2000 to February 2007. Among the Tokyo Stock Exchange

(TSE) 1st section-listed stocks, we pick the 500 largest market capitalization JPN stocks with no

stock splits during the sample period.

2.1 Large-scale covariance matrix estimators

The objective of our analysis is to investigate whether or not the monthly covariance matrix esti-

mators based on intraday data improves large-scale equity portfolio performance. First, we define

a monthly risk measure for periodt computed with intraday data that has higher frequency than the

forecasting horizon. The high-frequency data were obtained from the Nikkei NEEDS-TICK data.

The dataset includes all transactions and quotes for the 500 largest market capitalization stocks

traded at the TSE. On the estimation of the large-scale covariance matrix, we use the transaction

price series that is time stamped to the nearest minute. For each dayτ , the total trading time on

the TSE is 270 minutes, from 9:00 to 11:00 in the morning session and from 12:30 to 15:00 in the

afternoon session. On the other hand, we cannot obtain the high-frequency data from 15:00 to 9:00

(overnight) and from 11:00 to 12:30 (lunchtime).

Let p, h(ON), andh(L) denote the(N × 1) vector logarithmic prices and time intervals for
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overnight and lunchtime, whereN = 500 is the number of stocks. Trading sessions on the

TSE are divided into the time intervals of equal lengthh. Suppose that on dayτ , we have

the vector of overnight returns,rτ−1+h(ON) := pτ−1+h(ON) − pτ−1, returns in the morning ses-

sion, rτ−1+h(ON)+ih := pτ−1+h(ON)+ih − pτ−1+h(ON)+(i−1)h for i = 1, . . . , I, lunchtime returns

rτ−1+h(ON)+Ih+h(L) := pτ−1+h(ON)+Ih+h(L) − pτ−1+h(ON)+Ih, and returns in the afternoon session,

rτ−1+h(ON)+Ih+h(L)+jh := pτ−1+h(ON)+Ih+h(L)+jh − pτ−1+h(ON)+Ih+h(L)+(j−1)h for j = 1, . . . , J ,

whereh(ON) + h(L) + (I + J)h = 1. Then, the realized covariance matrixVt,h in month t is

defined as:

Vt,h =
∑
τ∈t

rτ−1+h(ON)r0τ−1+h(ON) +
∑
τ∈t

I∑
i=1

rτ−1+h(ON)+ihr
0
τ−1+h(ON)+ih (1)

+
∑
τ∈t

rτ−1+h(ON)+Ih+h(L)r0τ−1+h(ON)+Ih+h(L)

+
∑
τ∈t

J∑
j=1

rτ−1+h(ON)+Ih+h(L)+jhr
0
τ−1+h(ON)+Ih+h(L)+jh.

The realized covariance matrix estimator in (1) is based on the calendar time sampling, which is a

well-used scheme sampled at equidistantly spaced intervals with the length ofh over the trading

session. However, the raw intraday data are usually unevenly spaced because the transaction time

is randomly determined. In this paper, the previous-tick interpolation method is applied to obtain a

homogeneous time series, which is an artifact constructed from the raw intraday data. Letk denote

the irregularly spaced sequence of the raw intraday data, for example, the timeτ − 1 + h(ON) + ih

in the morning session is bracketed by:

k∗ = max(k | τk ≤ τ − 1 + h(ON) + ih), τk∗ ≤ τ − 1 + h(ON) + ih < τk∗+1. (2)

Then, the previous-tick interpolation is defined as the manipulation of taking the most recent price

as follows:

pτ−1+h(ON)+ih = pk∗ . (3)
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Although a linear interpolation exists (weighted average of the most recent price and the immedi-

ate price) as the alternative interpolation method, Dacorogna et al. (2001) show that the realized

variance and covariance with the linear interpolation do not converge in probability to the quadratic

variance and covariance, and Barucci and Renó (2002) also show the bias by the linear interpola-

tion using Monte Carlo simulation.

