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Abstract

This paper�s objective is to design a laboratory experiment to explore the e¤ect of Knightian

uncertainty on a subject�s search behavior in a �nite sequential search model. Our �nding is

that the average search duration is shorter when there is Knightian uncertainty in the sense that

the true point distribution is unknown to subjects, compared to when the point distribution is

known. We also �nd direct evidence that subjects reduce their own reservation point when there

is ambiguity about the point distribution. These results support the implication of Nishimura

and Ozaki (2004). Moreover, ambiguity notably a¤ects the search behavior of risk averse

subjects, but not of either risk neutral or risk prone subjects.

JEL classi�cation: C91, D81

Keywords: experiment, search model, ambiguity, risk attitude, optimal stopping rule

�The authors thank Takanori Adachi, Keiko Aoki, Yasuyo Hamaguchi, Youichiro Higashi, Yoichi Hizen, Chiang

Hui-Yu, Keisuke Kawata and the participants in the 2010 JEA Meeting (Fall), the 2010 International Workshop on

Experimental Economics and Finance, and the 2011 APESA Meeting for their help with experimental design and

implementation and comments. Financial support from MEXT (Grant-in-Aid for Scienti�c Research, No. 20530196)

and GCOE and ISER research grants (Osaka University) are greatly acknowledged. All errors are our responsibility.
yCorrespondence: ISER, Osaka University, 6-1 Mihogaoka, Ibaraki, Osaka, 567-0047, E-mail: sasaki@econ.osaka-

u.ac.jp

1



1 Introduction

Let us consider the situation in which the prospect of labor market conditions in the future is

�uncertain.� In this situation, does an increase in �uncertainty� lengthen or shorten the search

duration of an unemployed worker? In the literature on job search, it is well known that an increase

in risk in the sense of Rothschild and Stiglitz (1971) such as a mean-preserving spread lengthens

an individual�s search duration.1 However, from a di¤erent point of view, it can be also considered

that an increase in �uncertainty�about the prospect of labor market conditions in the future makes

the individual more cautious about the prospect and shortens her or his search duration because

she or he is concerned that more appealing job o¤ers will not be forthcoming. Considering the

notion of Knightian uncertainty or ambiguity that is di¤erentiated from that of risk, Nishimura and

Ozaki (2004) show theoretically that an increase in Knightian uncertainty shortens an individual�s

search duration. It is noted in this paper that Knightian uncertainty and ambiguity are used

interchangeably. The purposes of this paper are �rst to design a laboratory experiment of a �nite

sequential search model with ambiguity in the sense that a point distribution from which a subject

draws is unknown and second, to ascertain whether the result of Nishimura and Ozaki (2004) is

supported experimentally. Similarly to Nishimura and Ozaki (2004), Knightian uncertainty is to

be understood in the sense that the true point distribution is unknown to subjects throughout

this paper. This paper �nds that the presence of Knightian uncertainty shortens subjects�search

duration. Our result is consistent with the prediction of Nishimura and Ozaki (2004).

Knight (1921) points out the importance of the distinction between risk and uncertainty. Knight

(1921) claims that risk is measured by randomness that can be characterized by a unique probability

measure while uncertainty cannot be captured by a unique probability measure. Based on Knight

(1921), Ellsberg (1961) provides some evidence that decision makers prefer to act on known rather

than unknown or vague probabilities.

Ambiguity can be analyzed in the framework of multiple-prior expected utility (MEU) theory.

Gilboa and Schmeidler (1989) axiomatize the MEU theory, showing that a decision maker�s be-

1For a survey of job search models, see Lippman and McCall (1976).
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liefs are captured by a set of probability measures and that her preferences are represented by

the minimum of expected utilities over the set of probability measures. MEU has deepened our

understanding of a decision maker�s behavior under ambiguity.2 Chen, Katu�s�c�ak, and Ozdenoren

(2007) investigate experimentally the e¤ect of Knightian uncertainty on bidding behavior and rev-

enue on the �rst and second price-sealed bid auctions. They �nd that in the �rst price auction,

bids are lower in the presence of Knightian uncertainty and that the �rst price auction generates

signi�cantly higher revenue than the second price auction, regardless of the presence of Knightian

uncertainty.

