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Abstract

The objective of this paper is to examine effects of realized covariance matrix estimators
based on intraday returns on large-scale minimum-variance equity portfolio optimization. We
empirically assess out-of-sample performance of portfolios with different covariance matrix
estimators: the realized covariance matrix estimators and Bayesian shrinkage estimators based
on the past monthly and daily returns. The main results are: (1) the realized covariance matrix
estimators using the past intraday returns yield a lower standard deviation of the large-scale
portfolio returns than the Bayesian shrinkage estimators based on the monthly and daily histor-
ical returns; (2) gains to switching to strategies using the realized covariance matrix estimators
are higher for an investor with higher relative risk aversion; and (3) the better portfolio perfor-
mance of the realized covariance approach implied by ex-post returns in excess of the risk-free
rate, the standard deviations of the excess returns, the return per unit of risk (Sharpe ratio) and

the switching fees seems to be robust to the level of transaction costs.
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1 Introduction

Measuring and controlling the risk of assets are important factors in portfolio management, to-
gether with option pricing and value-at-risk analysis. In the finance literature, risk is usually indi-
cated by the variability of asset returns. Thus, estimating their covariance matrix plays a key role
for determining the portfolio allocation, for example, using mean-variance portfolio optimization
based on the investment theory of Markowitz (1952). High-frequency financial data, which have
become widely available by the development of computers and data recording systems, potentially
include much information about the dynamics of asset prices. In addition, nonparametric variance
and covariance measures have attracted the attention of financial econometricians. The measures
are called realized variance and covariance, which are constructed by summing outer-products of
intraday return data. They potentially provide very accurate estimates of the underlying quadratic
variation and covariation. Also, the covariance matrix of asset returns becomes observable by the
realized covariance approach.

There are some earlier studies for evaluating the economic benefit of the realized covariance
approach in the context of investment decisions. Recent work is used to construct estimates of the
daily covariance matrix using the intraday historical returns and to examine the performance of
small- or medium-scale portfolios. Fleming et al. (2003) consider that a risk-averse investor uses
conditional mean-variance analysis to allocate funds composed of three assets: S&P 500 futures,
Treasury bond futures, and gold futures. They empirically show that the economic gains yielded by
rolling covariance matrix estimators, based on intraday returns, are economically large. It is well
known that the realized variance and covariance measures deteriorate with market microstructure
effects that are induced by various market frictions such as the discreteness of price changes, bid-
ask bounces, and asymmetric information across traders, inter alia. Bandi et al. (2008) and Pooter
et al. (2008) examine the effect of the realized covariance estimators that are constructed under
optimal sampling frequency on optimized portfolios using three stocks and 78 stocks in S&P 100
index constituents, respectively.

This paper examines the economic benefit of large-scale minimum variance equity portfolio



optimized using the realized covariance approach. For the analysis of a large-scale portfolio, Chan
etal. (1999) construct a portfolio made up of 250 stocks randomly selected from domestic common
stock issues on the New York Stock Exchange and the American Stock Exchange. They show that
the large-scale portfolio optimization using a factor model with the monthly historical returns is
helpful for risk control. Clarke et al. (2006) construct a minimum-variance portfolio consisting of
the 1,000 largest market capitalization U.S. stocks using Bayesian shrinkage estimators proposed
in Ledoit and Wolf (2003) with the past monthly and daily returns, and conduct an empirical
research that is independent of any particular assumption about target expected returns.

Overall, there has been a shortage of empirical evidence evaluating portfolio performance using
the intraday returns and different risk optimization methods. To our knowledge, there has been no
research that applies the realized covariance approach to the large-scale portfolio optimization. Itis
important to compare the realized covariance approach with current monthly or daily return-based
covariance matrix structuring methodology suited for the large-scale portfolio optimization.

We construct large-scale realized covariance matrix estimators based on the past intraday re-
turns for 500 of the largest market capitalization JPN stocks and assess the out-of-sample per-
formance of the minimum-variance portfolios by comparing with portfolios based on Bayesian
shrinkage estimators using the past monthly and daily returns. The empirical results report the
statistics, including annualized ex-post returns in excess of the risk-free rate, a standard deviation
of the portfolio excess returns, the return per unit of risk (Sharpe ratio), and the net excess return
with transaction costs. In addition, we estimate how much a risk-averse investor would be willing
to pay to use the realized covariance estimators based on the intraday returns.