The realized variance and covariance measures constructed in (1) have the potential to provide

very accurate estimates of the underlying quadratic variations and covariations. However, these

measures have been shown to be sensitive to market microstructure effects that can be induced by

various market frictions such as the discreteness of price changes, bid-ask bounces, and asymmetric

information across traders, inter alia.1 When we estimate the underlying quadratic variations and

covariations of the stocks from high-frequency observations, it is necessary to use a sufficiently

large sample size while we avoid the market microstructure effects because the realized covariance

estimator with finer high-frequency data may have larger bias and variance. In our analysis, we

calculate the realized covariance matrix based on five-minute returns (I+J = 54) because realized

variance and covariance plots for every sampling frequency showed the estimates from under five

minutes to 20 minutes were comparatively stable.2 In addition, the average of realized covariance

matrices calculated by using intraday returns from the preceding six and 12 months are constructed

for the portfolio optimization as follows:

V
(6)
t,h =

1

6

5∑

k=0

Vt−k,h, V
(12)
t,h =

1

12

11∑

k=0

Vt−k,h. (4)

The simple average realized covariance matrix estimatorsV
(6)
t,h andV

(12)
t,h are input to the optimiza-

tion routine.

1For example, the growing literature on market microstructure provides important insights from early studies in-
cluding Roll (1984), who derives a simple estimator of the bid-ask spread based on the negative autocovariance of
returns. Harris (1990) examines the rounding effects emanating from the discreteness of transaction prices. Ubukata
and Oya (2009) analysis a dependence of the market microstructure effects.

2Recent literature on integrated variance and covariance estimation with market microstructure effects have been
developed by Zhou (1996), Zhang et al. (2005), Zhang (2006), Hansen and Lunde (2005, 2006), Voev and Lunde
(2007), and Barndorff-Nielsen et al. (2008), inter alia. Also, the optimal frequency based on the minimization of the
mean squared errors has been proposed by Bandi and Russell (2008). We do not apply the bias corrected or optimal
frequency-based estimators as proposed above.
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Second, we construct the covariance matrix using monthly and daily closing prices obtained

from the Nikkei NEEDS Financial Quest. The standard approach is, for example, to use the sample

covariance matrix estimators with the past 60 months of monthly returns or the past year of daily

returns. However, it is widely known that the approach for the large-scale optimized portfolio

creates some problems in which the sample covariance matrix may be singular (noninvertible) and

estimation outliers can dominate the optimized portfolio. Ledoit and Wolf (2003, 2004) show that

their shrinkage estimators of the covariance matrix improve the portfolio performance over the

sample covariance matrix estimator. Therefore, we compute the Bayesian shrinkage covariance

matrix proposed in Ledoit and Wolf (2003). Letr = (r1, r2, . . . , rN)′ denote the(N ×K) matrix

of the historical returns.K represents60 months or about240 days for the use of the corresponding

monthly and daily historical data, respectively. Then the sample covariance matrix, which is not

divided byK, is calculated byV = rr′. The Bayesian shrinkage covariance matrix (denoteVBS)

is defined as the weighted average of the two-parameter prior covariance matrixVprior and the

sample covariance matrixV, as follows:

VBS = λVprior + (1− λ)V, (5)

where a scalar shrinkage parameterλ bounded between zero and one is given by:

λ =
SUM[r.2r′.2]− SUM[V.2]/K

SUM[(V −Vprior).2]
, (6)

where.2 is the element-by-element squaring andSUM[ ] is the sum of the matrix elements. The

diagonal and off-diagonal elements in the prior covariance matrixVprior are the average value of

the diagonal elements and theN(N −1)/2 off-diagonal elements in the sample covariance matrix,

respectively. Finally, we divide the Bayesian shrinkage covariance matrixVBS by K and, if the

calculation is based on daily historical returns, the daily Bayesian shrinkage covariance matrix

is multiplied by the number of trading days per month. Thus, we input the Bayesian shrinkage

covariance matrices based on monthly and daily historical returns to the optimization routine.
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2.2 Minimum-variance portfolio

The portfolio optimization reduces to finding the asset weights that minimize the portfolio co-

volatility while aiming for a target expected return or maximize the portfolio return while tar-

geting a certain covolatility. We conduct the different covolatility optimizations by constructing

two scenarios of minimum-variance portfolios. Each month, we solve the following minimization

problem:

min
w

(
w′

t+1Σt+1wt+1

)
(7)

subject to :

Scenario 1 : wt+1 > 0 and w′
t+11 = 1,

Scenario 2 : w′
t+1µt+1 = µp, wt+1 > 0 and w′

t+11 = 1,

wherewt+1 = (w1, w2, . . . , wN)′ is the (N × 1) vector of portfolio weights,1 is an (N × 1) vector

of ones, andΣt+1 is the (N ×N ) conditional covariance matrix. We use the estimator ofΣt+1 as

