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Abstract

We extend the analysis of Campbell et al. (1993) on the relationship between
the first-order daily stock return autocorrelation and stock market trading volume
by allowing abrupt and smooth transition structures using lagged stock returns as a
transition variable. Using U.S. stock market data, we find the evidence supporting
the nonlinear relationship characterized by a stronger return reversal effect on a
high-volume day combined with low lagged stock returns.
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1 Introduction

The first-order autocorrelation in daily stock returns tends to be lower when the

aggregate stock market trading volume is higher. Using both the stock price index and

individual stock price series in the U.S., Campbell et al. (1993, CGW) find a significantly

negative effect of volume on the autoregressive coefficients of stock returns. They explain

their finding using a model in which risk-averse “market makers” accommodate selling

pressure from “liquidity” or “noninformational” traders in exchange for the reward of a

higher expected stock return. They argue that a stock price decline on a high-volume day

is more likely the result of exogenous selling pressure by noninformational traders, and

will be followed by price increases on subsequent days. In contrast, a stock price decline

on a low-volume day may be caused by the arrival of public information on lower future

cash flows (or fundamentals) with the lower possibility of price reversals.

In this paper, we extend the empirical analysis of CGW by introducing an additional

nonlinear structure where the serial correlation of stock returns does not depend only

on the size of trading volume but also on the sign of lagged stock returns. To this end,

we consider variants of the threshold autoregressive (TAR) model and smooth transition

autoregressive (STAR) model using past stock returns as a transition variable. The for-

mer assumes abrupt transition, while the latter assumes smooth transitions between two

alternative effects of volume on the serial correlation of stock returns. We use updated

U.S. data on stock price index returns and trading volume, and examine whether the

findings of CGW are robust to these extensions.

There are a number of reasons why we may expect that the relationship between

trading volume and serial correlation in stock returns depends on the sign of lagged stock

returns, which is conveniently described by TAR/STAR models. First, if both types of

investors hold stock for more than one period, their behavior in the face of liquidity shock

obviously depends on the past performance of the stock returns. Second, negative returns

increase the risk in the following period measured by volatility because of an increased

debt-to-equity ratio (leverage effect). Since risk-averse market makers demand higher
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expected returns for riskier assets, the sign of lagged stock returns will have an effect

on the serial correlation of stock returns. Third, when market declines are larger, there

is a greater likelihood that margin accounts will be liquidated. Thus, noninformational

traders are expected to be more active following the negative stock return periods than

after the positive stock return periods.

It should be noted that our analysis is also related to some prior work that considers

the asymmetric impact of stock market shocks on stock returns. De Bondt and Thaler

(1989) finds that stock market overreaction effects among losers are much stronger than

among winners. Koutmos (1998), Nam et al. (2001) and Chiang et al. (2007) find that

stock indexes incorporate negative shocks faster than positive shocks in many advanced

nations.

2 Model

The stock return, rt, is often assumed to follow an autoregressive model because of a

partial adjustment of past price to its market fundamentals. To capture the dependence

of serial correlation of stock returns on volume, CGW include the product of lagged

trading volume, vt−1, and the lagged stock return, rt−1, as an additional regressor in the

autoregression. The benchmark CGW regression takes the form of

rt = α + βrt−1 + γvt−1rt−1 + εt, (1)

and

rt = α + (
∑5

i=1
βiDit)rt−1 + γvt−1rt−1 + εt, (2)

where Dit’s are five day-of-the-week dummies, and εt is an error term with mean zero and

a finite variance. In our analysis, we extend the CGW regression models (1) and (2) to

the following TAR/STAR models,

rt = α + βrt−1 + γ1vt−1rt−1 + γ2vt−1rt−1F (zt) + εt, (3)

and

rt = α + (
∑5

i=1
βiDit)rt−1 + γ1vt−1rt−1 + γ2vt−1rt−1F (zt) + εt, (4)
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where F (zt) is a transition function, which takes a value between 0 and 1 depending on the

transition variable zt. Here, the transition variable, zt, represents the past performance of

the stock returns, e.g., the moving averages of lagged stock returns. Our model reduces

to the benchmark CGW regression when γ2 = 0.