Our main findings are: (1) the realized covariance matrix estimators using the past intraday
returns yield a lower standard deviation of the large-scale portfolio than the Bayesian shrinkage
estimators based on the monthly and daily historical returns; (2) gains to switching to strategies
using realized covariance matrix estimators are higher for an investor with higher relative risk
aversion; and (3) the better performance using the realized covariance matrix estimators seems to
be robust to the level of transaction costs.

The remainder of the paper is organized as follows. Section 2 describes the data and our



methodology, including the construction of the large-scale covariance matrix estimators based on
the past monthly, daily, and intraday returns, the minimum-variance methodology, and the perfor-

mance measurement criteria. Empirical results are discussed in Section 3. Section 4 concludes.

2 Data and Methodology

The data set was obtained from the Nikkei NEEDS-TICK data and the Nikkei NEEDS Financial
Quest. We analyze large-scale minimum variance equity portfolios optimized from covariance
matrix estimators that are constructed by different frequency data such as intraday, daily, and
monthly data. On the assessment of the three different strategies, the sample consists of intraday
and daily returns from November 1999 to February 2007 and monthly returns from November
1995 to February 2007. The out-of-sample period for an examination of the portfolios is every
month (76 months) from November 2000 to February 2007. Among the Tokyo Stock Exchange
(TSE) 1st section-listed stocks, we pick the 500 largest market capitalization JPN stocks with no

stock splits during the sample period.

2.1 Large-scale covariance matrix estimators

The objective of our analysis is to investigate whether or not the monthly covariance matrix esti-
mators based on intraday data improves large-scale equity portfolio performance. First, we define
a monthly risk measure for periacomputed with intraday data that has higher frequency than the
forecasting horizon. The high-frequency data were obtained from the Nikkei NEEDS-TICK data.
The dataset includes all transactions and quotes for the 500 largest market capitalization stocks
traded at the TSE. On the estimation of the large-scale covariance matrix, we use the transaction
price series that is time stamped to the nearest minute. For each tiag total trading time on

the TSE is 270 minutes, from 9:00 to 11:00 in the morning session and from 12:30 to 15:00 in the
afternoon session. On the other hand, we cannot obtain the high-frequency data from 15:00 to 9:00
(overnight) and from 11:00 to 12:30 (lunchtime).

Let p, hON), andh") denote the N x 1) vector logarithmic prices and time intervals for



overnight and lunchtime, wher®& = 500 is the number of stocks. Trading sessions on the
TSE are divided into the time intervals of equal length Suppose that on day, we have
the vector of overnight returns;._,_ o~ = p._; n0on — P._;, returns in the morning ses-
SION, 714 4N i = Pro14h©ON) i — Proi4poN4-n, TOr i = 1,..., 1, lunchtime returns

T 14 hON) L Thyh(E) 1= Pr_ 14 h(ON) 4 1han@) — Pr_14nON 411, @nd returns in the afternoon session,
T 14RON L Ihth (D jh = Pr14hON L Ihth(D) i — Pro14nON 4 1hahD(j—1yn TOF 7 = 1,00,
whereh(©N) 4+ h1) + (I + J)h = 1. Then, the realized covariance matiNk ;, in montht is

defined as:
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The realized covariance matrix estimator in (1) is based on the calendar time sampling, which is a
well-used scheme sampled at equidistantly spaced intervals with the lengtbvef the trading
session. However, the raw intraday data are usually unevenly spaced because the transaction time
is randomly determined. In this paper, the previous-tick interpolation method is applied to obtain a
homogeneous time series, which is an artifact constructed from the raw intraday dédtaebete

the irregularly spaced sequence of the raw intraday data, for example, thetime- R(ON) 4 ih

in the morning session is bracketed by:
E =max(k | 7o <7 —14hO" 44h), 7 <7 -1+~ 4ih < 7o yy. (2

Then, the previous-tick interpolation is defined as the manipulation of taking the most recent price

as follows:

Dr_11h©ON) 1ip, = Pp>- (3)



Although a linear interpolation exists (weighted average of the most recent price and the immedi-
ate price) as the alternative interpolation method, Dacorogna et al. (2001) show that the realized
variance and covariance with the linear interpolation do not converge in probability to the quadratic
variance and covariance, and Barucci andd®R@002) also show the bias by the linear interpola-
tion using Monte Carlo simulation.