V
(6)
t,h , V(12)

t,h , and the Bayesian shrinkage covariance estimators based on monthly and daily histor-

ical returns. For the constraints on the portfolio weights, the portfolio weights are required to be

nonnegative because short selling is not generally a common practice for most investors. The total

portfolio weight is assumed to be equal to one. We do not impose an upper bound on the portfolio

weights. In scenario 1, we construct the minimum-variance portfolio that minimizes risk without

an expected return because we consider purely different volatility-timing strategies that the port-

folio weights are determined by the estimators of the conditional covariance matrix. The scenario

is associated with the previous study of Clark (2006), which also examined large-scale minimum-

variance equity portfolios that do not rely on any specific expected return. They show that the

minimum-variance portfolios based on the past monthly and daily returns give higher realized re-

turns and lower realized standard deviations than a market-capitalization weighted portfolio. We

also conduct scenario 2 where the minimum-variance portfolio is determined by minimizing co-

volatility given a target expected return.µt+1 is set as the average monthly returns in the complete

out-of-sample period from November 2000 to February 2007 and the target expected returnµp is
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set to10% (annualized). All the inputs are fed into a quadratic optimization software that computes

the optimal weightswt+1. The minimum-variance optimization is conducted using the numerical

routines in the MATLAB procedure. Given the optimized weights, we calculate buy-and-hold re-

turns on the portfolio for the one month, at the end of which estimation of the covariance matrix

and the optimization procedures are repeated. The resulting time series of monthly realized returns

permit us to characterize the performance and other properties of the optimized portfolios that are

based on the estimators with different sampling intervals.

2.3 Assessing portfolio performance

We assess the empirical out-of-sample performance of portfolios based on the different covariance

matrix estimators on several grounds. The performance of the portfolios is evaluated using the

ex-post realized portfolio returns over 76 months from November 2000 to February 2007. First,

we compare the return per unit of risk, that is, measure the corresponding Sharpe ratios given by:

SR =
r̄P − rf

σ̂rP

, (8)

whererf is a risk-free rate and we use the unsecured one-month call rate to proxy the risk-free rate.

r̄P − rf represents the mean of the ex-post realized portfolio returns in excess of the risk-free rate.

σ̂rP
is the standard deviation of the realized excess returns. The Sharpe ratio is used to characterize

how well the realized return of the portfolio compensates the investor for the risk. A higher Sharpe

ratio implies that a portfolio’s risk-adjusted performance is better.

Second, we evaluate the economic benefit of the different covariance matrix estimators follow-

ing Fleming et al. (2001, 2003). On a utility-based approach to measure the value of the portfolio’s

performance gains, we assume a risk-averse investor with the following quadratic utility:

U(rPt+1) = W0

(
(1 + rf + rPt+1)− γ

2(1 + γ)
(1 + rf + rPt+1)

2
)
, (9)

whererPt+1 is the portfolio return andγ is the investor’s relative risk aversion.W0 is initial wealth
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and is set equal to one for simplicity. LetrP1t+1 andrP2t+1 be the portfolio returns on the strategies

using the two different covariance matrix estimators. The maximum amount∆γ that the investor

would be willing to pay to switch from the first strategy to the second is then determined by:

T∑
t=1

U(rP1t+1) =
T∑

t=1

U(rP2t+1 −∆γ), (10)

whereT = 76 is the out-of-sample period for the portfolio performance. Comparing the realized

performance fees forV(6)
t,h andV

(12)
t,h over Bayesian shrinkage covariance estimators measures the

improvement due to the use of intraday data. We report the value of the switching fee∆γ as the

annualized percentage at the relative risk aversion parameters ofγ = 1 and10.

Third, we assess the different portfolio performances that incorporate transaction costs. The

transaction costs play a nontrivial role for portfolio selections because the higher turnover implies

that the investor has to pay a higher cost by more active trading and, then, the net returns of

the portfolio decrease. However, it is not generally easy to compute the total transaction cost,

including stock trading commissions, the bid–ask spread, and the account management fee, inter

alia. Following Pooter et al. (2008), we assume that transaction costs amount to the sum of absolute

changes in the portfolio weights multiplied by a fixed percentage costc as follows:

ct+1 = c

N∑
i=1

| wi,t+1 − wi,t |, (11)

wherect+1, intuitively, represents a cost to reallocate the portfolio at the point of rebalancing.c is

set to 2% and 4%, expressed in annualized percentage.3 Then, the net portfolio return is given by

rPt+1 − rf − ct+1. We also report a portfolio turnover as the total amount of purchases and sales

over the same month divided by the total net asset value of the portfolio.

