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Abstract

The aim of this study is to develop a bias-correction method for realized variance (RV) estimation,
where the equilibrium price process is contaminated with market microstructure noise, such as
bid-ask bounces and price changes discreteness. Though RV constitutes the simplest estimator of
daily integrated variance, it remains strongly biased and many estimators proposed in previous
studies require prior knowledge about the dependence structure of microstructure noise to ensure
unbiasedness and consistency. The dependence structure is unknown however and it needs to be
estimated. A bias-correction method based on statistical inference from the general noise depen-
dence structure is thus proposed. The results of Monte Carlo simulation indicate that the new
approach is robust with respect to changes in the dependence of microstructure noise.
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1 Introduction

The estimation of the daily integrated variance of returns on financial assets is important

for derivatives pricing and risk management purposes. While realized variance (RV) con-

stitutes a simple but useful estimator of daily integrated variance (IV), it remains also a

strongly biased estimator, where the equilibrium price process is contaminated with market

microstructure noise. This microstructure noise can be induced by various market frictions

such as bid-ask bounces and the discreteness of price changes, inter alia. There are three

approaches to cope with noise contamination, including (i) use of returns on the appropriate

interval length based on optimal sampling frequency proposed by Bandi and Russell [2], (ii)

subsampling and bias correction proposed by Zhang et al. [8] and (iii) kernel estimation fol-

lowing Barndorff-Nielsen, et al. [4]. McAleer and Medeiros [6] provide an extensive review of

the recent literature on RV estimation. It is the time-dependent noise structure that ensures

the unbiasedness and consistency of IV estimators. The estimations proposed in previous

studies ultimately require prior knowledge about this noise dependency, which needs to be

rather estimated. The present study addresses these estimation issues and uses the consis-

tent cross-covariance and autocovariance estimators of microstructure noise, and the tests

statistics developed by Ubukata and Oya [7] to identify the noise dependence structure. The

selection procedure of time scales based on Aı̈t-Sahalia et al.[1]’s Two Scales RV (TSRV) is

also provided under the general conditions of dependent noise. An alternative bias-corrected

estimator of IV can be also proposed using the autocovariance of microstructure noise. The

remainder of this paper is organized as follows. The price process and market microstruc-

ture noise are presented in section 2. Section 3 discusses the realized variance and related

estimators are given. Section 4 provides a brief review of the autocovariance estimator of

microstructure noise proposed by Ubukata and Oya [7] followed by a discussion of of the

selection two-scales TSRV estimator and alternative bias-corrected RV estimator. Section

5 presents the results of Monte Carlo simulation for the finite sample properties of the

proposed selection procedure and the new bias-corrected estimator under the general noise

dependence. Section 6 concludes the paper.

2 Price Process and Microstructure Noise

It is assumed that the equilibrium asset price follows a continuous semi-martingale process

dP ∗(t) = µ(t)dt + σ(t)dW (t) where P ∗(t) is the logarithmic equilibrium continuously com-

pounded intra-daily price, W (t) is a standard Brownian motion, and both µ(t) and σ(t) > 0

are bounded measurable functions. The diffusion term σ(t) can be estimated according to
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the integrated variance over a fixed interval [0, T ]

IV = ⟨P ∗, P ∗⟩T =
∫ T

0
σ2(t)dt (1)

using the observed logarithmic asset price of the asset for t ∈ [0, T ]. The market closing time

is denoted as T . We assume that the drift term µ(t) equals to zero since the trend term of

the price process is likely to be small during the trading hours on a given day. Suppose that

the asset price can be observed at the discrete time points t0 = 0 < t1 < t2 < · · · < tn = T ,

where ti represents the i-th transaction time. The length of the i-th interval is defined as

∆ti = ti − ti−1. It is noted that ∆ti = T/n only under the restrictive conditions of regular

sampling, and that ∆ti ̸= ∆tj for i ̸= j for non-regular sampling.