If the relationship between the serial correlation of stock returns and trading volume

is determined only by the sign of past stock market returns, an abrupt transition can be

introduced by employing a transition function of the form, F (zt) = 1[zt > 0], where 1[A]

is an indicator function that takes a value 1 if A is true and a value 0, otherwise. In such

a case, the coefficient on the product of volume and the stock return, γ1, represents the

dependence of the first-order return autocorrelation on the trading volume for the case

with negative past stock market returns. With positive past stock market returns, the

coefficient on the product is represented by γ1 + γ2.

We can further extend the model to allow for the smooth transition by employing the

logistic transition function, F (zt) = [1 + exp(−δzt)]
−1, where δ(> 0) is a scale parameter

that controls the rate of the transition. Note that the logistic transition function nests

the indicator function since the former approaches the latter as δ → ∞. However, for

simplicity, we simply refer to the model with the indicator transition function as the TAR

model and the one with the logistic transition function as the STAR model.

3 Data

For the stock return series, we use daily log returns defined as rt = 100× log(Pt/Pt−1)

where Pt is a value-weighted index of stocks traded on the New York Stock Exchange

and American Stock Exchange (NYSE/ASE), from the Center for Research in Security

Prices (CRSP) at the University of Chicago. Our data covers the period from 7/1/1963

to 12/31/2009. In addition to the full sample period, we consider a shorter sample period

through 9/30/1987, which focuses on the period prior to the stock market crash of October

1987. We refer to this subsample as the CGW sample, as it roughly corresponds to the

main sample period used in the analysis of CGW (sample A in their notion). For the stock

4



market trading volumes, we use the CRSP data on a value-weighted number of shares

traded daily on the NYSE/ASE. We follow CGW and use a triangular moving average of

growth rates, by subtracting a one-year backward moving averages from the log trading

volumes (multiplied by 100).1

For the transition variable, which represents the past stock market performance, we

consider both a simple lagged return, zt = rt−1, and a lagged five-day moving average of

stock returns, zt =
∑5

j=1 rt−j/5. Descriptive statistics of returns, their five-day moving

averages, and detrended volumes are reported in Table 1. A comparison of the CGW

sample in panel A and full sample in panel B shows that the variation of returns is larger

with the full sample period, but no obvious difference is observed for trade volume series.

4 Results

We first estimate the benchmark CGW regression model (1) and (2) using the ordinary

least squares (OLS). The estimation results of two specifications are presented in Table 2.

The panel A of the table shows results based on the CGW sample. The estimate of the

coefficient γ is negative and significant at the 1 percent significance level for both with

and without five day-of-the-week dummies. Our result is thus consistent with the result

reported in Table 2 of CGW (page 912). Inclusion of day-of-the-week dummies contributes

to a somewhat higher γ estimate in absolute value, an increase in the R2 statistic and

reduction in the sum of squared residuals. The full sample results reported in panel B

show the lower estimate of γ in absolute value and the smaller R2 statistic, compared to

the CGW sample results. However, it is important to note that the significantly negative

estimate of γ, the main finding by CGW, remains the same even if the sample period is

extended for more than twenty years.

Next, we estimate the TAR model with F (zt) = 1[zt > 0] in (3) and (4). The model

can again be estimated by the OLS since the additional regressor, vt−1rt−11[zt > 0], is

observable. The results are presented in Table 3 for two alternative transition variables

1Thus our volume measure is the detrended log volume rather than the detrended log turnover.
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and for two sample periods. When zt = rt−1 is used for the transition (or threshold)

variable, the original coefficient on the product of volume and the stock return, γ1, is

negative and statistically significant at the 1 percent level. However, at the same time,

the coefficient on the additional regressor, γ2, turns out to be positive and statistically

significant. This result suggests that the price reversals on a higher trading volume day

are more evident when the past lagged returns are negative. This finding holds for both

the CGW sample and full sample. When five-day moving averages, zt =
∑5

j=1 rt−j/5, are

used for the transition variable, results are very similar to the case of zt = rt−1, except for

the full sample case with day-of-the-week dummies where the estimate of γ2 is positive

but not statistically significant.

Finally, we estimate the STAR model with F (zt) = [1 + exp(−δzt)]
−1 in (3) and (4).