3In the fixed-amount system that trading fees are determined by the total amount of purchases and sales per day,
stock trading commissions to Japanese brokerage roughly range from 1% to 4% (annualized) in case of monthly
rebalancing.
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3 Empirical Results

Table 1 summarizes statistics of minimum-variance portfolios optimized under the conditions in

scenario 1 (without expected return input). The panels A, B, and C show the statistics where the

level of annualized transaction costsc take0%, 2%, and4%, respectively. For each panel, the first

row contains the performance for a simple diversification strategy that involves no optimization;

namely, the 500 stocks value-weighted portfolio composed of the same stocks as the others. The

500 stocks value-weighted portfolio might be regarded as the market portfolio because its realized

returns are highly correlated with those of the Tokyo stock price index (TOPIX), which is a stock

market index based on the total number of shares, tracking the TSE 1st section-listed stocks. The

Sharpe ratio of the market portfolio is the lowest of all due to the lowest mean return in excess of the

risk-free rate and the highest standard deviation of the portfolio excess returns. This result implies

that to conduct optimized procedures is very helpful to the improvement of portfolio performance

although the value-weighted portfolio may be often considered as a passive benchmark portfolio.

For panel A in Table 1, we find that using two realized covariance matrix estimatorsV
(6)
t,h

andV
(12)
t,h yields higher Sharpe ratios of 0.270 and 0.259 than the Bayesian shrinkage covariance

estimators based on the past monthly and daily returns. This is because of the high reduction of

the standard deviation for the estimatorsV
(6)
t,h andV

(12)
t,h . Figure 1 plots the cumulative portfolio

returns over 76 months by the estimators with monthly, daily, and intraday returns. Although

the three cumulative portfolio returns tend to move similarly through the whole period, we can

see that the starting cumulative returns forV
(6)
t,h have less volatility and their large rise and drop

are relatively not seen so much. Going back to Table 1, the returns of the realized covariance

matrix estimators has a lower correlation with TOPIX and the tracking error takes a higher value

than the Bayesian shrinkage covariance estimators. This means that the intraday returns-based

strategy takes a different investment style from the value-weighted strategy than the monthly or

daily returns-based strategies.

In addition, the turnover ofV(6)
t,h andV

(12)
t,h takes annualized 27.699% and 19.578% values

that are higher than those of the 500 stocks value-weighted portfolio and the portfolio using the
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Bayesian shrinkage estimator based on the monthly returns. In order to evaluate the effect of the

transaction costs, on panels B and C in Table 1, we describe the statistics of minimum-variance

portfolios when the two levels of transaction cost (c = 2%, 4%) defined as (11) are imposed on

every monthly rebalancing. Even in the cases ofc = 2% and4%, theV
(6)
t,h andV

(12)
t,h still yield

higher Sharpe ratios and lower standard deviations than the portfolio using the Bayesian shrinkage

estimator based on the monthly returns. The Sharpe ratios forV
(12)
t,h are 0.238 and 0.218, which

exceed those forV(6)
t,h althoughV(6)

t,h earns the highest Sharpe ratio in the case without transaction

cost, as in panel A. It is noted thatV
(12)
t,h is the realized covariance estimator using more historical

intraday data thanV(6)
t,h . The less effect of the portfolio forV(12)

t,h on the transaction costs implies

that the portfolio determined by the realized covariance estimator with the longer past intraday

returns would be characterized as the active portfolio with a lower turnover. We think that, for

the construction of the portfolio based on intraday data, the investor can use the length of the past

intraday returns according to their preference to degrees of the activity of buying and selling.

Table 2 shows the annualized fees∆γ that the investor with relative risk aversion parameter

γ = 1 and 10 switches from the strategies using the Bayesian shrinkage estimators based on

monthly and daily returns to using the realized covariance matrix estimators based on the intraday

returns. A risk-averse investor pays the positive switching fees∆γ with γ = 1 and10. We also

find that an investor with high relative risk aversionγ = 10 would be willing to pay larger fees

than an investor with low relative risk aversionγ = 1. The increase of the fees fromγ = 1

to γ = 10 consistent with the investor with high relative risk aversion is preferable to switching

to the portfolios using realized covariance matrix estimators that yield lower standard deviations.