This paper focuses on the e¤ect of Knightian uncertainty on individual search activity. The

experimental task of testing sequential search models is tractable, so many experimental studies

have been conducted over the past years (Cox and Oaxaca, 1989; Harrison and Morgan, 1990). The

purpose of these past studies was to test the reservation price property in the sequential search

model. Some experimental tasks then deal with the policy e¤ects on search behavior: Boone,

Sadrieh, and van Ours (2009) design a laboratory experiment to test the e¤ect of unemployment

bene�t sanctions on an individual�s search behavior. There is another direction that addresses the

relationship between search behavior and heterogeneous preferences. Schunk (2009) �nds that the

search model with loss aversion, rather than with risk aversion, is more suitable for the search

behavior of a subject in the laboratory. One of the recent topics in this �eld is to explore why

subjects stop searching earlier than the theoretically optimal level (Schunk and Winter, 2009). Our

experimental task focuses on the e¤ect of information available for the search activity on a subject�s

search behavior. Our experiment can contribute to understanding the role of information on the

wage distribution from which an individual worker draws randomly during her search activity.

It is notable that our experiment designs two search methods where recall is not allowed. In

the �rst method, a subject decides either to accept or to reject every time a point is drawn by a

2For example, see Epstein and Wang (1994). In a closely related paper, Schmeidler (1989) axiomatizes Choquet

expected utility (CEU) theory and shows that decision maker�s beliefs are captured by a nonadditive measure and

her preferences are represented by the Choquet integral. For applications of CEU, see Dow and Werlang (1992),

Nishimura and Ozaki (2004), or Asano (2006).
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computer, while in the second method, the subject ex ante commits to her reservation points for

all rounds subjectively prior to starting a game and then begins to search, based on a list of these

reservation points. The main bene�t of the second method is that we can explicitly observe a long

trend in the reservation point over all the rounds that is usually unobservable in empirical studies.

Because recall in search activity is not allowed in this experiment, in order to adhere closely to

the framework of Nishimura and Ozaki (2004), it is expected from Schunk and Winter (2009) that

subjects are discouraged from searching. If a subject is required to declare her reservation point for

each round before drawing a point and then decides either to accept the point or to reject it and

move on to the next round, we would not obtain enough data to observe a trend in the reservation

point.3 In addition, this second method is designed to induce subjects to behave according to the

optimal stopping rule, so that the subjects would calculate their reservation point for each round

backward from the last round. If there is no di¤erence in search behavior between the two methods,

we can say that the subjects engage in search activity according to the optimal stopping rule. We

�nd that this claim is overall supported, although at the individual level, there are some subjects

who did not behave in accordance with the optimal stopping rule.

Our experiment yields two �ndings. The �rst is that the search duration is on average shorter

when there is Knightian uncertainty, compared to when the point distribution is known. It implies

that subjects are more likely to accept the o¤ered point when the point distribution is unknown

than when the point distribution is known in advance. These results support the implication

of Nishimura and Ozaki (2004). Secondly, we �nd that using the subjective data on a series

of reservation points obtained from the second method, subjects reduce their own reservation

point over all rounds under Knightian uncertainty, although marginally. This is subjective but

direct evidence supporting the implication of Nishimura and Ozaki (2004). These two �ndings

reinforce one another; that is, these �ndings suggest that ambiguity about the distribution lowers

3We previously conducted a sequential search model experiment in which a subject was required to declare her

or his reservation point for each round before drawing a point. However, because subjects did not search long in the

environment where recall was not allowed, we could not obtain enough data to estimate a trend in the reservation

point.
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the reservation point. This implies that subjects are encouraged to accept an o¤ered point in an

earlier round, thereby leading to shorter search duration.

