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Abstract

This paper analyzes market diffusion in the presence of oligopolistic interaction
among firms. Market demand is positively related to past market size because of con-
sumer learning, networks, and bandwagon effects. Firms enter the market freely in each
period with fixed costs and compete in quantities. We demonstrate that the nature of the
inefficiency under free entry can change as the market grows, and more importantly, that
S-shaped diffusion can be a signal that the number of firms under free entry is initially
insufficient, but eventually excessive.
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1 Introduction

The number of suppliers changes over the lifetime of a product market. Gort and Klepper

(1982) investigate 46 new products in the US from their initial introductions up to 1981.1

They characterize the evolution of markets as having five stages. In Stage 1, the number of

firms in the market is small. In Stage 2, the number drastically grows. In Stage 3, it reaches

a maximum. In Stage 4, there is a shakeout of firms, and the number rapidly decreases. In

Stage 5, the number stabilizes. In particular, the time pattern in the growth of the number

of firms from Stage 1 to Stage 3 is characterized as “S-shaped diffusion.” Gort and Klepper

(1982) and other papers observe this phenomenon in several markets, such as computers,

television products (Gort and Klepper, 1982), and generic drugs (Ching, 2010).2

In the related theoretical literature, market diffusion from Stage 1 to Stage 3 is regarded

as resulting from intertemporal externalities, such as learning by doing (Jovanovic and Lach,

1989), firms’ learning of the market demand (Rob, 1991), or intertemporal consumption ex-

ternalities (Vettas, 2000; Kitamura, 2010).3 The common features of these studies are that

firms are atomistic price takers whose production levels are exogenously determined, and that

the number of firms under free entry is socially insufficient over time.

This paper aims to investigate theoretically market diffusion with oligopolistic interaction

among firms. We develop a dynamic model of market diffusion following Kitamura (2010).

In his model, the market grows because of intertemporal consumption externalities, through

which the market demand depends positively on the previous period’s market size. His ap-

proach allows us to analyze the diffusion model with oligopolistic interaction by comparing

free-entry diffusion, in which the number of firms is determined by the zero-profit condition,

and socially optimal diffusion, in which the number of firms maximizes social welfare.4 The

1There are several papers on the growth of markets. See, e.g., Klepper and Graddy (1990), Jovanovic and
Macdonald (1994), and Klepper (1997).

2Empirical evidence shows that the inter- and intrafirm diffusion of new technology tends to be S-shaped. See
Griliches (1957), Mansfield (1968), and Stoneman (2002) for a survey of technological diffusion. In addition,
the S-shaped interhousehold diffusion is treated as a stylized fact in the marketing literature and found in color
televisions (Karshenas and Stoneman, 1992), fax machines (Economides and Himmelberg, 1995), clothes dryers
(Krishnan, Bass, and Jain, 1999), and mobile phones (Gamboa and Otero, 2009).

3See also Vettas (1998), who develops a model of two-sided learning to explain S-shaped diffusion.
4One of the important elements to develop a model of market diffusion is demand structure. In the models

of Rob (1991) and Vettas (2000), the demand curve is a horizontal straight line, and we cannot examine the role
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novel dimension here is that the output per firm is endogenously determined.5

We demonstrate that the existence of oligopolistic interaction turns out to be crucial in the

nature of inefficiency of free entry. In the previous literature, the number of firms under free

entry is insufficient over time. In our model, in contrast, the nature of the inefficiency (i.e.,

too few firms or too many) can change depending on the degree of market maturity, and, more

importantly, S-shaped diffusion can be a signal that the number of firms under free entry is

initially insufficient, but eventually excessive.

To understand this result, we begin by considering the case where the output level is ex-

ogenously determined, as in the previous literature. When the output level of each firm is

exogenous, new entry only leads to the demand-shift effect; i.e., new entry today increases

tomorrow’s demand because of intertemporal consumption externalities. This effect can be

regarded as the future benefit of increasing the current number of firms. The previous liter-

ature concludes that the number of firms under free entry is socially insufficient over time

because firms under free entry do not internalize the future benefit from intertemporal exter-

nalities when they enter the market.

In contrast, when oligopolistic interaction exists, new entry today also leads to a “business-

stealing effect”; i.e., new entry causes existing firms to reduce their output levels today. This

effect can be regarded as the current loss of increasing the current number of firms. There-

fore, in our model, the socially optimal number of firms depends on the magnitudes of the

future benefit from demand shift and of the current loss from business stealing. Because, as

in Kitamura (2010), an S-shaped time pattern of free-entry diffusion arises for the initially

stronger but eventually weaker demand-shift effect, S-shaped diffusion can be a signal of the

initially insufficient, but eventually excessive number of firms under free entry.

These results provide a new policy implication. According to the previous literature, entry

into markets should be encouraged over time. Based on our result, however, entry regulations

should be changed depending on the phase of market growth: entry should be initially en-

couraged, but eventually restricted. In particular, this policy recommendation tends to apply

of oligopolistic interaction. In contrast, the demand curve is downward sloping in Kitamura (2010). This allows
us to analyze the model of diffusion with oligopolistic interaction.

5Bergemann and V̈alimäki (1997) analyze market diffusion with strategic behavior. In their model, firm
output is endogenously determined, but the number of firms is fixed exogenously.
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to the industries where S-shaped diffusion has already been observed in other countries.

This paper is related to the literature examining the social inefficiency of free entry.

Mankiw and Whinston (1986) and Suzumura and Kiyono (1987) show that the number

of firms under free entry is socially excessive because oligopolistic interaction leads to a

business-stealing effect.6 This finding is often called the “excess-entry theorem.”7 Recently,

on the other hand, several papers show that free entry can be socially insufficient under dif-

ferent circumstances. Ghosh and Morita (2007a, b) show that if we consider the vertical

relationship between firms, then free entry can lead to a socially insufficient number of firms.

Mukherjee (2010) also obtains the result of insufficient entry by considering the external

economies of scale under which the production cost of each firm decreases as more firms

enter the market.8

These results show a trade-off between negative and positive externalities of new entry

in a static environment and which externality becomes dominant depends on the exogenous

parameters in the model. In contrast, this paper focuses on the intertemporal trade-off be-

tween the current loss and future benefit of new entry and shows that the relative size of these

externalities depends not only on the exogenous parameters, but also on the phase of market

growth. In addition, our analysis within a dynamic framework also enables us to explore the

relationship between social inefficiency of free entry and the time pattern of market diffusion.

Therefore, our approach allows us to shed light on the importance of a dynamic perspective

in analyzing the inefficiency of free entry.