In order to examine the impact of market microstructure noise, it is also assumed that the

observed price process P (t) consists of the equilibrium continuously compounded intra-daily

price process P ∗(t), which is unobservable, and the noise process η(t)

P (t) = P ∗(t) + η(t). (2)

The market microstructure noise η(t) is also assumed to represent a serially dependent ran-

dom variable. This is rather a plausible assumption given the behavior of noise determinants

such as bid-ask bounces, order-flow clustering and other market imperfections. Thus, the

following set of assumptions about the microstructure noise can be made.

Assumption 1 (Market microstructure noise) Suppose (a) {η(t)} is a sequence of ran-

dom variables with zero mean, (b) the noise process is covariance stationary with autoco-

variance function, which has a finite dependence structure in the sense that:

γη(ℓ) = E[η(t)η(t − ℓ)] = 0, for all | ℓ |> m

where m is a finite positive integer, (c) there exists some positive number β > 1 that satisfies

E
∣∣∣η(t)η(s)

∣∣∣4β
< ∞ for all t, s and (d) the noise process is independent of the equilibrium

price process.

With respect to assumption (d), it is noted that as the number of observations increases,

the effect of dependence is dominated by noise variation, even when the noise terms are

correlated with equilibrium prices. Hansen and Lunde [5] suggest that the independence

assumption (d) does not significantly affect the analysis of asset prices with high-frequency

trading.
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3 Realized Variance and Related Estimators

3.1 Realized Variance

The most widely used estimator of the integrated variance defined in (1) is the realized

variance, which is defined as the sum of squared returns given by

RV =
n∑

i=1

r2
i =

n∑
i=1

(P (ti) − P (ti−1))
2, (3)

where the i-th transaction price is P (ti) and the i-th intraday log return is defined as

ri = P (ti) − P (ti−1).

Given the time intervals I i = (ti−1, ti] for all i, it is possible to the expectation of RV

conditional on the stochastic arrival times as EI [ · ]. Thus, the conditional expectation of

(3) can be written as

EI [RV ] =
n∑

i=1

EI [(r
∗
i + η(ti) − η(ti−1))

2] =
n∑

i=1

EI [ r∗i
2] + 2nγη(0) − 2

n∑
i=1

γη(∆ti) (4)

where r∗i = P ∗(ti) − P ∗(ti−1). It is straightforward to demonstrate that the variance γη(0)

and the sum of autocovariances
∑n

i=1 γη(∆ti) can introduce a bias in the estimation of RV

according to (3). For the sake of simplicity, it is assumed hereafter that the sampling scheme

is regular and that ∆ti = 1, i = 1, . . . , n. Under such conditions, the total bias is represented

by 2n(γη(0) − γη(1)).

3.2 Two-Scales Realized Variance

Zhang et al. [8] proposed the Two Scales Realized Variance (TSRV) which is unbiased

when the microstructure noise is independent. Denote the original grid of observation

times as G = {t0, t1, . . . , tn}. G is partitioned into K nonoverlapping subgrids, G(j)
K , j =

1, . . . , K, such that G = ∪K
j=1G

(j)
K , where G(j)

K ∩ G(ℓ)
K = ϕ for j ̸= ℓ. Given the assump-

tion of regular sampling scheme, the j-th nonoverlapping subgrid can be represented as

G(j)
K = {tj−1, tj−1+K , tj−1+2K , . . . , tj−1+njK} for j = 1, . . . , K where nj is the integer making

tj−1+njK the last element in the subgrid G(j)
K . Then the realized variance for the subgrid G(j)

K

can be written as

RV
(j)
K =

nj∑
i=1

(P (t(j−1)+iK) − P (t(j−1)+(i−1)K))2. (5)
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Let RV (all) be the realized variance for the full grid G. Then TSRV by Zhang et al. [8] can

be represented as

RVK = (1/K)
K∑

j=1

RV
(j)
K − (n̄/n)RV (all) (6)

where n̄ =
∑K

j=1 nj/K = (n − K + 1)/K. The first term of (6) represents the average of

RV
(j)
K estimators for the subgrid G(j)

K , j = 1, . . . , K, which is a biased estimator of IV . In

case of independent noise, the second term of (6) represents the bias-correction term since

the bias in the first term is 2n̄γη(0) and RV (all)/(2n) is a consistent estimator of γη(0). The

refinement to correct for the finite sample bias in (6) following Zhang et al. [8] is conducive

to the following expression

RV
(adj)
K = (1 − n̄/n)−1 RVK . (7)

Although these two-scales realized variances are unbiased and consistent estimators of IV

under the independent noise assumption, these desirable features are not guaranteed when

the noise terms are not independently distributed.