We also test whether or not the e¤ect of ambiguity on search behavior di¤ers by the extent of

attitude toward risk. Our �nding is that risk averse subjects respond by lowering their reservation

point, thus shortening their search duration when there is ambiguity about the point distribution,

compared to when the point distribution is well recognized, but that search behaviors of those who

are either risk neutral or risk prone are not signi�cantly a¤ected by ambiguity about the point

distribution. This result di¤ered from our theoretical prediction claiming that ambiguity shifts

down a trend in the reservation point, regardless of the extent of attitude toward risk.4

The organization of this paper is as follows. Section 2 provides a brief summary of job search

under risk and ambiguity. Section 3 provides an experimental design and hypotheses. Section

4 provides the results of our experimental data in this paper. The �nal section provides our

concluding remarks

2 Search Models under Ambiguity

We consider a simple discrete-time sequential job search model based on Lippman and McCall

(1976) and Nishimura and Ozaki (2004). Throughout this section, let (S;BS) be a measurable

space, where S is a Borel subset of R+ and BS is the Borel �-algebra on S. A generic element s 2 S

is regarded as a wage o¤er in each period. In each period, an unemployed worker decides whether

she accepts a wage o¤er and stops searching for a job or obtains unemployment compensation

c > 0 and continues searching. She is assumed to know the true wage distribution F0 with the

lower bound a and the upper bound b. Let T be the time at which she accepts the o¤er and stops

4 In the literature, there are studies on the correlation between attitudes toward risk and ambiguity but not in the

context of a search model. Ellsberg�s experiment shows that a risk averse subject is also ambiguity averse (Halevy

and Feltkamp 2005, Halevy 2007). However, Borghans et al. (2009) and Cohen et al. (2010) show that there is

essentially no correlation between them.
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searching for a job. Her objective is to maximize her expected life-time income:

E0

" 1X
t=0

�tyt

#
;

where

yt =

8><>: c for t < T

sT for t � T;

and � 2 (0; 1) represents the discount factor. The unemployed worker�s search behavior is de-

termined according to the reservation property such that she accepts a wage o¤er s if s � R,

but rejects it, receives compensation c, and continues searching if s < R, where R represents the

reservation wage. The reservation wage is determined uniquely by the following:

R = c+
�

1� �

Z b

R
[1� F0(x)]dx:

It can be noted that an increase in risk in the sense of a mean-preserving spread increases the

reservation wage because stretching the right tail of the wage distribution encourages her to increase

her reservation wage on the one hand, but on the other hand, stretching the left tail does not a¤ect

her reservation wage. If she is assumed to be risk averse, that is, her utility function is characterized

by some concave function, the e¤ect of an increase in mean-preserving spreads on the reservation

wage then is not determined. The e¤ect depends on the curvature of her utility function, that is,

the degree of her risk aversion.5

We next consider a job search model within the framework of ambiguity based on Nishimura

and Ozaki (2004). We assume that an individual does not know the true wage distribution F0 from

which a wage o¤er is drawn, and that her beliefs are characterized by a set of probability measures

P0, which is de�ned below.

In order to provide as simple as possible a job-search model under ambiguity, let P0 be the

probability measure on S and F0 be the corresponding probability distribution on R+. In this

subsection, let S = [a; b] and P0 be the uniform distribution on [a; b], where a < b. Let M be the

set of all probability measures on (S;BS). In this subsection, we also assume that M is the set of

5For further arguments, see Kohn and Shavell (1974) and Nishimura and Ozaki (2004).
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all wage distributions on [a; b] corresponding to probability measures on BS . The "-contamination

of P0 is the set of the probability measures on S de�ned by the following:

P0 � f(1� ") + "Q jQ 2Mg ;

where " � 0. If " = 0, then the set of probability measures P0 is a singleton set, that is, P0 = fP0g.