This paper is also related to the literature concerned with intertemporal consumption ex-

ternalities.9 Some empirical studies actually report that demand can be positively related to

past market size. Goolsbee and Klenow (2002) empirically examine the importance of learn-

6See also von Weizsacker (1980) and Perry (1984).
7According to Suzumura and Kiyono (1987) and Suzumura (2012), there are two types of excess-entry

theorem, the “first-best” or “second-best.” In the former (latter), a social planner is assumed to be (un)able to
control each firm’s output or price level in the post-entry stage. In this paper, we assume a “second-best” social
planner. Therefore, the socially optimal diffusion in our paper corresponds to a “second-best” social welfare
optimum, and the terms “insufficient” or “excessive” are used from a “second-best” social welfare perspective.

8Spence (1976) and Dixit and Stiglitz (1977) show that the number of firms under free entry can be so-
cially insufficient if consumers prefer product diversity. In addition, Mukherjee (2011) shows that under the
Stackelberg leader–follower structure, free entry leads to a socially insufficient number of firms.

9Intertemporal consumption externalities here are also related to rational addiction, where a consumer’s
utility is positively related to the volume of his/her own past consumption (Becker and Murphy, 1988).
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ing and network externalities in the diffusion of home computers. They find that people are

more likely to buy their first home computer in areas where a large fraction of households al-

ready own computers.10 In addition, Berndt, Pindyck, and Azoulay (2003) present empirical

evidence that the past sales of a drug have a positive effect on both its value to consumers and

its rate of diffusion at the brand level.11 In a (generic) drug market, the qualities of drugs tend

to be initially uncertain for doctors and patients. Therefore, the widespread use of the drug in

previous periods can be a signal that it is sufficiently safe or effective.12

The rest of this paper is organized as follows. Section 2 sets up the model. Section 3 in-

troduces free-entry and socially optimal equilibria. Section 4 analyzes the social inefficiency

of free-entry diffusion. Section 5 gives concluding remarks. All proofs are provided in the

Appendix.

2 Model

This section develops the model following Kitamura (2010). The new dimension here is the

oligopolistic interaction among firms: the output per firm is endogenously determined. This

modeling strategy clarifies the importance of oligopolistic interaction among firms.

We characterize the consumers’ behavior in 2.1 and the firms’ behavior under free entry

in 2.2. Then, we introduce the timing of the game in 2.3. We assume that time is discrete

and that the horizon is infinite. In this paper, it is also assumed that the market is a perishable

goods market or a service market in which the service fee is charged in every period.

2.1 Consumers

There are a number of mass unit consumers for all periods. Each consumer has a different

preference for a product. Letθ be the type of consumer, which is stationary for all periods and

10For a survey of the literature on network externalities, see Katz and Shapiro (1994).
11Caminal and Vives (1996) analyze the importance of past market share as a signal of product quality. Mon-

teiro and Gonzalez (2003) analyze the role of past-sales advertising as a corporate strategy. Grinblatt, Keoharju,
and Ik̈aheimo (2008) find that the purchases of neighbors influence a consumer’s purchases of automobiles.

12There is also the bandwagon effect (Leibenstein, 1950). Becker (1991) studies restaurant pricing where
consumer demand is positively related to market size. Biddle (1991) develops an empirical model of the band-
wagon effect and shows that the current demand is positively related to past demand levels.
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is uniformly distributed on the interval [0,1]. We also assume that the number of consumers is

a/b, wherea > 0,b > 0. The market size, defined as the number of consumers who purchase

the product, at periodt is denoted byQt. The consumers’ willingness to pay depends on

the previous period’s market size because of the intertemporal consumption externality. We

assume the following reservation price for consumers of typeθ at periodst = 1,2, ..., ut(θ):

Assumption 1.

ut(θ) = U(θ,Qt−1) = aθ + σ(Qt−1), (1)

whereσ(Qt−1) > 0 represents the intertemporal consumption externality and has the follow-

ing properties:σ(0) = 0, σ′(Qt−1) > 0, σ′′(Qt−1) < 0, σ′′′(Qt−1) > 0, limQt−1→0σ
′(Qt−1) = ∞,

and limQt−1→∞ σ
′(Qt−1) = 0.

From Assumption 1, it is easy to see that the intertemporal consumption externality has

the following two properties: it is strictly increasing in the previous market size; however, its

degree, or equivalently the benefit of the externality, is strictly decreasing. This assumption

guarantees that the market size converges to a finite number.

A consumer of typeθ payspt for the product and enjoys consumer surplus ofut(θ) − pt.

The consumer purchases the product if and only if the consumer surplus is nonnegative, i.e.,

ut(θ) − pt ≥ 0. Then, the inverse demand function at periodt, P(Qt−1,Qt), becomes:

P(Qt−1,Qt) =


a + σ(Qt−1) − bQt 0 ≤ Qt ≤ a

b,

0 Qt >
a
b,

(2)

for all t = 1,2, ..., and 0≤ Qt−1 ≤ a/b. It is easy to see that the inverse demand is strictly

increasing in the previous period’s market size, but strictly decreasing in the current period’s

market size. Note that our demand structure differs from that of Rob (1991) and Vettas

(2000). In their models, the demand is perfectly elastic: the demand curve is a horizontal

straight line. This demand structure does not allow us to analyze the role of oligopolistic

interaction, where firms compete in quantities. In contrast, the downward-sloping demand

here allows us to introduce oligopolistic interaction to the model of market diffusion.13

13In addition to the perfectly elastic demand, Rob (1991) and Vettas (2000) assume demand uncertainty and
firms’ learning. If we introduced demand uncertainty into our model, an additional externality associated with
learning the demand would emerge and the analysis would be considerably more complicated.
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2.2 Firms

In this paper, in contrast to Vettas (2000) and Kitamura (2010), firms compete in quantities,

and the output per firm is endogenously determined. For every period, there are incumbents

and a large (infinite) number of identical potential entrants. When potential entrants decide

to enter the market, they must incur a setup costf > 0, which is the initial investment

in purchases such as machines. We assume that machines are perfectly durable and can

be operated in an environment of constant returns to scale for all periods. To simplify the

analysis, we assume that the scrap value of machines is zero. Letc > 0 be the marginal

production cost andβ ∈ [0,1) denote the discount factor.

2.3 Timing

For each period, a period game consists of a two-stage game, as follows.

2.3.1 Stage 1: Entry Decision

In Stage 1, potential entrants decide whether to enter the market.14 If they enter the market

with setup costf , they compete with incumbents in Stage 2 and earn profits. If they do not,

their profits for the period are zero. LetNt be the number of incumbents at periodt and letnt

be the number of new entrants in Stage 1 of periodt. By definition, we havent = Nt − Nt−1

for all t = 1,2, .... Assuming thatN0 = 0, we haveNt =
∑t
τ=1 nτ. If the demand is small and

the fixed cost is high or the discount factor is low, then entry may not occur in the first period.