Here, for each specification, the transition variable is normalized to have a unit sample

variance for the purpose of the unit-free interpretation of the scale parameter δ (see van

Dijk et al., 2000). The model is estimated by the nonlinear least squares (NLS) method,

and the results are presented in Table 4 for two alternative transition variables and for

two sample periods.2 Since the NLS estimate corresponds to the OLS for a fixed value of

δ, both the R2 statistic and the sum of squared residuals are also reported in the table.

The results for γ1 and γ2 in the estimated STAR model are not distinguishable from those

in the estimated TAR model. While the standard error is very large, the estimate of the

scale parameter δ is also large for all cases, suggesting that the shape of transition function

is similar to the abrupt transition function in the TAR model.3 However, reduction in the

sum of the squared residuals suggests some improvement in terms of the model fit over

the TAR model.

Unlike the case of TAR models with known threshold values (zero in our case), the

linear hypothesis cannot be tested by the significance of γ2 in the case of STAR models,

because δ is not identified if γ2 is zero. To conduct a formal specification test of our STAR

2Initial values are first obtained by running OLS regressions with the regressor vt−1rt−1[1 +
exp(−δzt)]−1 for fixed δ’s from 300 equally spaced grids. The Newton method is then employed to
minimize in the least square criterion for each of 300 initial values to obtain the final NLS estimate.

3A large standard error with a large scale parameter estimate is commonly observed in the estimation
of the STAR model. See van Dijk et al. (2000) for the reasoning.
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model, we employ the test proposed by Teräsvirta (1994). The test without day-of-the-

week dummies is based on an auxiliary regression of the form,

rt =α + βrt−1 + γvt−1rt−1 +
[
φ11rt−1 + φ12vt−1rt−1

]
zt (5)

+
[
φ21rt−1 + φ22vt−1rt−1

]
z2

t +
[
φ31rt−1 + φ32vt−1rt−1

]
z3

t + εt.

Under the null hypothesis of linearity against the STAR model, φij = 0 holds for all

i = 1, ..., 3 and j = 1, 2. For the test with day-of-the-week dummies, βrt−1 in (5) is

replaced by (
∑5

i=1 βiDit)rt−1. The results of the F test are reported in Table 5. For all

cases, the linearity is significantly rejected which justifies the use of the STAR model.

5 Conclusion

We investigated the relationship between the first-order daily stock return autocorre-

lation and stock market trading volume using threshold and smooth transition autoregres-

sive models. We found that, consistent with the finding by Campbell et al. (1993), a stock

price decline on a high-volume day tends to be followed by a return reversal compared

to that on a low-volume day for the extended series. Furthermore, we found statistically

significant evidence of an additional nonlinear relationship where serial correlation struc-

ture also depends on past stock returns. In particular, we found stronger return reversal

effect on a high-volume day if the lagged stock returns are negative.
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Table 1: Descriptive statistics

Mean Median SD Min Max Obs
A: 7/1/1963-9/30/1987

Return .04 .06 .77 -4.44 5.16 6,095
Return (5-day MA) .04 .07 .41 -2.01 2.53 6,095
Volume .07 .06 .22 -1.10 1.04 6,095

B: 7/1/1963-12/31/2009
Return .04 .07 .98 -18.80 10.90 11,707
Return (5-day MA) .04 .07 .46 -5.57 3.64 11,707
Volume .06 .06 .22 -1.42 1.04 11,707

Notes: Return series are log stock returns expressed in percentage. ‘5-day MA’ repre-
sents the five-day moving averages of returns. Volume series are the log trading volumes
detrended by subtracting the one-year backward moving averages. ‘SD,’ ‘Min,’ ‘Max’
and ‘Obs’ are the standard deviation, minimum, maximum and number of observations,
respectively.