On the other hand, if " > 0, then P0 is a set of probability measures. The larger " is, the larger the

set of probability measures is, which implies that if an unemployed worker�s beliefs are characterized

by P0, then she becomes less certain about the true probability measure P0. Therefore, the positive

real number " represents the degree of ambiguity.6

Within the framework of ambiguity, an unemployed worker�s beliefs are assumed to be captured

by P0; and her preferences are represented by the minimum of her expected life-time income over

the set of probability measures P0. Therefore, her objective is to maximize her expected life-time

income:

min

�Z
S
I(s)P (ds) jP 2 P0

�
;

where I(s) is her life-time income. Note that I(s) is some bounded measurable function of a wage

o¤er s.7 Under the above setting, it can be shown that the unemployed worker�s search behavior

is determined according to the reservation wage property. Moreover, there exists the reservation

wage R by the following:

R = c+
�

1� �

Z b

R
(1� ")P0(fsjs � xg)dx

= c+
�

1� � (1� ")
Z 1

R
[1� F0(x)]dx:

6For an axiomatization of "-contaminations, see Nishimura and Ozaki (2006). For applications of "-contaminations

to economics, see Nishimura and Ozaki (2004) or Asano (2010).
7For any adapted income process 0y = (y0; y1; y2; : : :) and an initial wage o¤er s0 2 S, the expected life-time

income is de�ned by:

Is0(0y) = lim
t!1

y0 + �

Z
S

�
y1 + �

Z
S

�
y2 + � � ��

Z
S

yt�(dst) � � �
�
�(ds2)

�
�s0(ds1)

where � 2 (0; 1) is the discount factor and all the integrations are the Choquet integral with respect to a nonadditive

measure �. See Nishimura and Ozaki (2004) for details.
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Within a more general setting, Nishimura and Ozaki (2004) show that an increase in ambiguity

decreases the reservation wage. They also argue that the same implication is obtained even if the

utility function is assumed to be risk averse. The next section designs a laboratory experiment to

test the implications

3 Experimental Design

3.1 Search Model in Experiment

An individual subject faces games of 20 rounds by way of a �nite sequential search model in which

recall is not allowed. A point is drawn randomly from a given point distribution by a computer

faced by a subject in the �rst round, and then the subject decides either to accept the point or to

reject it. If the subject accepts the point, her or his search activity is concluded, and the accepted

point is converted to her or his payment. If the subject rejects the point, she or he moves on to the

second round where a point is drawn again from the given point distribution. We here use �point�

to put a search model to the test to prevent subjects from associating �wage�with job search. The

subject can continue to search until the 20th round, and if the subject rejects a point drawn in the

last round, her or his search activity is automatically terminated, and no point is obtained.

We begin to develop the value function of search theoretically. The value of search in each

round is solved backward. The value of search in the 20th round is:

U20 =

Z x

x
xdF (x);

where F (x) represents the point distribution with a lower bound of x and an upper bound of x.

An individual does not receive any point if she or he rejects a point drawn in the last round, so

her or his reservation point must be x in the �nal round (R20 =x). We assume here that utility

is linear in the accepted point, implying that the individual is risk neutral. Backward to the 19th

round, the value of search is given by:
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U19 = �

Z R19

x
U20dF (x) +

Z x

R19

xdF (x) = �F (R19)U20 +

Z x

R19

xdF (x);

where � represents a discount factor. When a drawn point is lower than R19, the individual rejects

this o¤er and moves to the 20th round, while in the reserve case, she or he accepts and receives

the point as a one-shot payment in the 19th round.8 The reservation point of the 19th round is

calculated by R19 = U20 =
R x
x xdF (x). In a similar manner, the value of search in the Nth round

is:

UN = �F (RN )UN+1 +

Z x

RN

xdF (x); (1)

and the reservation point for the Nth round is obtained by RN = UN+1.