The following assumption guarantees first-period entry:

Assumption 2.
(a− c)2

4b
> (1− β) f . (3)

Assumption 2 implies that the number of the first-period entrants is larger than one, i.e.,

N1 > 1. If inequality (3) does not hold, the first-period entry is not profitable and does not

occur. Because this condition holds for all following periods, the entry never occurs.

14Because the setup cost is not recoverable, and the equilibrium operating profits become nonnegative in the
environment of linear demand and constant marginal cost, exit never occurs in this model.
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2.3.2 Stage 2: Production

In Stage 2, firms in the market compete in quantities to maximize operating profits for the

period. We assume that the equilibrium in this stage is symmetric. Letqi
t be the equilibrium

output of firm i at periodt. We also definept as the equilibrium price in periodt andπi
t =

[pt − c]qi
t as the equilibrium operating profits of firmi in periodt.

3 Equilibrium

This section provides the characterization of free-entry equilibrium and socially optimal dif-

fusion. We first characterize the post-entry equilibrium at periodt given the number of in-

cumbentsNt−1 and the number of new entrantsnt in 3.1. Then, we characterize free-entry

equilibrium and socially optimal diffusion in 3.2 and 3.3, respectively.

3.1 Post-Entry Equilibrium

Given the number of firms in Stage 1, firms in Stage 2 compete in quantities and choose

their output levels to maximize their profits for the period,πi
t.

15 The post-entry equilibrium is

determined by the market-clearing condition, the firms’ profit-maximizing behavior, and the

symmetry property. Now, we define the post-entry equilibrium as follows:

Definition 1. GivenNt−1 andnt, the post-entry equilibrium consists of sequences{Qt, pt,qi
t}

that simultaneously satisfy the following conditions:

1. Firm output is symmetric for allt = 1,2, ...:

qi
t = qt for all i. (4)

2. The market clears for allt = 1,2, ...:

Qt = Ntqt. (5)

15If we assumed that firms decide their output levels to maximize the discounted sum of future operating
profits, then the analysis of socially optimal diffusion would become considerably more complicated while the
results in the free-entry equilibrium are unchanged. See also footnotes 18 and 20.
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3. The market price is determined by the inverse demand for allt = 1,2, ...:

pt = P
(
Qt−1,Qt

)
. (6)

4. Each firm’s output is the best response to other firms’ outputs for allt = 1,2, ...:

qi
t = arg max

qi
t≥0

[
P
(
Nt−1qt−1, (Nt − 1)qt + qi

t

)
− c

]
qi

t for all i. (7)

According to the above definition, we identify the properties of the post-entry stage equi-

librium. From equation (2) and equilibrium conditions (4)–(7), the output per firm becomes:

qt =
1

Nt + 1
a + σ(Nt−1qt−1) − c

b
. (8)

Then, we obtain the post-entry equilibrium price and operating profits per firm, respectively:

pt = c +
a + σ(Nt−1qt−1) − c

Nt + 1
, (9)

and

πt =
1

(Nt + 1)2
(a + σ(Nt−1qt−1) − c)2

b
. (10)

It is easy to see that the post-entry equilibrium has the standard properties of the Cournot–

Nash equilibrium under linear demand and constant marginal cost. For the analysis in the

following sections, we summarize these properties of post-entry equilibrium as follows:

Lemma 1. The post-entry equilibrium has the following properties:

1. Aggregate output is strictly increasing in the number of firms and is bounded:

∂Ntqt

∂Nt
> 0 and lim

Nt→∞
Ntqt =

a + σ(Nt−1qt−1) − c
b

. (11)

2. Output per firm is strictly decreasing in the number of firms and converges to zero:

∂qt

∂Nt
< 0 and lim

Nt→∞
qt = 0. (12)

3. Equilibrium prices (operating profits per firm) are strictly decreasing in the number of

firms and converge to the marginal cost (zero):

∂pt

∂Nt
< 0, lim

Nt→∞
pt = c and

∂πt

∂Nt
< 0, lim

Nt→∞
πt = 0. (13)
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One of the significant properties of the post-entry equilibrium is that the entry generates

an externality effect called a business-stealing effect; i.e., the new entry decreases the incum-

bents’ output levels. As proved in Mankiw and Whinston (1986) and Suzumura and Kiyono

(1987), this effect makes the free-entry equilibrium socially excessive in the static model. In

the previous literature on market diffusion, the output per firm is exogenously determined

under free entry. Therefore, the second property of Lemma 1 does not hold. This leads to

different welfare implications for market diffusion.

3.2 Free-Entry Diffusion

In this subsection, we characterize the free-entry diffusion given the post-entry equilibrium

outcome derived in 3.1. Letne
t be the free-entry equilibrium number of new entrants at

periodt, and letNe
t be the free-entry equilibrium number of firms at periodt. For simplicity,

we treatN as a continuous variable. We defineR(Nt−1,nt) as the discounted sum of future

operating profits at periodt, which is composed of the direct operating profits at periodt and

the discounted future operating profits,16 i.e.:

R(Nt−1,nt) = πt + βR(Nt,nt+1), (14)

for all t = 1,2, .... In Stage 1 of each period, potential entrants enter the market as long as

the present value of net profits is positive, i.e.,R(Nt−1,nt) > f . Therefore, in each period, the

number of new entrants satisfies the zero-profit condition, defined as follows:17

Definition 2. Given the post-entry equilibrium outcome, the free-entry equilibrium consists

of the sequence{ne
t }∞0 , which satisfies the zero-profit condition for all periods, i.e.:

f ≥ R(Ne
t−1,n

e
t ), with equality ifne

t > 0. (15)

16Because entrants and incumbents in Stage 2 are symmetric at each period, and the horizon is infinite, they
have the same present value of their future revenue streams.