The realized variance and covariance measures constructed in (1) have the potential to provide
very accurate estimates of the underlying quadratic variations and covariations. However, these
measures have been shown to be sensitive to market microstructure effects that can be induced by
various market frictions such as the discreteness of price changes, bid-ask bounces, and asymmetric
information across traders, inter alidhen we estimate the underlying quadratic variations and
covariations of the stocks from high-frequency observations, it is hecessary to use a sufficiently
large sample size while we avoid the market microstructure effects because the realized covariance
estimator with finer high-frequency data may have larger bias and variance. In our analysis, we
calculate the realized covariance matrix based on five-minute retl#ns & 54) because realized
variance and covariance plots for every sampling frequency showed the estimates from under five
minutes to 20 minutes were comparatively stable.addition, the average of realized covariance
matrices calculated by using intraday returns from the preceding six and 12 months are constructed

for the portfolio optimization as follows:
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The simple average realized covariance matrix estimat’éfﬁsandvt(f) are input to the optimiza-

tion routine.

1For example, the growing literature on market microstructure provides important insights from early studies in-
cluding Roll (1984), who derives a simple estimator of the bid-ask spread based on the negative autocovariance of
returns. Harris (1990) examines the rounding effects emanating from the discreteness of transaction prices. Ubukata
and Oya (2009) analysis a dependence of the market microstructure effects.

2Recent literature on integrated variance and covariance estimation with market microstructure effects have been
developed by Zhou (1996), Zhang et al. (2005), Zhang (2006), Hansen and Lunde (2005, 2006), Voev and Lunde
(2007), and Barndorff-Nielsen et al. (2008), inter alia. Also, the optimal frequency based on the minimization of the
mean squared errors has been proposed by Bandi and Russell (2008). We do not apply the bias corrected or optimal
frequency-based estimators as proposed above.



Second, we construct the covariance matrix using monthly and daily closing prices obtained
from the Nikkei NEEDS Financial Quest. The standard approach is, for example, to use the sample
covariance matrix estimators with the past 60 months of monthly returns or the past year of daily
returns. However, it is widely known that the approach for the large-scale optimized portfolio
creates some problems in which the sample covariance matrix may be singular (noninvertible) and
estimation outliers can dominate the optimized portfolio. Ledoit and Wolf (2003, 2004) show that
their shrinkage estimators of the covariance matrix improve the portfolio performance over the
sample covariance matrix estimator. Therefore, we compute the Bayesian shrinkage covariance
matrix proposed in Ledoit and Wolf (2003). Let= (ry, 7, ...,7rx)" denote thé N x K') matrix
of the historical returnsk’ represent§0 months or abou40 days for the use of the corresponding
monthly and daily historical data, respectively. Then the sample covariance matrix, which is not
divided by K, is calculated by = r7’. The Bayesian shrinkage covariance matrix (denotg)
is defined as the weighted average of the two-parameter prior covariance Matgxand the

sample covariance matri¥, as follows:
VBS = )\Vprior + (1 - /\)Va (5)

where a scalar shrinkage parametdrounded between zero and one is given by:

_ SUM[r2r'"?] — SUM[V ]/ K

A SUM[(V = Vprior) 2]

(6)

where.? is the element-by-element squaring &1dM| | is the sum of the matrix elements. The
diagonal and off-diagonal elements in the prior covariance matyix, are the average value of

the diagonal elements and th& N — 1) /2 off-diagonal elements in the sample covariance matrix,
respectively. Finally, we divide the Bayesian shrinkage covariance m¥ixby K and, if the
calculation is based on daily historical returns, the daily Bayesian shrinkage covariance matrix
is multiplied by the number of trading days per month. Thus, we input the Bayesian shrinkage

covariance matrices based on monthly and daily historical returns to the optimization routine.