As in the previous section, we consider the �nite sequential search model into which ambiguity

is incorporated, based on Nishimura and Ozaki (2004). Let P0 be the uniform distribution on

[x; x]; and then the "-contamination of P0 is the set of the probability measures de�ned by P0 =

f(1� ") + "Q jQ 2Mg, where the positive real number " can represent the degree of ambiguity. In

this setting with ambiguity, the value of search in the Nth round and the corresponding reservation

point are given by:

UN = (1� ")
�
�F (RN )UN+1 +

Z x

RN

xdF (x)

�
; (2)

RN = UN+1:

These equations imply that an increase in ambiguity decreases the value of search in the Nth

round and therefore its reservation point. A trend in the reservation point is shifted down when

there is ambiguity in the sense that the point distribution is unknown, compared to when the point

distribution is known with certainty.

The model is solved numerically to observe a trend in the reservation point and the e¤ect of

ambiguity on the reservation point. We assume that the point distribution is uniform between a

8 In the standard model, an individual who accepts x in the 19th round can receive x in the 20th round as well

as in the 19th round. That is, the individual�s value of payment is x + �x. In this experiment, however, we design

for simplicity that the accepted point is given once as a payment so that subjects can easily understand how to pay

throughout the experiment.
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lower bound of 1 and an upper bound of 3000 and that to be consistent with our experimental

design, there is no discount over the rounds; � = 1. Because subjects are discouraged from

searching longer in an environment where recall is not allowed, � = 1 mitigates the disincentive to

search.9 The utility function for risk neutrality is de�ned as linear in the accept point, whereas the

utility function for risk aversion is assumed to show constant relative risk aversion (CRRA) with

the measure of risk aversion being 0.5. Table 1 displays several trends in the reservation point,

varying with the degree of risk attitude and ambiguity about the point distribution.

The trends for a risk neutral individual are shown graphically in Figure 1. As we would expect,

the declining trend in the reservation point can be observed in the �nite sequential search model,

regardless of the extent of ambiguity. The reservation point decreases as the end of the search is

closer. Moreover, an increase in the degree of ambiguity shifts down the trend in the reservation

point monotonically, which implies that an individual is encouraged to accept an o¤er in an earlier

round when the point distribution is ambiguous, compared to when there is no ambiguity about

the point distribution. A comparison of eq(1) and eq(2) implies that the declining rate of the

reservation point is " at any round according to Table 2.

The values of search in the Nth round for a risk averse subject without and with ambiguity

about the point distribution are correspondingly given by:

UN = �F (RN )UN+1 +

Z x

RN

u(x)dF (x); (3)

and

UN = (1� ")
�
�F (RN )UN+1 +

Z x

RN

u(x)dF (x)

�
; (4)

where u0(�) > 0 and u00(�) < 0. In a similar manner, the reservation point of the Nth round is

obtained by RN = UN+1. We see that eq(3) and eq(4) share the same reservation point property

9Because there are many papers showing that subjects do not search long in laboratory experiments (Schunk and

Winter: 2009), we dispense with any discount factor to encourage subjects to search longer. We previously conducted

our experiment with a discount factor taking below a value of one. The results obtained in that experiment were

that subjects terminated their search activity in a very early round.
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as obtained in eq(1) and eq(2). First, an increase in the extent of ambiguity shifts down the

trend in the reservation point according to Table 1. Figure 2 provides a graphical view. More

ambiguity shifts the trend in the reservation point down even more largely, thus leading to a

decrease in the average search duration. Secondly, Table 2 shows that a negative e¤ect of ambiguity

on the reservation point does not di¤er in magnitude between a risk neutral individual and a

risk averse individual. The risk averse individual reacts as negatively to ambiguity as the risk

neutral individual does. This result is obtained because attitude toward risk and ambiguity are

incorporated independently in the model.