Therefore, the strategies of using intraday returns also make more economic gains than those based

on the monthly and daily returns.

So far, we have discussed the performance of the minimum-variance portfolios optimized un-

der no constraint for the target expected return in scenario 1. It is also important to consider the

case where the portfolio weight is determined by minimizing a variance under a given target ex-

pected return. Table 3 reports the statistics of minimum-variance portfolios with annualized target

expected return equal to10% in scenario 2. For panel A, all the means of the annualized excess
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returns naturally are around the target expected return of10%, but the standard deviations of the

portfolios based on the intraday returns are lower than those using the monthly and daily returns.

In consequence, we obtain the higher Sharpe ratios of 0.371 and 0.331 forV
(6)
t,h andV

(12)
t,h . For

panels B and C where the transaction costs ofc = 2% and4% are imposed, the portfolio for the

realized covariance estimatorV
(6)
t,h is the most efficient in the sense of the trade-off return and risk,

although the Sharp ratio for the Bayesian shrinkage estimator based on the monthly returns exceeds

that forV(12)
t,h because of the lowest turnover of the portfolio using the monthly returns. Table 4

also represents annualized performance fees∆γ to switch from the monthly or daily returns for the

Bayesian shrinkage covariance estimator to the average realized covariance matrix with six and 12

months,V(6)
t,h andV

(12)
t,h . In cases without transaction costs and withc = 2%, all of the perfor-

mance fees take positive values. For the transaction cost ofc equal to4%, the fees from using the

monthly or daily returns to usingV(6)
t,h are unalterably positive in cases withγ = 1 and10. By

contrast, the performance fee forV
(12)
t,h versus the use of monthly returns falls slightly below zero,

−0.065, at the low relative risk aversionγ = 1, but the fee at the high relative risk aversionγ = 10

considerably exceeds zero,13.052. The empirical results show that the large-scale portfolio op-

timization based on the realized covariance matrix estimators using the past intraday returns can

yield substantial benefits in terms of risk reduction. Overall, the results are also suggestive of the

better performance of the large-scale portfolio constructed by the realized covariance approach.

4 Conclusion

The objective of this paper is to examine effects of the realized covariance matrix estimators based

on intraday returns on large-scale minimum-variance equity portfolio optimization. We empiri-

cally assess out-of-sample performance of portfolios with different covariance matrix estimators:

the realized covariance matrix estimators and the Bayesian shrinkage estimators based on the past

monthly and daily returns. The main results are: (1) the realized covariance matrix estimators

using the past intraday returns yield a lower standard deviation of the large-scale portfolio returns

than the Bayesian shrinkage estimators based on the monthly and daily historical returns; (2) gains
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to switching to strategies using the realized covariance matrix estimators are higher for an investor

with higher relative risk aversion; and (3) the better portfolio performance of the realized covari-

ance approach implied by ex-post returns in excess of the risk-free rate, the standard deviations

of the excess returns, the return per unit of risk (Sharpe ratio) and the switching fees seems to be

robust to the level of transaction costs.
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Figure 1: Cumulative portfolio returns
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Table 1: Performance of minimum-variance portfolios (scenario 1)

Annualized Std Dev Sharpe Correlation Turnover Tracking
Mean Ratio with TOPIX Error

Panel A:c = 0
500 stocks 2.502 49.315 0.051 0.984 2.851
value-weighted
Monthly 6.670 31.045 0.215 0.734 9.107 34.051

Daily 7.220 29.575 0.244 0.695 27.386 35.013

V
(6)
t,h 7.340 27.147 0.270 0.675 27.699 36.543

V
(12)
t,h 7.273 28.086 0.259 0.688 19.578 35.535

Panel B:c = 2
500 stocks 2.386 49.318 0.048
value-weighted
Monthly 6.274 31.038 0.202

Daily 6.485 29.636 0.219

V
(6)
t,h 6.427 27.089 0.237

V
(12)
t,h 6.692 28.067 0.238

Panel C:c = 4
500 stocks 2.270 49.322 0.046
value-weighted
Monthly 5.879 31.032 0.189