2.2 Minimum-variance portfolio

The portfolio optimization reduces to finding the asset weights that minimize the portfolio co-
volatility while aiming for a target expected return or maximize the portfolio return while tar-
geting a certain covolatility. We conduct the different covolatility optimizations by constructing

two scenarios of minimum-variance portfolios. Each month, we solve the following minimization

problem:
rr{li)n (w:€+12t+1wt+l) (7)
subject to :
Scenario 1 : wyyp >0 and wi 1=1,
Scenario 2 1wy fyq = flp, Wi >0 and wi 1 =1,
wherew,; 1 = (wy,ws, ..., wy)" isthe (V x 1) vector of portfolio weights] is an (V x 1) vector

of ones, an®, ., is the (V x N) conditional covariance matrix. We use the estimatotef; as

VEG}E ng), and the Bayesian shrinkage covariance estimators based on monthly and daily histor-
ical returns. For the constraints on the portfolio weights, the portfolio weights are required to be
nonnegative because short selling is not generally a common practice for most investors. The total
portfolio weight is assumed to be equal to one. We do not impose an upper bound on the portfolio
weights. In scenario 1, we construct the minimum-variance portfolio that minimizes risk without
an expected return because we consider purely different volatility-timing strategies that the port-
folio weights are determined by the estimators of the conditional covariance matrix. The scenario
is associated with the previous study of Clark (2006), which also examined large-scale minimum-
variance equity portfolios that do not rely on any specific expected return. They show that the
minimum-variance portfolios based on the past monthly and daily returns give higher realized re-
turns and lower realized standard deviations than a market-capitalization weighted portfolio. We
also conduct scenario 2 where the minimum-variance portfolio is determined by minimizing co-
volatility given a target expected return,_ , is set as the average monthly returns in the complete

out-of-sample period from November 2000 to February 2007 and the target expected:yatirn



set tol0% (annualized). All the inputs are fed into a quadratic optimization software that computes
the optimal weightsv,, ;. The minimum-variance optimization is conducted using the numerical
routines in the MATLAB procedure. Given the optimized weights, we calculate buy-and-hold re-
turns on the portfolio for the one month, at the end of which estimation of the covariance matrix
and the optimization procedures are repeated. The resulting time series of monthly realized returns
permit us to characterize the performance and other properties of the optimized portfolios that are

based on the estimators with different sampling intervals.

2.3 Assessing portfolio performance

We assess the empirical out-of-sample performance of portfolios based on the different covariance
matrix estimators on several grounds. The performance of the portfolios is evaluated using the
ex-post realized portfolio returns over 76 months from November 2000 to February 2007. First,

we compare the return per unit of risk, that is, measure the corresponding Sharpe ratios given by:
SR=""""1, 8)
Orp

wherer; is a risk-free rate and we use the unsecured one-month call rate to proxy the risk-free rate.
rp — ry represents the mean of the ex-post realized portfolio returns in excess of the risk-free rate.
o, is the standard deviation of the realized excess returns. The Sharpe ratio is used to characterize
how well the realized return of the portfolio compensates the investor for the risk. A higher Sharpe
ratio implies that a portfolio’s risk-adjusted performance is better.

Second, we evaluate the economic benefit of the different covariance matrix estimators follow-

ing Fleming et al. (2001, 2003). On a utility-based approach to measure the value of the portfolio’s

performance gains, we assume a risk-averse investor with the following quadratic utility:

U(rpiy1) = Wo((l + 7+ rpiy1) — (1+7y+ TPt—i—l)Z)a 9)

2(14+7)

whererp; 1 is the portfolio return and is the investor’s relative risk aversioll/; is initial wealth



and is set equal to one for simplicity. L.t ;, andrp,;,; be the portfolio returns on the strategies
using the two different covariance matrix estimators. The maximum ambutiat the investor

would be willing to pay to switch from the first strategy to the second is then determined by:

T

T
ZU 7’P1t+1 Z U 7’P2t+1 7)7 (10)
t=1 t=1

whereT = 76 is the out-of-sample period for the portfolio performance. Comparing the realized
performance fees foVEiz andVE}f) over Bayesian shrinkage covariance estimators measures the
improvement due to the use of intraday data. We report the value of the switchidg, fag the
annualized percentage at the relative risk aversion parameters dfand10.