3.2 Treatments and Hypotheses

There are four treatments in our experiment. In the �rst treatment (T1), subjects are provided

with common information on a point distribution. We employ a uniform distribution with a lower

bound of 1 and an upper bound of 3000. In the second treatment (T2), the subjects are informed

that a distribution is unknown except for the lower bound of 1 and the upper bound of 3000

and that a di¤erent distribution may be selected in every round by the computer. This prevents

the subjects from updating their information about the true distribution of a point in a Bayesian

manner and rules out the learning e¤ect on search behavior.10 We do not provide them with the

true distribution of a point. However, to facilitate a comparison of (T1) and (T2), the distribution

is actually set the same as the uniform distribution with a lower bound of 1 and an upper bound

of 3000. The comparison of these two treatments allows us to identify the di¤erence in search

behavior caused uniquely by ambiguity by controlling the distribution shape. If the distribution

actually changes every round, we cannot identify whether the di¤erence in the search durations

between the two treatments is attributable to ambiguity or to the variants in distributions.

The third treatment (T3) is a search activity in which a subject ex ante commits to a series

of her or his reservation points over all the 20 rounds under the uniform distribution with a lower

10There are some papers that would rather focus on uncertainty and learning of the shape of the wage distribution

through Bayesian updating in a search model (Morgan, 1985; Burdett and Vishwanath, 1988; Dubra, 2004).
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bound of 1 and an upper bound of 3000. Subjects are requested to �ll in their own reservation

points in all the 20 rounds before starting a game. First, they �ll in the reservation point in the

�rst round and then �ll in the reservation point in the second round as if they had moved on to the

second round. The same procedure is undertaken until the 20th round. After listing 20 numbers of

the reservation point on the sheet, each subject clicks the button to start to search. The computer

randomly picks a �rst-round point and compares it with the �rst-round reservation point. If the

point drawn is lower than the �rst-round reservation point, her or his search activity continues

with the computer drawing a second-round point. Otherwise, the computer stops searching and

gives the subject the drawn point. We suppose that subjects automatically calculate a series of

reservation points backward from the last round and then actually �ll in forward from the �rst

round. Therefore, (T3) is designed in such a way that subjects are induced to behave in accordance

with the optimal stopping rule. The main bene�t of this treatment is that we can directly observe

a 20 round-long trend in the reservation point. This is usually di¢ cult to observe in an experiment

of sequential search without recall because subjects �nish searching long before the �nal round.

This allows us to directly measure the e¤ect of ambiguity on the trend in the reservation point.

A comparison of (T1) and (T3) also allows us to verify whether subjects engage in search activity

following the optimal stopping rule. If there is no di¤erence in search attitude between the two

treatments, it is concluded that subjects actually follow the optimal stopping rule when engaging

in search activity. The fourth treatment (T4) is similar to (T3) except for the realization of the

point distribution; that is, a subject ex ante commits to a series of her or his reservation points

over all 20 rounds under various unknown distributions with a lower bound of 1 and an upper

bound of 3000.

Our experiment consists of two sessions. Each experimental session consists of 11 games. The

di¤erence between the two experimental sessions is the order of the 11 games. The game orders

are as follows in the sessions.

� Session 1: (T1-practice), (T2), (T2), (T2), (T2), (T4), (T1), (T1), (T1), (T1), (T1), (T3).

� Session 2: (T1-practice), (T1), (T2), (T1), (T2), (T3), (T1), (T2), (T1), (T2), (T1), (T4).

12



In Session 1, subjects engage in search activity in which there is Knightian uncertainty for

the point distribution in the earlier games ((T2) and (T4)), and then they play search games in

which the point distribution is recognized in advance ((T1) and (T3)). This order rules out the

possibility that subjects infer that the unknown distribution is uniform in (T2) and (T4) games.

In Session 2, subjects alternately engage in search activity under the given and then the unknown

point distributions.

We next display experimental hypotheses to test the theoretical implications of Nishimura and

Ozaki (2004). We test three hypotheses regarding Knightian uncertainty, the optimal stopping rule

in search activity, and risk attitude.