17One of the important factors for the existence of market diffusion is that the horizon is infinite. When the
horizon is infinite, the zero-profit condition holds with a positive number of entrants at each period. In contrast,
if the horizon is finite, incumbents and entrants are not symmetric. To hold the zero-profit condition, the entrants
need to achieve higher profits than the incumbents, and the number of incumbents should decrease. Therefore,
under a finite horizon, the zero-profit condition does not lead to a positive number of entrants at each period.
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According to the above definition, the properties of the free-entry equilibrium under the

transition process are identified. From the zero-profit condition (15), the operating profits in

the free-entry equilibrium becomeπe
t = (1− β) f for each period. In addition, from equations

(9) and (10), the price in the free-entry equilibrium becomespe
t = c +

√
(1− β)b f for all

periods. These properties imply that both the equilibrium profits and the equilibrium price

are constant. By substituting equation (10) into the zero-profit condition (15), the market

diffusion under free-entry equilibrium is summarized as follows:18

Proposition 1. Let Ne be the steady-state number of firms in the free-entry equilibrium that

satisfiesNe
t = Ne

t+1 = Ne. Suppose thatNe
0 = 0. Then, for allt = 1,2, ..., there exists a unique

ne
t > 0 that satisfies (15), while the free-entry equilibrium output per firm,qe

t , and the number

of firms satisfy the following conditions:

1. The output per firm is constant over time:

qe
t =

√
(1− β) f

b
, for all t = 1,2, .... (16)

2. The number of firms is an increasing function of the number in the previous period:

Ne
t =

a + σ
(
Ne

t−1

√
(1−β) f

b

)
− c

√
(1− β)b f

− 1, for all t = 1,2, ..., (17)

and it satisfiesNe
t ∈ [0,Ne] for all t = 1,2, ..., and monotonicity,Ne

0 = 0 andNe
t → Ne

ast → ∞.

The dynamical system of equation (17) is summarized in Figure 1. Figure 1 shows that

we haveσ′(Ne
√

(1− β) f /
√

b)/b < 1 in the steady state.19 This indicates that the number of

firms under free entry does not reach the steady state as long as the degree of consumption

externality is strong enough.

[Figure 1 about here.]

18In this paper, we assume that firms choose their output levels to maximize their profits for the period.
However, even if we assumed that firms maximize the discounted sum of future operating profits, our results
in the free-entry equilibrium are unchanged. This is because the free-entry equilibrium continuation profit is
always equal tof due to the zero-profit condition and this does not depend on today’s output level.

19Note that by differentiating (17) with respect toNe
t−1, we have∂Ne

t /∂Ne
t−1 = σ′(Ne

t−1

√
(1− β) f /

√
b)/b.
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The constant values of the equilibrium output, the profits per firm, and the equilibrium

price have several implications. First, the time pattern of the free-entry equilibrium number

of firms coincides with that of the aggregate output. In addition, the constant equilibrium

price implies that the firms under free entry act as if they were price takers whose output

levels were exogenously determined. Therefore, the free-entry equilibrium in this paper has

basically the same properties as in the previous literature on market diffusion.

3.3 Socially Optimal Diffusion

In this subsection, we derive the socially optimal diffusion. We consider a “second-best”

social planner, who can control the number of firms entering the market, but not their post-

entry output or price levels. Therefore, a social planner sets the number of firms to maximize

the social welfare, given the post-entry equilibrium outcome derived in 3.1.20 Let no
t be the

number of new entrants andNo
t be the number of firms set by the planner at periodt, and

let qo
t be the output per firm under socially optimal planning at periodt. Now, we define the

social optimum as follows:

Definition 3. Given the post-entry equilibrium outcome, socially optimal planning satisfies

the following Bellman equation:

V(Nt−1) = max
nt≥0

{∫ (Nt−1+nt)qt

0
[a + σ(Nt−1qt−1) − bQ]dQ

− (Nt−1 + nt)qtc− nt f + βV(Nt−1 + nt)
}
,

(18)

subject to equation (8).

The interpretation of equation (18) is as follows. The present value of the sum of future

welfare is current welfare plus the discounted next-period value of the sum of future welfare.

We now characterize the socially optimal diffusion as follows:

20If firms were assumed to choose their output levels to maximize the discounted sum of future operating
profits, instead of current profits as we assume in this paper, then the social planner’s problem would be con-
siderably complicated. Because forward-looking firms take into account how their output levels affect the level
of new entry set by the social planner in the future periods, the firms’ equilibrium outputs in each period would
be different from the stage game Nash equilibrium represented by equation (8). To keep the model tractable
and facilitate a clear comparison between free-entry and socially optimal diffusion, we assume that firms act
myopically in the quantity-setting stage.
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Proposition 2. Suppose thatNo
0 = 0. Then, the optimal diffusion path satisfies the following

second-order difference equation:

f =R(No
t−1,n

o
t )

+ [po
t − c]No

t

∂qo
t

∂nt

+ βσ′(No
t qo

t )
[
qo

t + No
t

∂qo
t

∂nt

]
No

t+1q
o
t+1

+ β[po
t+1 − c]No

t+1

[∂qo
t+1

∂Nt
− ∂qo

t+1

∂nt+1

]
,

(19)

whereR(Nt−1,nt) = πt + β f .

Equation (19) shows that the marginal expansion cost is equal to the marginal social

benefit, which is composed of four elements. The first term on the right-hand side of equation

(19) is the present value of future operating profits. The second term is the welfare loss from

the business-stealing effect, which is captured as∂qo
t /∂nt: the new entry reduces the current

output per firm. This term is regarded as the current loss: increasing current entry reduces the

social welfare. The third term is the future benefit from the demand-shift effect, in which an

increase in the number of firms directly raises the demand in the subsequent period. The last

term is the future benefit following the business-creating effect,∂qo
t+1/∂Nt − ∂qo

t+1/∂nt+1: the

new entry indirectly raises the output per firm in the subsequent period through the demand-

shift effect.

The last three terms represent the intertemporal trade-off. The current loss gives the

planner an incentive to restrict the number of firms. However, the planner has a competing

incentive to raise the number of firms because of future benefits. The optimal planning is

determined by the magnitudes of these losses and benefits.21

Note that the new dimension here beyond the previous literature is the existence of the

intertemporal trade-off in the optimal planning. This trade-off has not been addressed in the

previous literature concerned with market diffusion. In past works, the business-stealing and

21In socially optimal diffusion, in contrast to free-entry diffusion, the number of firms in the first period
depends on, and is positively related to, the degree of intertemporal consumption externality. Therefore, the
strong externality effect leads to an initially large number of new entrants in socially optimal diffusion. This
makes the S-shaped time pattern more difficult to obtain than in free-entry diffusion.
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business-creating effects are not considered, although there exists a benefit from internalizing

intertemporal externalities that are engines of the market growth.22

4 Social Inefficiency and Time Dependence

This section analyzes the social inefficiency of free-entry diffusion by comparison with so-

cially optimal diffusion. Note that the only difference between free-entry diffusion and so-

cially optimal diffusion is whether the intertemporal trade-off exists. We first explore the

social inefficiency of free-entry diffusion when the market is in the growing phase in 4.1.