Third, we assess the different portfolio performances that incorporate transaction costs. The
transaction costs play a nontrivial role for portfolio selections because the higher turnover implies
that the investor has to pay a higher cost by more active trading and, then, the net returns of
the portfolio decrease. However, it is not generally easy to compute the total transaction cost,
including stock trading commissions, the bid—ask spread, and the account management fee, inter
alia. Following Pooter et al. (2008), we assume that transaction costs amount to the sum of absolute

changes in the portfolio weights multiplied by a fixed percentageccastollows:

N
Cty1 = CZ | Wit4+1 — Wi ’, (11)

=1

wherec,. 1, intuitively, represents a cost to reallocate the portfolio at the point of rebalancisg.
set to 2% and 4%, expressed in annualized percestagen, the net portfolio return is given by
rpey1 — T — ci1. We also report a portfolio turnover as the total amount of purchases and sales

over the same month divided by the total net asset value of the portfolio.

3In the fixed-amount system that trading fees are determined by the total amount of purchases and sales per day,
stock trading commissions to Japanese brokerage roughly range from 1% to 4% (annualized) in case of monthly
rebalancing.



3 Empirical Results

Table 1 summarizes statistics of minimum-variance portfolios optimized under the conditions in
scenario 1 (without expected return input). The panels A, B, and C show the statistics where the
level of annualized transaction costeake0%, 2%, and4%, respectively. For each panel, the first
row contains the performance for a simple diversification strategy that involves no optimization;
namely, the 500 stocks value-weighted portfolio composed of the same stocks as the others. The
500 stocks value-weighted portfolio might be regarded as the market portfolio because its realized
returns are highly correlated with those of the Tokyo stock price index (TOPIX), which is a stock
market index based on the total number of shares, tracking the TSE 1st section-listed stocks. The
Sharpe ratio of the market portfolio is the lowest of all due to the lowest mean return in excess of the
risk-free rate and the highest standard deviation of the portfolio excess returns. This result implies
that to conduct optimized procedures is very helpful to the improvement of portfolio performance
although the value-weighted portfolio may be often considered as a passive benchmark portfolio.

For panel A in Table 1, we find that using two realized covariance matrix estim‘a’t@}s
andVE},f) yields higher Sharpe ratios of 0.270 and 0.259 than the Bayesian shrinkage covariance
estimators based on the past monthly and daily returns. This is because of the high reduction of
the standard deviation for the estimatd#§,) and V(). Figure 1 plots the cumulative portfolio
returns over 76 months by the estimators with monthly, daily, and intraday returns. Although
the three cumulative portfolio returns tend to move similarly through the whole period, we can
see that the starting cumulative returns %ﬁz have less volatility and their large rise and drop
are relatively not seen so much. Going back to Table 1, the returns of the realized covariance
matrix estimators has a lower correlation with TOPIX and the tracking error takes a higher value
than the Bayesian shrinkage covariance estimators. This means that the intraday returns-based
strategy takes a different investment style from the value-weighted strategy than the monthly or
daily returns-based strategies.

In addition, the turnover oV{; and V{}” takes annualized 27.699% and 19.578% values

that are higher than those of the 500 stocks value-weighted portfolio and the portfolio using the

10



Bayesian shrinkage estimator based on the monthly returns. In order to evaluate the effect of the
transaction costs, on panels B and C in Table 1, we describe the statistics of minimum-variance
portfolios when the two levels of transaction cast£ 2%, 4%) defined as (11) are imposed on
every monthly rebalancing. Even in the caseg ef 2% and4%, the Vﬁz andVShQ) still yield

higher Sharpe ratios and lower standard deviations than the portfolio using the Bayesian shrinkage
estimator based on the monthly returns. The Sharpe ratiovﬁfﬁ} are 0.238 and 0.218, which
exceed those fonf’}z aIthoughV,fij earns the highest Sharpe ratio in the case without transaction
cost, as in panel A. It is noted th&ttf,f) is the realized covariance estimator using more historical
intraday data thath(f’}f. The less effect of the portfolio fth(f) on the transaction costs implies

that the portfolio determined by the realized covariance estimator with the longer past intraday
returns would be characterized as the active portfolio with a lower turnover. We think that, for
the construction of the portfolio based on intraday data, the investor can use the length of the past
intraday returns according to their preference to degrees of the activity of buying and selling.