3.3 Extended Two-Scales Realized Variance

Aı̈t-Sahalia et al. [1] extended the TSRV to allow for dependent market microstructure noise.

The first term of (6) can be rewritten in the form of the average lag K realized variance

under regular sampling intervals.

RV
(avg)
K = (1/K)

K∑
j=1

RV
(j)
K = (1/K)

n−K∑
i=0

(P (ti+K) − P (ti))
2. (8)

It is also possible to use an alternative lag J instead of lag K, (1 ≤ J < K ≤ n) in (8) and

express using two different lags J and K, the extended TSRV as follows.

RVJ,K = RV
(avg)
K − (n̄K/n̄J)RV

(avg)
J (9)

where n̄J = (n − J + 1)/J , n̄K = (n − K + 1)/K, 1 ≤ J < K ≤ n and K = o(n).

The main difference between TSRV expressed in (6) and extended TSRV estimators is

captured by the second term of (9) which represents a bias-correction term. It is easy to

identify the bias term in RVJ,K as

2n̄K(γη(ti+J − ti) − γη(ti+K − ti)) = 2n̄K(γη(J) − γη(K)). (10)

This bias consists of the autocovariances of microstructure noise γη(J) and γη(K). It should
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be noted that these autocovariances become negligible when the selected lags J and K are

large enough. Based on Assumption 1 that the microstructure noise process is m-dependent,

it is possible to select J such that J = m + 1 and K = O(n2/3) as in Aı̈t-Sahalia et al. [1].

The finite-sample correction of the extended TSRV can be thus expressed as

RV
(adj)
J,K = (1 − n̄K/n̄J)−1 RVJ,K . (11)

4 Lags (J, K) Selection and Alternative Estimator

The extended TSRV is an appropriate estimator of IV when the assumption of independent

noise assumption is not valid. As discussed in the previous section however, the important

issue remains as to how the optimal lags J and K should be selected. Although Aı̈t-Sahalia

et al. [1] argue that the extended TSRV is robust with respect to lags (J,K) selection, the

following section 5.2 demonstrates that this estimation may still be significantly sensitive

to lag J selection.

The present section discusses the new methodology that allows for the selection of the

appropriate lag J , based on the testing procedure proposed in Ubukata and Oya [7]. An

alternative IV estimator which utilizes a different bias-correction method from the extended

TSRV is also briefly introduced.

4.1 Microstructure Noise Autocovariance Estimation

Ubukata and Oya [7] proposed an unbiased and consistent estimator of the microstructure

noise autocovariance γη(ℓ), and derived its asymptotic properties. The test statistic of the

null hypothesis γη(ℓ) = 0 is also applied to examine the significance of the microstructure

noise dependence. Suppose that the threshold value of microstructure noise dependence as

m, is such that γη(m + 1) = 0 and γη(m) ̸= 0. The threshold value m can be determined

through the test statistic defined in Ubukata and Oya [7, section 3.2].

To obtain an unbiased estimator of γη(ℓ), it is possible to construct the product of returns

Z
(±)
ℓ,ij for all i, j, such that ℓ = tj−1 − ti using the selected threshold value m

Z
(±)
ℓ,ij = r

(−)
i r

(+)
j = (P (ti) − P (t

(−)
i−1))(P (t

(+)
j ) − P (tj−1)) (12)

where t
(+)
j is the first transaction time, which follows tj subject to t

(+)
j − ti > m, and t

(−)
i−1 is
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the last transaction time, which is followed by ti−1 subject to tj−1 − t
(−)
i−1 > m. Thus, for a

given ℓ = tj−1 − ti, expected product of returns can be expressed as E[Z
(±)
ℓ,ij ] = −γη(ℓ) for all

i, j. Let {Z(±)
ℓ,k }Nℓ

k=1 be the sequence that arranges Z
(±)
ℓ,ij satisfying ℓ = tj−1 − ti in ascending

order of index i. Nℓ represents the number of observations in the sequence. It is then possible

to construct the unbiased autocovariance estimator of the microstructure noise using the

sample mean of {Z(±)
ℓ,k }Nℓ

k=1.