Then, we examine the case when the market is in the mature phase in 4.2.

4.1 Social Inefficiency in the Growing Phase

To begin the analysis, we rewrite equation (19). Let the current loss of increasing the number

of firms at periodt be µ(No
t−1,N

o
t ), and let the future benefit of increasing the number of

firms at periodt beλ(No
t−1,N

o
t ,N

o
t+1). Then, we rewrite equation (19) with the linear demand

function as follows:

(1− β) f = π(No
t−1,N

o
t ) − µ(No

t−1,N
o
t ) + λ(No

t−1,N
o
t ,N

o
t+1), (20)

where

π(Nt−1,Nt) =
1

(Nt + 1)2
(a + σ(Nt−1qt−1) − c)2

b
, (21)

µ(Nt−1,Nt) =
Nt

Nt + 1
π(Nt−1,Nt), (22)

λ(Nt−1,Nt,Nt+1) =
βσ′(Ntqt)

b
Nt+1qt+1

Ntqt

Nt+1 + 2
Nt+1 + 1

µ(Nt−1,Nt). (23)

Note that the free-entry diffusion satisfies (1− β) f = π(Ne
t−1,N

e
t ) for all t = 1,2, .... There-

fore, the difference in the number of firms depends on the magnitude of the current loss,

µ(No
t−1,N

o
t ), and the magnitude of the future benefit,λ(No

t−1,N
o
t ,N

o
t+1), which depends on the

demand-shift and business-creating effects.

22Because the output per firm is exogenously determined in this literature,∂qo
t /∂nt = 0 and∂qo

t /∂Nt−1 = 0
for all t = 1,2, .... It is easy to see that the business-stealing and business-creating effects in equation (20) are
absent, but the future benefit from the demand-shift effect still exists.

13



Furthermore, the future benefit at periodt is determined by the degree of discounting,β,

the degree of consumption externality,σ′(No
t qo

t ), the growth rate of the market size, [No
t+1q

o
t+1−

No
t qo

t ]/N
o
t qo

t , and the number of firms at periodt + 1, No
t+1. By comparing equations (22) and

(23), it is seen that future benefits are produced by a higher discount factor, a stronger degree

of consumption externality, higher market growth, and a smaller number of firms. In this

environment, free entry leads to a socially insufficient number of firms:

Proposition 3. Suppose thatµ(No
t−1,N

o
t ) ≷ λ(No

t−1,N
o
t ,N

o
t+1), i.e.:

1 ≷
βσ′(No

t qo
t )

b

No
t+1q

o
t+1

No
t qo

t

No
t+1 + 2

No
t+1 + 1

. (24)

Then, for allNe
t−1 R No

t−1, we haveNe
t ≷ No

t .

Note that we haveNe
0 = No

0 = 0. Therefore, Proposition 3 implies that, at Period 1, the

free-entry equilibrium number of firms becomes socially insufficient, Ne
1 < No

1, when the

future benefit is larger than the current loss,µ(No
0,N

o
1) < λ(No

0,N
o
1,N

o
2).

In addition, by interpreting Proposition 3 differently, we see that the free-entry equilib-

rium number of firms is more likely to be socially insufficient at early periods. At early

periods: (a) the degree of consumption externality is strong;23 (b) the growth rate of the mar-

ket size is high;24 and (c) the number of firms is small. These elements increase the value of

the right-hand side of inequality (24).

4.2 Social Inefficiency in the Mature Phase

Next, we turn to the analysis of the mature phase. LetNo (qo) denote the steady-state number

of firms (output per firm) in the socially optimal diffusion that satisfiesNo
t = No

t+1 = No

(qo
t = qo

t+1 = qo). Then, in the steady state, we can rewrite equations (20)–(23) as follows:

(1− β) f = π(No) − µ(No) + λ(No), (25)

where

π(N) =
(a + σ(Nq) − c)2

(N + 1)2b
, (26)

23Note that the right-hand side of (24) is larger than 1 as long asβσ′(No
t qo

t )/b ≥ 1.
24Note that insufficient entrants appear even ifβσ′(No

t qo
t )/b < 1. This occurs if the growth rate of the market

is high enough and the number of firms is small enough.
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µ(N) =
N

N + 1
π(N), (27)

λ(N) =
βσ′(Nq)

b
N + 2
N + 1

µ(N). (28)

Note that (1− β) f = π(Ne) holds in free-entry diffusion. Thus, as in the analysis of the

growing phase, the difference in the number of firms depends on the magnitudes of the current

loss,µ(No), and the future benefit,λ(No). As the market becomes mature, the degree of

consumption externality and the growth rate of the market size become lower, and the number

of firms operating in the market increases. Compared with the growing phase, these changes

in the market environment lower the magnitude of the future benefit relative to the current

loss, i.e.,λ(No
t−1,N

o
t ,N

o
t+1)/µ(No

t−1,N
o
t ) ≥ λ(No)/µ(No).25 More importantly, the following

lemma shows that the future benefit becomes smaller than the current loss in the steady state:

Lemma 2. In the steady state, the future benefit becomes smaller than the current loss, i.e.,

µ(No) > λ(No). More precisely, we have:

1 >
βσ′(Noqo)

b
No + 2
No + 1

. (30)

Lemma 2 implies that, in the steady state, the social benefit of increasing the number of

firms, π(N) − µ(N) + λ(N), becomes smaller than the private benefit of firms entering the

market,π(N). Therefore, it is optimal for the social planner to slow down the rate of new

firms entering as the market becomes mature. The following proposition shows that, in the

steady state, the free-entry equilibrium number of firms is socially excessive:

Proposition 4. In the mature phase (steady state), the free-entry equilibrium number of firms

is larger than the socially optimal number of firms, i.e.,Ne > No.

From Propositions 3 and 4, we conclude that the free-entry equilibrium number of firms

tends to be initially insufficient but eventually excessive.26 This is in contrast to the results of

25By comparing equations (23) and (28), it is easy to see that:

λ(No
t−1,N

o
t ,N

o
t+1)

µ(No
t−1,N

o
t )

=
βσ′(No

t qo
t )

b

No
t+1qo

t+1

No
t qo

t

No
t+1 + 2

No
t+1 + 1

≥ βσ′(Noqo)
b

No + 2
No + 1

=
λ(No)
µ(No)

, (29)

becauseσ′′(·) < 0, ∂Ntqt/∂Nt > 0, andNo
t ≤ No

t+1 ≤ No.
26If we assumed a “first-best” social planner, who could control both the number of firms and their output

or price levels, the socially optimal number of firms would be one because of economies of scale. In contrast,
the equilibrium number of firms under free entry is larger than one by Assumption 2. Therefore, the “first-best
excess-entry theorem” in Suzumura and Kiyono (1987) still holds in our dynamic setting.
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previous studies, where the number of firms in the free-entry diffusion is socially insufficient

over time. The second and third columns of Table 1 and Figure 2 present a numerical example

in which the number of firms under free entry is initially insufficient (from Period 1 to Period

3) but eventually excessive (from Period 4 onward).27

[Table 1 about here.]