Table 2 shows the annualized fefs that the investor with relative risk aversion parameter
~v = 1 and 10 switches from the strategies using the Bayesian shrinkage estimators based on
monthly and daily returns to using the realized covariance matrix estimators based on the intraday
returns. A risk-averse investor pays the positive switching feesvith v = 1 and10. We also
find that an investor with high relative risk aversion= 10 would be willing to pay larger fees
than an investor with low relative risk aversian= 1. The increase of the fees from = 1
to v = 10 consistent with the investor with high relative risk aversion is preferable to switching
to the portfolios using realized covariance matrix estimators that yield lower standard deviations.
Therefore, the strategies of using intraday returns also make more economic gains than those based
on the monthly and daily returns.

So far, we have discussed the performance of the minimum-variance portfolios optimized un-
der no constraint for the target expected return in scenario 1. It is also important to consider the
case where the portfolio weight is determined by minimizing a variance under a given target ex-
pected return. Table 3 reports the statistics of minimum-variance portfolios with annualized target

expected return equal % in scenario 2. For panel A, all the means of the annualized excess

11



returns naturally are around the target expected retut‘@f but the standard deviations of the
portfolios based on the intraday returns are lower than those using the monthly and daily returns.
In consequence, we obtain the higher Sharpe ratios of 0.371 and 0.3%]'faand V{\”. For

panels B and C where the transaction costs ef 2% and4% are imposed, the portfolio for the
realized covariance estimatVrﬁf is the most efficient in the sense of the trade-off return and risk,
although the Sharp ratio for the Bayesian shrinkage estimator based on the monthly returns exceeds
that foer,f) because of the lowest turnover of the portfolio using the monthly returns. Table 4
also represents annualized performance feeto switch from the monthly or daily returns for the
Bayesian shrinkage covariance estimator to the average realized covariance matrix with six and 12
months, V() and V{)”. In cases without transaction costs and witk= 2%, all of the perfor-

mance fees take positive values. For the transaction cest@fial to4%, the fees from using the
monthly or daily returns to usingfﬁz are unalterably positive in cases with= 1 and10. By
contrast, the performance fee fmﬁf) versus the use of monthly returns falls slightly below zero,
—0.065, at the low relative risk aversiop= 1, but the fee at the high relative risk aversipa- 10
considerably exceeds zert3.052. The empirical results show that the large-scale portfolio op-
timization based on the realized covariance matrix estimators using the past intraday returns can

yield substantial benefits in terms of risk reduction. Overall, the results are also suggestive of the

better performance of the large-scale portfolio constructed by the realized covariance approach.

4 Conclusion

The objective of this paper is to examine effects of the realized covariance matrix estimators based
on intraday returns on large-scale minimum-variance equity portfolio optimization. We empiri-
cally assess out-of-sample performance of portfolios with different covariance matrix estimators:
the realized covariance matrix estimators and the Bayesian shrinkage estimators based on the past
monthly and daily returns. The main results are: (1) the realized covariance matrix estimators
using the past intraday returns yield a lower standard deviation of the large-scale portfolio returns

than the Bayesian shrinkage estimators based on the monthly and daily historical returns; (2) gains

12



to switching to strategies using the realized covariance matrix estimators are higher for an investor
with higher relative risk aversion; and (3) the better portfolio performance of the realized covari-

ance approach implied by ex-post returns in excess of the risk-free rate, the standard deviations
of the excess returns, the return per unit of risk (Sharpe ratio) and the switching fees seems to be

robust to the level of transaction costs.
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Table 1: Performance of minimum-variance portfolios (scenario 1)

Annualized Std Dev Sharpe Correlation Turnover Tracking

Mean Ratio  with TOPIX Error

Panel Aic =0
500 stocks 2.502 49.315 0.051 0.984 2.851
value-weighted
Monthly 6.670 31.045 0.215 0.734 9.107  34.051
Daily 7.220 29.575 0.244 0.695 27.386  35.013
Vi 7.340  27.147 0270  0.675 27.699  36.543
Vi 7.273  28.086 0.259 0.688 19.578  35.535
Panel Bic =2
500 stocks 2.386 49.318 0.048
value-weighted
Monthly 6.274 31.038 0.202
Daily 6.485 29.636 0.219
\%2y 6.427  27.089 0.237
v 6.692 28.067 0.238

o . . .
Panel Cc =4
500 stocks 2.270 49.322 0.046
value-weighted
Monthly 5.879 31.032 0.189
Daily 5.751 29.703 0.194
v 5.513 27.034 0.204
V12 6.110 28.050 0.218

t.h : : :