Table 2: Benchmark model

Day-of-the- β γ R2 SSR
week dummy

A: 7/1/1963-9/30/1987
No .285∗∗∗ −.291∗∗∗ .061 3, 384

(.015) (.049)
Yes — −.340∗∗∗ .075 3, 330

(.049)
B: 7/1/1963-12/31/2009

No .106∗∗∗ −.153∗∗∗ .007 11, 214
(.012) (.032)

Yes — −.136∗∗∗ .017 11, 096
(.032)

Notes: Numbers in parentheses are standard errors. Statistically significant estimates at
the 1%, 5%, and 10% levels are shown with asterisks, ***, **, and *, respectively. ‘SSR’
is the sum of squared residuals.
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Table 3: TAR model

Transition Day-of-the- β γ1 γ2 R2 SSR
variable (zt) week dummy

A: 7/1/1963-9/30/1987
rt−1 No .280∗∗∗ −.545∗∗∗ .377∗∗∗ .063 3, 374

(.015) (.079) (.092)
rt−1 Yes — −.610∗∗∗ .400∗∗∗ .078 3, 320

(.079) (.091)∑5
i=1 rt−i/5 No .284∗∗∗ −.458∗∗∗ .257∗∗∗ .062 3, 379

(.015) (.075) (.087)∑5
i=1 rt−i/5 Yes — −.509∗∗∗ .259∗∗∗ .076 3, 325

(.075) (.087)
B: 7/1/1963-12/31/2009

rt−1 No .103∗∗∗ −.220∗∗∗ .164∗∗∗ .008 11, 205
(.012) (.039) (.053)

rt−1 Yes — −.185∗∗∗ .117∗∗ .017 11, 092
(.039) (.054)∑5

i=1 rt−i/5 No .104∗∗∗ −.181∗∗∗ .113∗ .007 11, 210
(.012) (.035) (.058)∑5

i=1 rt−i/5 Yes — −.150∗∗∗ .055 .017 11, 096
(.035) (.058)

Notes: F (zt) = 1[zt > 0]. Numbers in parentheses are standard errors. Statistically
significant estimates at the 1%, 5%, and 10% levels are shown with asterisks, ***, **, and
*, respectively. ‘SSR’ is the sum of squared residuals.
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Table 4: STAR model

Transition Day-of-the- β γ1 γ2 δ R2 SSR
variable (zt) week dummy

A: 7/1/1963-9/30/1987
rt−1 No .280∗∗∗ −.547∗∗∗ .378∗∗∗ 41.34 .063 3, 370

(.015) (.079) (.092) (1842.75)
rt−1 Yes — −.612∗∗∗ .401∗∗∗ 42.23 .078 3, 315

(.079) (.092) (1741.65)∑5
i=1 rt−i/5 No .284∗∗∗ −.450∗∗∗ .239∗∗∗ 161.26 .062 3, 374

(.015) (.075) (.087) (1961.55)∑5
i=1 rt−i/5 Yes — −.498∗∗∗ .236∗∗∗ 161.26 .076 3, 321

(.075) (.087) (1972.91)
B: 7/1/1963-12/31/2009

rt−1 No .103∗∗∗ −.220∗∗∗ .164∗∗∗ 36.83 .008 11, 200
(.012) (.039) (.053) (2956.47)

rt−1 Yes — −.185∗∗∗ .117∗∗ 36.83 .017 11, 088
(.039) (.054) (4124.93)∑5

i=1 rt−i/5 No .104∗∗∗ −.180∗∗∗ .108∗ 58.11 .007 11, 206
(.012) (.036) (.059) (668.42)∑5

i=1 rt−i/5 Yes — −.150∗∗∗ .053 58.11 .017 11, 092
(.036) (.059) (1354.30)

Notes: F (zt) = [1 + exp(−δzt)]
−1. Numbers in parentheses are standard errors. Statisti-

cally significant estimates at the 1%, 5%, and 10% levels are shown with asterisks, ***,
**, and *, respectively. ‘SSR’ is the sum of squared residuals.

Table 5: Linearity test

Transition Day-of-the- F statistic p-values
variable (zt) week dummy

A: 7/1/1963-9/30/1987
rt−1 No 52.91 0.00
rt−1 Yes 23.83 0.00∑5

i=1 rt−i/5 No 54.34 0.00∑5
i=1 rt−i/5 Yes 25.40 0.00

B: 7/1/1963-12/31/2009
rt−1 No 27.00 0.00
rt−1 Yes 17.60 0.00∑5

i=1 rt−i/5 No 35.65 0.00∑5
i=1 rt−i/5 Yes 17.73 0.00

Notes: Teräsvirta’s (1994) test for linearity against the logistic STAR model.
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