[Figure 2 about here.]

4.3 Time Pattern and Social Inefficiency

In this subsection, we first examine the time pattern of free-entry diffusion and derive the

condition under which S-shaped diffusion arises under free entry. Then we discuss the rela-

tionship between the nature of inefficiency and time pattern of free-entry diffusion.

First, we show that the time pattern of free-entry diffusion becomes S-shaped (initially

convex and eventually concave) when the externality effect is initially strong enough. Note

that the degree of consumption externality decreases as the market size increases. This makes

the number of firms under free entry monotonically converge to the steady state, and the

time pattern eventually becomes concave. Therefore, the time pattern of free-entry diffusion

becomes S-shaped if and only if the number of new entrants initially increases.

Note that under free entry, the numbers of new entrants in the first and second periods

arene
1 = Ne

1 = [a − c]/
√

(1− β)b f − 1 andne
2 = Ne

2 − Ne
1 = σ(Ne

1qe
1)/

√
(1− β)b f , respec-

tively. While the former does not depend on the consumption externality, the latter does. This

implies that the strong consumption externality effect leads to the high market growth from

Period 1 to Period 2 and the convex time pattern of market diffusion in the early periods:

Proposition 5. The time pattern of free-entry diffusion becomes S-shaped if and only if:

a− c−
√

(1− β)b f < σ
(a− c− √

(1− β)b f

b

)
. (31)

The mechanism of the initial convexity of free-entry diffusion here is the same as that in

Vettas (2000) and Kitamura (2010), in which firms are small atomistic price takers. Therefore,

27In this example, the steady state of the socially optimal diffusion path is locally saddle stable.
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our result establishes that the fundamental mechanism of S-shaped diffusion clarified in those

papers is robust to considerations of oligopolistic interaction among firms.

From inequality (31) and the properties ofσ(·), it is easy to see that low initial market size

contributes to the initial convexity of free-entry diffusion. More importantly, from Figure 1,

we haveσ′(Ne
t−1q

e
t−1)/b > ne

t+1/n
e
t for all t = 1,2, .... This implies that the free-entry diffusion

up to Periodt + 1 has a convex time pattern only if a degree of consumption externality is

sufficiently strong such thatσ′(Ne
t−1q

e
t−1)/b > 1.28

Next, we explore the relationship between time pattern and social inefficiency of free-

entry diffusion. Proposition 3 shows that the number of firms under free entry in the initial

periods is socially insufficient for a strong degree of consumption externality. In addition,

Proposition 5 shows that the initial convexity of free-entry diffusion arises for a strong degree

of consumption externality. The following proposition summarizes the relationship between

the convex time pattern and insufficient entry in the initial phase of free-entry diffusion:

Proposition 6. If the time pattern of free-entry diffusion up to Period 3 is sufficiently convex

so that:
ne

3

ne
2

≥ 1
β
, (32)

the number of firms under free entry in the first period is socially insufficient, i.e.,Ne
1 < No

1.

Note that the condition (31) alone (i.e., the convexity from Period 0 to Period 2) does not

guarantee the insufficient entry in the initial phase of free-entry diffusion. This is because

the large value ofσ(Ne
1qe

1) does not necessarily imply the large value ofσ′(Ne
1qe

1)/b. Re-

calling that we eventually observe concave time pattern and excessive entry under free-entry

diffusion, the result of Proposition 6 implies that S-shaped diffusion can be a signal that the

number of firms under free entry is initially insufficient, but eventually excessive.29

28From Figure 1, it can also be found thatne
t /n

e
t−1 > σ′(Ne

t−1qe
t−1)/b for all t = 2,3, .... This implies that the

free-entry diffusion from Periodt − 2 to Periodt has a convex time pattern ifσ′(Ne
t−1qe

t−1)/b ≥ 1.
29There is also a similar relationship between consumer surplus at each period and S-shaped diffusion. In our

model, the consumer surplus at each period is calculated asb(Ntqt)2/2. Because the consumer surplus at each
period is increasing in the number of firms at each period, the consumer surplus under free-entry diffusion tends
to be smaller (larger) than under socially optimal diffusion if the number of firms under free entry is socially
insufficient (excessive). Therefore, the S-shaped diffusion can also be a signal that the consumer surplus under
free-entry diffusion is initially smaller, but eventually larger than under socially optimal diffusion.
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The results in this section imply that oligopolistic interaction is an important factor for

the discussion of entry regulation policies in new industries where the S-shaped diffusion has

already been observed in other countries. The entry regulation policies in such industries

should be changed depending on the phase of market growth: entry should be initially en-

couraged, but eventually discouraged. Therefore, the regulatory authority can improve social

welfare by subsidizing early entry and taxing late entry. For the numerical example used

above, the optimal entry subsidy/tax schedule is computed as shown in the fourth column of

Table 1 and Figure 3.30 According to them, we can find that while a subsidy should be given

in Periods 1 and 2 for entry promotion, a tax should be imposed from Period 3 onward for

entry restriction.31

[Figure 3 about here.]

5 Concluding Remarks

This paper models market diffusion in the presence of oligopolistic interaction. In contrast to

the previous literature on market diffusion, not only the number of new entrants but also the

output per firm is endogenously determined by the oligopolistic interaction. The major result

reported here is that the nature of the inefficiency under free entry can depend on the degree

of market maturity and that an S-shaped time pattern can be a signal that the number of firms

under free entry is initially insufficient but eventually excessive.

Our result provides important policy implications for entry regulations in new industries

where S-shaped diffusion has already been observed in other countries. Our result implies

that entry should be initially encouraged but eventually discouraged. It may be possible to

30The optimal entry subsidy or tax is equal to the difference between the right-hand side of equation (15) and
the right-hand side of equation (19), i.e., equal to the last three terms of equation (19). If these terms are positive
(negative), then a subsidy (tax) should be given (imposed).