Autocovariance Estimator (Ubukata and Oya [7]): The autocovariance estimator of

the microstructure noise and its asymptotic distribution are given as

γ̂η(ℓ) = − 1

Nℓ

Nℓ∑
k=1

Z
(±)
ℓ,k , N

1/2
ℓ (γ̂η(ℓ) − γη(ℓ))

a→ N(0, ω2
ℓ ) (13)

where ω2
ℓ = limNℓ→∞ NℓE[(γ̂η(ℓ) − γη(ℓ))

2].

The test statistic to examine the significance of γη(ℓ) is also discussed in Ubukata and Oya

[7, corollary 2]. Let the null hypothesis and the alternative be represented as γη(ℓ) = 0 and

γη(ℓ) ̸= 0, respectively. The test statistic of the noise autocovariance can be expressed as

τ ∗
η (ℓ) =

√
Nℓ γ̂η(ℓ)/ω̂ℓ. (14)

This test statistic is asymptotically distributed as standard normal under the appropriate

conditions, which are not further discussed herein for the sake of brevity. Reference can be

made to Ubukata and Oya [7] for more details including the explicit formulation of ω̂ℓ.

4.2 Lags (J , K) Selection

To select the appropriate lag J , it is required first to examine whether γη(1) = 0 through the

test statistic τ ∗
η (ℓ). When the null is rejected, there is a need to verify whether γη(2) = 0,

and this test γη(ℓ) = 0 is reiterated until the null cannot be rejected. The distance ℓ for

which the null hypothesis γη(ℓ) = 0 cannot be rejected for the first time is denoted as Ĵ for

the extended TSRV.

The optimal choice of lag K is clearly provided in Zhang et al. [8] under the i.i.d. noise

assumption. However, the important issue of optimal lag selection remains under less restric-

tive conditions of dependent microstructure noise. It is possible to devise a simple approach

to address this issue of optimal lag selection, where the original grid of observation times

denoted by G = {t0, t1, . . . , tn} as defined in previous section, is supplemented by a new
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subgrid GĴ = {t0, tĴ , t2Ĵ , . . . , t[n/Ĵ ]} where Ĵ is the selected lag, representing the threshold

value of noise dependence based on the test statistic τ ∗
η (ℓ). It is reasonable to suppose that

the microstructure noise { η(tiĴ) }[n/Ĵ ]
i=0 is an uncorrelated random sequence. The optimal

lag K can thus be obtained by applying the methodology proposed in Zhang et al. [8] to

the sequence of the observed transaction price { P (tiĴ) }[n/Ĵ ]
i=0 . The extended TSRV with

selected lags (Ĵ , K̂) and the bias-adjusted extended TSRV are denoted hereafter as RVĴ ,K̂

and RV
(adj)

Ĵ ,K̂
, respectively.

4.3 Alternative Bias-Corrected Estimator

In order to correct the bias of RV, an alternative IV estimator RV
(bc)
K can also be constructed

using autocovariance defined in (13) as

RV
(bc)
K = RV

(avg)
K − 2n̄K γ̂η(0). (15)

The unbiasedness and consistency of RV
(bc)
K can be immediately established from the unbi-

asedness and consistency of the autocovariance estimator (13) and the result given in Zhang

et al. [8].

5 Monte Carlo Simulation

5.1 Simulation Design

A series of Monte Carlo simulations is performed in order to examine the impact of lag (J , K)

selection on the extended TSRV. This simulation exercise allows also for the assessment of

the estimator (15) properties relative to the extended TSRV under dependent microstructure

noise. The return-generating process is defined exactly as in Zhang et al. [8].

dP ∗(t) = (0.05 − ν(t)/2)dt + σ(t)dB(t)

dν(t) = 5(0.04 − ν(t))dt + 0.5ν(t)1/2dW (t), ν(t) = σ2(t)

The correlation between the two Brownian motions B and W is set to -0.5. A total of

10000 sample paths of the process by the Euler scheme are generated at time intervals