Daily 5.751 29.703 0.194

V
(6)
t,h 5.513 27.034 0.204

V
(12)
t,h 6.110 28.050 0.218

Note: The table compares the performance of minimum-variance portfolios using the optimization proce-
dure in scenario 1. The sample comprises the 500 largest market capitalization JPN stocks on the TSE. The
out-of-sample period is 76 months from November 2000 to February 2007. We compute the realized returns
yielded by the different strategies using the 500 stocks value-weighted rate, using the Bayesian shrinkage
estimators based on monthly and daily returns “Monthly” and “Daily” and realized covariance matrix es-
timators based on the prior six- and 12-month intraday returns “V(6)

t,h ” and “V(12)
t,h ”. The table reports the

average annualized return in excess of the risk-free rate, annualized standard deviation of the excess returns,
Sharpe ratio, correlation with TOPIX, turnover for each strategy, and tracking error from the 500 stocks
value-weighted portfolio. Panels A, B, and C show the statistics where the level of transaction costsc are
0%, 2%, and4%, respectively.
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Table 2: The economic gains of strategies using intraday returns (scenario 1)

c = 0 c = 2 c = 4
∆γ = 1 ∆γ = 10 ∆γ = 1 ∆γ = 10 ∆γ = 1 ∆γ = 10

V
(6)
t,h vs monthly 1.863 12.734 1.355 11.998 0.846 11.264

vs daily 0.849 9.380 0.701 8.927 0.553 8.506
V

(12)
t,h vs monthly 1.526 10.898 1.340 10.439 1.153 9.988

vs daily 0.509 6.943 0.683 6.826 0.858 6.752

Note: The table represents the annualized fees∆γ that the investor with relative risk aversion parameter
γ = 1 and10 switches from the strategies using the Bayesian shrinkage estimators based on monthly and
daily returns “Monthly” and “Daily” to using the realized covariance matrix estimators based on the prior
six- and 12-month intraday returns “V(6)

t,h ” and “V(12)
t,h ”.
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Table 3: Performance of minimum-variance portfolios (scenario 2)

Annualized Std Dev Sharpe Turnover
Mean Ratio

Panel A:c = 0
Monthly 10.701 32.791 0.326 10.043

Daily 9.512 31.226 0.305 20.837

V
(6)
t,h 10.577 28.495 0.371 25.053

V
(6)
t,h 9.766 29.492 0.331 18.324

Panel B:c = 2
Monthly 10.217 33.000 0.310

Daily 8.798 31.447 0.280

V
(6)
t,h 9.741 28.606 0.341

V
(12)
t,h 9.190 29.665 0.310

Panel C:c = 4
Monthly 9.796 32.993 0.297

Daily 8.089 31.460 0.257

V
(6)
t,h 8.813 28.539 0.309

V
(12)
t,h 8.589 29.642 0.290

Note: The table compares the performance of minimum-variance portfolios using the optimization proce-
dure in scenario 2. The target expected return is set to annualized10%. The sample comprises the 500
largest market capitalization JPN stocks on the TSE. The out-of-sample period is 76 months from Novem-
ber 2000 to February 2007. We compute the realized returns yielded by the different strategies using the
Bayesian shrinkage estimators based on monthly and daily returns “Monthly” and “Daily” and using the
realized covariance matrix estimators based on the prior six- and 12-month intraday returns “V(6)

t,h ” and

“V(12)
t,h ”. The table reports the average annualized return in excess of the risk-free rate, annualized standard

deviation of the excess returns, Sharpe ratio, correlation with TOPIX, turnover for each strategy, and track-
ing error from the 500 stocks value-weighted portfolio. Panels A, B, and C show the statistics where the
level of transaction costsc are0%, 2%, and4%, respectively.
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Table 4: The economic gains of strategies using intraday returns (scenario 2)

c = 0 c = 2 c = 4
∆γ = 1 ∆γ = 10 ∆γ = 1 ∆γ = 10 ∆γ = 1 ∆γ = 10

V
(6)
t,h vs monthly 1.322 16.875 1.000 16.152 0.505 15.324

vs daily 1.952 13.426 1.862 12.833 1.660 12.160
V

(12)
t,h vs monthly 0.196 14.194 0.115 13.623 -0.065 13.052

vs daily 0.829 10.132 0.981 9.693 1.095 9.295

Note: The table represents the annualized fees∆γ that the investor with relative risk aversion parameter
γ = 1 and10 switches from the strategies using the Bayesian shrinkage estimators based on monthly and
daily returns “Monthly” and “Daily” to using the realized covariance matrix estimators based on the prior
six- and 12-month intraday returns “V(6)

t,h ” and “V(12)
t,h ”.
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