31From Table 1, it can be seen that, in Period 3, although the number of firms under free entry is socially
insufficient, a tax is imposed on new entrants under an optimal subsidy/tax schedule. Note that, under the
optimal subsidy/tax schedule, when potential entrants decide whether to enter the market at the beginning of
Period 3, the number of incumbent firms is notNe

2, but No
2. GivenN2 = No

2, the free-entry equilibrium number
of firms in Period 3 becomes 72.11, which is larger thanNo

3 = 71.59. Therefore, under the optimal subsidy/tax
scheme, a social planner has an incentive to impose an entry tax to discourage new entry in Period 3.
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improve social welfare by giving subsidies to early entrants but taxing late entrants without

violating intertemporally balanced budget constraints.

The result of this paper might be important for the Japanese generic drug market.32 In

Japan, the use of generic drugs is substantially lower than in other developed countries, and

the Japanese government has recently taken various policy measures for promoting the use of

generic drugs.33 Our result suggests that, while the government’s recent policy is reasonable

for the moment, it should be cautious of the possibility for excess entry in the future.

There are several issues requiring future research. First, as the number of firms becomes

stable, there is a possibility of market restructuring. An example of market restructuring

is horizontal mergers. If there exist cost synergies, market maturity may lead to horizontal

mergers that reduce the number of firms and improve welfare (Davidson and Mukherjee,

2007). This may explain the shakeout of firms corresponding to Stage 3 to Stage 5 in Gort and

Klepper (1982).34 Second, there is concern about other intertemporal externalities. Although

we use only intertemporal consumption externalities here, we predict that our results would

hold even under other intertemporal externalities.

Finally, we assume that firms act myopically in the quantity-setting stage; i.e., firms

choose their output levels to maximize their period profits. This assumption makes the model

very tractable and enables us to provide a clear comparison between free-entry and socially

optimal diffusion. Although our approach seems like a natural first step to analyze market

diffusion with oligopolistic interaction among firms, it would be very important to allow for

forward-looking firms that decide their output levels to maximize the discounted sum of fu-

32In the (generic) drug markets of the United States, several features are observed that are consistent with the
focus of this paper. First, an S-shaped time pattern of the number of generic entrants is actually observed (Ching,
2010). Second, empirical evidence is found for the importance of intertemporal consumption externalities
(Berndt, Pindyck, and Azoulay, 2003). Finally, some papers point out the significance of entry costs and the
possible existence of the “business-stealing effect” in this market. Scott Morton (1999) mentions that the costs
of obtaining entry approval are significant for generic entrants. In addition, using the data of drugs that went off-
patent during 1976–1987, Caves, Whinston, and Hurwitz (1991) empirically show the relatively small increases
in the overall generic market share achieved as the number of generic competitors increases, and mention the
possibility of excess entry in this market.

33In 2009, the quantity-based share of generic drugs in Japan was only 20.3% (Japan Generic Medicines
Association, 2012), while those for the United States, Canada, the United Kingdom, and Germany were above
60% (based on analysis of the IMS Health MIDAS Market Segmentation data by Sawai Pharmaceutical (2011)).

34Several papers develop theoretical models that explain the shakeout of firms. See, e.g., Jovanovic and
Macdonald (1994), Horvath, Schivardi, and Woywode (2001), and Hanazono and Yang (2009).
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ture operating profits. We hope that our study helps researchers to address these issues.

Appendix

Proof of Proposition 1

We first guess thatne
t > 0 for all Ne

t−1 ∈ [0,Ne). Then,R(Ne
t−1,n

e
t ) = f for all Ne

t−1 ∈ [0,Ne).

By solving (1− β) f = π(Ne
t−1,N

e
t ) with respect toNe

t , we have:

Ne
t = N(Ne

t−1) =
a + σ(Ne

t−1q
e
t−1) − c√

(1− β)b f
− 1, (33)

for all t = 1,2, .... Together with equation (8), we obtain equations (16) and (17). From

the properties ofσ(·), we haveNe
1 = N(Ne

0) = [a − c]/
√

(1− β)b f − 1 > 0, N′(Ne
t−1) > 0,

N′′(Ne
t−1) < 0, limNe

t−1→0 N′(Ne
t−1) = ∞, and limNe

t−1→∞ N′(Ne
t−1) = 0. Therefore,N(Ne

t−1)

crosses theNe
t = Ne

t−1 line only once, and there is a unique steady state,Ne. We finally verify

thatne
t > 0. From Figure 1, it is easy to see that we havene

t > 0 for all Ne
t−1 ∈ [0,Ne).

Q.E.D.

Proof of Proposition 2

Differentiating the right-hand side of (18) with respect tont and rearranging, we have the

following first-order condition:

f = [pt − c]

[
qt + Nt

∂qt

∂nt

]
+ βV′(Nt). (34)

Using the envelope theorem, we obtain:

V′(Nt−1) =σ′(Nt−1qt−1)

[
qt−1 + Nt−1

∂qt−1

∂Nt−1

]
Ntqt

+ [pt − c]

[
qt + Nt

∂qt

∂Nt−1

]
+ βV′(Nt).

(35)

Then, from equations (34) and (35), we can expressV′(Nt−1) as follows:

V′(Nt−1) =σ′(Nt−1qt−1)

[
qt−1 + Nt−1

∂qt−1

∂Nt−1

]
Ntqt

+ [pt − c]Nt

[
∂qt

∂Nt−1
− ∂qt

∂nt

]
+ f .

(36)
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Taking equation (36) one period forward, substituting into the right-hand side of the first-

order condition (34), and rearranging terms, we finally obtain the equation (19).

Q.E.D.

Proof of Proposition 3

We prove the first case. Let 1> βσ′(No
t qo

t )
b

No
t+1qo

t+1
No

t qo
t

No
t+1+2

No
t+1+1 andNe

t−1 ≥ No
t−1. Suppose in negation that

Ne
t ≤ No

t . Then, from the properties ofπ(Nt−1,Nt), we would have the following inequalities:

π(Ne
t−1,N

e
t ) ≥ π(Ne

t−1,N
o
t ) ≥ π(No

t−1,N
o
t ). (37)

Becauseπ(Ne
t−1,N

e
t ) = (1 − β) f in the free-entry equilibrium, inequalities (37) imply that

π(No
t−1,N

o
t ) ≤ (1 − β) f . This is a contradiction to equation (20) becauseµ(No

t−1,N
o
t ) >

λ(No
t−1,N

o
t ,N

o
t+1). In the same way, we can prove the second case.

Q.E.D.