∆t = 1 second. It is noted that T = 1 day and a day, which consists of 6.5 hours of open

trading, or the equivalent of 23400 seconds. The price levels are observed discretely under
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the microstructure noise. In the simulation, the time interval between observations is set to

be 5 seconds, i.e., t0 = 0, t1 = 5, . . . , t4680 = 23400. Since the focus is made on the case of

dependent microstructure noise, different dependent patterns are considered, including the

following autoregressive model and moving average model for the noise process

AR(1) : η(ti) = ρ η(ti−1) + ε(ti),

MA(3) : η(ti) = ε(ti) +
3∑

s=1

θsε(ti−s)

where ρ = -0.8, -0.4, 0.0, 0.4, 0.8 for AR(1), (θ1, θ2, θ3) = (-0.6, 0, 0), (0.6, 0, 0) for MA(1),

(0.6, 0.5, 0) for MA(2) and (0.6, 0.5, 0.4) for MA(3). The variance of microstructure noise

E[η(t)2] should be carefully selected because the effect of the microstructure noise may be

negligible only when E[η(t)2] is very small. Hansen and Lunde [5] reported that the Noise-

to-Signal Ratio (NSR) defined as E[η(t)2]/IV for a sample of stocks listed on the NYSE and

NASDAQ markets ranges from 0.0002 to 0.006. Consistent with on these previous empirical

findings, the NSR for simulated paths E[η(t)2] is set to 0.004, which is equal to the average

of the above NSR reference values. The observed price is also given as P (ti) = P ∗(ti)+η(ti).

Under these conditions, it is possible in the following subsections, to examine the influence

of lag J selection on the extended TSRV estimators, with K = 50, 100, 200 and assess

the statistical properties of selected lag J using the test statistic τ ∗
η (ℓ). Furthermore, it is

important to compare the extended TSRV estimator with selected lags (J , K), to the bias-

adjusted TSRV extended estimator as well as (15) proposed in this study. These distinct

estimators can be obtained for each simulated sample path.

5.2 Influence of Lag Selection

The integrated variance is estimated using RVJ,K and RV
(adj)
J,K with J = 1, . . . , 40 and K=

50, 100, 200. The relative bias of these estimators represented by the sample means of

(estimate−IV )/IV is reported in the first and third columns of Figure 1. The sample root-

mean-squared-errors (RMSE) of estimate/IV is also provided in the second and fourth

columns. The first and third rows of Figure 1 show the bias and RMSE for RVJ,K . Similarly,

the second and fourth rows refer to the bias and RMSE for RV
(adj)
J,K . The horizontal axis is

provided for J=1, . . . , 40. The models used for the noise process are AR(1) with ρ = −0.8

and 0.8, i.i.d. and MA(1) with θ=−0.6. It is clear that the bias of RV
(adj)
J,K becomes negligible

after J exceeds the threshold value of noise dependence while the bias of RVJ,K grows as

J increases. Although the performance of the bias-adjusted estimator RV
(adj)
J,K is relatively
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better, the variance seems to be sensitive to this bias adjustment process. This effect is

clearly captured by the reported RMSE values.

It is important to appropriately select the lag J for both RVJ,K and RV
(adj)
J,K estimators

because their RMSEs can strongly depend on the lag J selection even under more favorable

conditions of independent microstructure noise. Judging also from the second and fourth

columns of Figure 1, it appears that lag K selection does not exert significant influence on

RMSE provided that lag J is properly selected.

Figure 1 : around here

5.3 Performance of Lag Selection Procedure

The selection of lag J is preformed by testing the null hypothesis γη(ℓ) = 0 for ℓ > 0 as

described in section 4.2. Again, it is possible to examine the behavior of the test statistic

τ ∗
η (ℓ) in association with lag J selection. Figure 2 shows the empirical distribution of selected

lag J denoted as Ĵ for the representative cases. The mode of Ĵ is found to equal 8 and 2

for AR(1) noise dependence with ρ = -0.8 and -0.4, respectively. On the other hand, mode

estimates amount to just 1, 2, 3 and 4, for i.i.d., MA(1), MA(2) and MA(3), respectively.