Note: The table compares the performance of minimum-variance portfolios using the optimization proce-
dure in scenario 1. The sample comprises the 500 largest market capitalization JPN stocks on the TSE. The
out-of-sample period is 76 months from November 2000 to February 2007. We compute the realized returns
yielded by the different strategies using the 500 stocks value-weighted rate, using the Bayesian shrinkage
estimators based on monthly and daily returns “Monthly” and “Daily” and realized covariance matrix es-
timators based on the prior six- and 12-month intraday retumgz” and Vﬁl,f) The table reports the
average annualized return in excess of the risk-free rate, annualized standard deviation of the excess returns,
Sharpe ratio, correlation with TOPIX, turnover for each strategy, and tracking error from the 500 stocks
value-weighted portfolio. Panels A, B, and C show the statistics where the level of transaction a@sts
0%, 2%, and4%, respectively.
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Table 2: The economic gains of strategies using intraday returns (scenario 1)

c=0 c=2 c=4
A,=1 A,=10 A,=1 A, =10 A,=1 A, =10
v vsmonthly 1.863 12734 1.355 11.998 0.846  11.264
vs daily 0.849 9380 0701 8927 0553  8.506

Vvi? vsmonthly 1526 10.898 1.340 10439 1153  9.988
vs daily 0509  6.943 0.683  6.826 0.858  6.752

Note: The table represents the annualized feghat the investor with relative risk aversion parameter
~v = 1 and10 switches from the strategies using the Bayesian shrinkage estimators based on monthly and
daily returns “Monthly” and “Daily” to using the realized covariance matrix estimators based on the prior

six- and 12-month intraday returnvgf " and Vﬁf)
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Table 3: Performance of minimum-variance portfolios (scenario 2)

Annualized Std Dev Sharpe Turnover

Mean Ratio

Panel A:c =0
Monthly 10.701 32791 0.326  10.043
Daily 9512  31.226 0.305 20.837
\ 10577  28.495 0.371 25.053
Vi 9.766  29.492 0.331 18.324
Panel B:ic = 2
Monthly 10.217  33.000 0.310
Daily 8.798  31.447 0.280
\%¥ 9.741 28606 0.341
v 9.190  29.665 0.310

o . . .
Panel Cc =4
Monthly 9.796 32,993 0.297
Daily 8.089  31.460 0.257
\ 8.813  28.539 0.309
v 8.589  29.642 0.290

o . . .

Note: The table compares the performance of minimum-variance portfolios using the optimization proce-
dure in scenario 2. The target expected return is set to annudliZed The sample comprises the 500
largest market capitalization JPN stocks on the TSE. The out-of-sample period is 76 months from Novem-
ber 2000 to February 2007. We compute the realized returns yielded by the different strategies using the
Bayesian shrinkage estimators based on monthly and daily returns “Monthly” and “Daily” and using the

realized covariance matrix estimators based on the prior six- and 12-month intraday rét’@%’sa’hd

“ Vgl,f)”. The table reports the average annualized return in excess of the risk-free rate, annualized standard
deviation of the excess returns, Sharpe ratio, correlation with TOPIX, turnover for each strategy, and track-
ing error from the 500 stocks value-weighted portfolio. Panels A, B, and C show the statistics where the

level of transaction costsare0%, 2%, and4%, respectively.
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Table 4: The economic gains of strategies using intraday returns (scenario 2)

Ay=1 A, =10 Ay=1 A,=10 A,=1 A, =10

v vsmonthly 1322 16875 1.000 16.152 0505  15.324
vs daily 1.952 13.426 1.862 12.833 1.660 12.160
Vvi? vsmonthly 0196 14.194 0115 13.623 -0.065  13.052
vs daily 0.829 10.132 0.981  9.693 1.095  9.295

Note: The table represents the annualized feghat the investor with relative risk aversion parameter
~v = 1 and10 switches from the strategies using the Bayesian shrinkage estimators based on monthly and

daily returns “Monthly” and “Daily” to using the realized covariance matrix estimators based on the prior
six- and 12-month intraday returnVEG}B " and Vﬁf)

19