Proof of Lemma 2

Suppose in negation that:

1 ≤ βσ′(Noqo)
b

No + 2
No + 1

. (38)

Then, we would have the following inequalities:

Noqo ≤ βσ′(Noqo)Noqo

b
No + 2
No + 1

<
σ(Noqo)

b
No + 2
No + 1

, (39)

where the last inequality follows from the properties ofσ(·). By substitutingqo = (a +

σ(Noqo) − c)/(b(No + 1)) into inequality (39), we have

Noqo <
σ(Noqo)

b
No + 2
No + 1

⇔ No

[
a + σ(Noqo) − c

b(No + 1)

]
<
σ(Noqo)

b
No + 2
No + 1

(40)

⇔ No[a− c]
2

< σ(Noqo). (41)

By using inequality (41), we have:

π(No) =
(a + σ(Noqo) − c)2

b(No + 1)2
>

(a + No[a−c]
2 − c)2

b(No + 1)2

=

[
No + 2
No + 1

]2 (a− c)2

4b
>

(a− c)2

4b
.

(42)
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Note that inequality (38) implies thatµ(No) ≤ λ(No). Then, together with inequality (42) and

Assumption 2 (inequality (3)), we have:

π(No) − µ(No) + λ(No) >
(a− c)2

4b
> (1− β) f . (43)

However, this contradicts the equilibrium condition (25). Therefore, inequality (30) holds.

Q.E.D.

Proof of Proposition 4

Let q(N) be the steady-state output per firm in the post-entry equilibrium givenN. As men-

tioned in Subsection 3.2, we haveσ′(Neqe)/b < 1 in the steady state of free-entry diffusion,

whereqe is the equilibrium level of steady-state output per firm in the free-entry diffusion.

Hence, we haveNe > N̂, whereN̂ is such thatσ′(N̂q(N̂))/b = 1. To begin the proof of

Proposition 4, we first prove the following lemma:

Lemma 3. Let Q(N) = Nq(N). Then, forN ∈ (N̂,∞),

1. Q′(N)→ 0 andQ(N)→ m ∈ (0,∞) asN→ ∞.

2. π(N) is strictly decreasing inN and approaches zero asN becomes larger:π′(N) < 0

and limN→∞ π(N) = 0.

Proof of Lemma 3

1. By differentiatingQ(N) with respect toN, we have:

Q′(N) =
[1 − N

N+1]q(N)

1− N
N+1

σ′(Q(N))
b

> 0, (44)
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for N ∈ (N̂,∞). It is easy to see thatQ′(N)→ 0 asN→ ∞. Then, by using L’Ĥopital’s

rule, we obtain:

lim
N→∞

Q(N) = lim
N→∞

{a + σ(Q(N)) − c
b

+
σ′(Q(N))NQ′(N)

b

}

= lim
N→∞

{a + σ(Q(N)) − c
b

}
+ lim

N→∞

{σ′(Q(N))
b

[1 − N
N+1]Q(N)

1− N
N+1

σ′(Q(N))
b

}

= lim
N→∞

{[a + σ(Q(N)) − c
b

][
1 +

σ′(Q(N))
b

[1 − N
N+1] N

N+1

1− N
N+1

σ′(Q(N))
b

]}

= lim
N→∞

{a + σ(Q(N)) − c
b

}
.

(45)

Sinceσ(·) satisfies the Inada condition, anda > b, there exists a uniquem ∈ (0,∞)

such thatm = [a + σ(m) − c]/b.

2. By the properties ofQ(N), it is easy to see thatπ(N) → 0 asN → ∞. Next, we show

thatπ(N) is strictly decreasing inN. By differentiatingπ(N), we have:

π′(N) = −2π(N)[b− σ′(Q(N))]
N[b− σ′(Q(N))] + b

< 0, (46)

for N ∈ (N̂,∞). Thus,π(N) is strictly decreasing inN.

This completes the proof of Lemma 3.

Q.E.D.

Now, we turn to the proof of Proposition 4. Suppose in negation thatNe ≤ No. Then,

becauseπ(N) is strictly decreasing inN ∈ (N̂,∞) by Lemma 3, we have the following in-

equality:

π(Ne) ≥ π(No). (47)

SinceNe satisfiesπ(Ne) = (1−β) f , we haveπ(No) ≤ (1−β) f . However, this is a contradiction

to (25) becauseµ(No) > λ(No) by Lemma 2. Therefore, we haveNe > No.

Q.E.D.
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Proof of Proposition 5

From Figure 1, the time pattern of free entry eventually becomes concave. Therefore, it

becomes S-shaped if and only ifne
1 < ne

2. From equation (17), we obtain inequality (31).

Q.E.D.

Proof of Proposition 6

Note that, from Figure 1 and the strict concavity ofσ(·), we have

σ′
(
Ne

t−1q
e
t−1

)

b
>

ne
t+1

ne
t

(48)

for all t = 1,2, .... Then, if the time pattern of free-entry diffusion up to Period 3 is sufficiently

convex so that inequality (32) holds, we obtain

σ′
(
Ne

1qe
1

)

b
>

ne
3

ne
2

≥ 1
β
. (49)

Now, we show thatNe
1 < No

1 using a proof by contradiction. Suppose in negation thatNe
1 ≥

No
1. Then, becauseN1q1 is increasing inN1 from Lemma 1 andNe

0 = No
0 = 0 by assumption,

we haveNe
1qe

1 ≥ No
1qo

1. Using the concavity ofσ(·) and inequality (49), this implies that

σ′
(
No

1qo
1

)

b
≥
σ′

(
Ne

1qe
1

)

b
>

1
β
. (50)

From this inequality, and the fact that bothNo
2qo

2/N
o
1qo

1 and (No
2 + 2)/(No

2 + 1) are larger than

1, we have
βσ′

(
No

1qo
1

)

b

No
2qo

2

No
1qo

1

No
2 + 2

No
2 + 1

> 1. (51)

Then, together withNe
0 = No

0 = 0, Proposition 3 implies thatNe
1 < No

1. However, this is a

contradiction. Therefore, we haveNe
1 < No

1.

Q.E.D.
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Figure 1: Dynamical system of free-entry diffusion
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Figure 2: The free-entry and the socially optimal paths for a numerical example
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Figure 3: Optimal subsidy/tax schedule for a numerical example
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Table 1: Number of firms and optimal subsidy/tax schedule for a numerical example

Period Free-entry Path Optimal Path Subsidy/Taxa

0 0 0 –
1 4.77 20.68 0.501
2 30.49 48.58 0.295
3 69.77 71.59 -0.007
4 103.10 86.02 -0.257
5 124.29 93.94 -0.412
6 136.01 98.00 -0.498
7 142.05 100.02 -0.541
8 145.07 101.02 -0.563
9 146.55 101.50 -0.574

10 147.27 101.73 -0.579

Note: Fora = 8, b = 0.5, c = 5, f = 18, β = 0.97, and
σ(Qt−1) = 6

√
Qt−1.

a Positive (negative) figures indicate the level of subsidy (tax).
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