Thus, it is possible to use the test statistic τ ∗
η (ℓ) as an essential criterion in the selection of lag

J . The results of lag K selection according to the procedure described in the previous section

are not reported here, but the evidence suggests that variance of the empirical distribution

of K̂ rises as the noise dependence increases.

Figure 2 : around here

5.4 Comparison of IV Estimators

The analysis so far focused on important issues related to the construction of the set of three

IV estimators under the assumption of dependent microstructure noise. The objective of this

subsection is to examine however the statistical properties of these estimators. It is noted

again that RVĴ ,K̂ and RV
(adj)

Ĵ ,K̂
represent the extended TSRV and bias-adjusted extended
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TSRV with the selected lags (Ĵ , K̂), while RV
(bc)

K̂
is the estimator proposed in the previous

section with the selected lag K̂. The empirical distributions of (estimate− IV )/IV for each

estimator are given in Figure 3. It is easy to see that the empirical distributions of RVĴ ,K̂

and RV
(adj)

Ĵ ,K̂
with (Ĵ , K̂) are found to be skewed to the right. It is noted in particular that

under strong noise dependence, the empirical distribution of the proposed estimator RV
(bc)

K̂

is rather closer to symmetry than alternative estimators.

Figure 3 : around here

Table 1 : around here

The bias and RMSE values associated with IV estimators are reported in Table 1. The

bias terms in RV
(bc)

K̂
are generally smaller than those obtained with respect to RVĴ ,K̂ and

RV
(adj)

Ĵ ,K̂
. These RMSE values are rather comparable across these estimators, except in case

of strong noise dependence case. These simulation results suggest that the extended TSRV

and bias-adjusted extended TSRV with selected (Ĵ , K̂), as well as the proposed estimator

RV
(bc)

K̂
are indeed robust to the dependence of microstructure noise.

6 Concluding Remarks

This paper proposes a new approach to the problem of appropriate lag selection for the two-

scales realized variance under dependent microstructure noise. An alternative bias-adjusted

estimator based on the variance of microstructure noise is also proposed, along the lines of

Ubukata and Oya [7]. The evidence from Monte Carlo simulation suggests that the proposed

lag selection procedure is appropriate as the the proposed estimator is associated with

relatively smaller bias and RMSE values. The proposed procedure for lag selection and the

new IV estimator can thus be useful for empirical studies based on transactions price data.

It should be noted that kernel-type estimators may be considered to be more efficient. But

as noted by Bandi and Russell [3], this asymptotic property is not necessarily satisfied in

the presence of large samples typical of empirical studies based on transactions data. The

comparative analysis is nevertheless important and therefore warranted. It falls beyond the

scope of the present study, which introduces a new approach that may open interesting

avenues for future research.
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Table 1: Relative Bias and RMSE of estimators

Bias RMSE

Noise Type RVĴ ,K̂ RV
(adj)

Ĵ ,K̂
RV

(bc)

K̂
RVĴ ,K̂ RV

(adj)

Ĵ ,K̂
RV

(bc)

K̂

AR: ρ = −0.8 -0.131 0.035 0.008 0.326 0.366 0.259

AR: ρ = −0.4 -0.064 0.009 -0.006 0.208 0.218 0.214

AR: ρ = 0.4 0.097 0.181 0.041 0.336 0.374 0.295

AR: ρ = 0.8 0.123 0.344 0.077 0.543 0.688 0.385

i.i.d. -0.074 -0.019 -0.005 0.160 0.141 0.213

MA(1) 0.016 0.081 0.025 0.334 0.358 0.292

MA(2) 0.058 0.146 0.032 0.400 0.446 0.314

MA(3) 0.088 0.196 0.037 0.441 0.506 0.336
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Fig. 1. Figure 1: Effect of selection lag J with different lag K values
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Fig. 2. Empirical distribution of selected lag J using τ∗
η (ℓ)
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RVĴ ,K̂
(adj ) AR: ρ = −0.8

−1 0 1 2 3 4

0
.0

1
.0

2
.0

RVK̂
(bc ) AR: ρ = −0.8

−1 0 1 2 3 4

0
.0

1
.0

2
.0
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