� H1: The reservation point is lower when the point distribution is unknown, compared to

when the point distribution is well known ((T1) versus (T2), and (T3) versus (T4)). There-

fore, the search duration is shorter under an unknown point distribution than under a given

distribution

A subject�s reservation point is lower, and therefore, she or he accepts a drawn point in an

earlier round when the point distribution is unknown to her or him, compared to when the point

distribution is well known. This results in the shorter search duration in the presence of Knightian

uncertainty.

� H2: Subjects engage in search activity following the optimal stopping rule. ((T1) versus

(T3), and (T2) versus (T4)).

If there is no di¤erence in the average search duration between (T1) and (T3) (or (T2) and

(T4)), it can be said that subjects engage in search activity following the optimal stopping rule;

that is, they calculate in advance their own reservation points for all 20 rounds, backward from

the last round and stop search if a drawn point exceeds the corresponding reservation point but

otherwise continue to search.

In addition, our experiment explores a di¤erence in search activity by risk attitude. To identify

each subject�s attitude toward risk, we conducted a questionnaire to all participants after the

13



experiment and asked them about their attitude toward risk. We asked them what price they

would be willing to pay for a lottery with a 25% chance of winning JPY200, but with a 75% chance

of winning nothing. We then calculated the index measuring the extent of absolute risk aversion

using Cramer et al. (2002).11 Let this index denote risk aversion (A). If this index is positive, a

subject is considered to be risk averse, but on the other hand, if negative, the subject is treated

as risk prone. If the index is exactly zero, the subject is risk neutral. Similarly, we calculated

a similar index using the willingness-to-pay price for a lottery of winning much more than for

our �rst lottery, in fact, JPY2000 with a 25% chance, but 75% chance of winning nothing. This

index denotes risk aversion (B).12 Comparing the declining rates of the reservation point with and

without ambiguity in the point distribution (eq(1)-eq(4)), leads us to hypothesize that:

� H3: The negative e¤ect of point distribution ambiguity on the search duration does not

di¤er with the extent of risk attitude. There is no correlation between attitude to risk and

ambiguity.

We investigate a change in the negative e¤ect of ambiguity on the search decision, depending

on the extent of risk aversion.

3.3 Administration and Payo¤s

This two-session experiment was conducted on December 17th, 2009 in the experimental laboratory

of the Institute of Social and Economic Research at Osaka University. Subjects consisted of 44

undergraduate and graduate students of Osaka University excluding junior and above economics

11According to Cramer et al. (2002), the extent of absolute risk aversion is calculated as,

0:25� 200� price
0:5(0:25� 2002 � 2� 0:25� 200 + price2) ;

where the price is the one that a subject would be willing to pay for a lottery in which she or he has a 25% chance

of winning JPY200, but a 75% chance of winning nothing.
12The questionnaire also included questions allowing us to produce indices measuring the extent of relative risk

aversion using Kimball, Sahm, and Shapiro (2008). However, we did not obtain robust results and therefore we

discarded these indices.
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majors, with 21 participating in the �rst session and 23 in the second. Each participant was in an

individual booth, from which she or he could not observe other subjects. The experiments were

run entirely on computers using Z-tree (Fischbacher, 2007) laboratory experiment software. Table

3 presents the summary statistics.

Instructors handed an instruction sheet to each subject and presented each with full information

about the search task. The instructors emphasized that (i) subjects�payo¤was truncated at JPY0

(i.e., they could not incur losses from the search task); and (ii) they would earn an attendance fee

of JPY1000.13 Performance pay was determined by one of the results from the 11 games randomly

chosen by each subject, with one point equal to JPY1. The participants were paid on completion

of the experiment. The expected total payo¤ was JPY2500�3000, and because the time taken for

the experiment was approximately one and a half hours, the e¤ective hourly payo¤ to participants

was about JPY1600�2000, which is approximately twice as large as the average hourly wage for

college students. Payments were made to each subject, one by one, while they were completing the

questionnaire.

4 Results

4.1 Search Duration

Table 4 displays average search durations by various treatments and their di¤erences between

treatments. In the �rst column, the average search duration is 6.81 for the treatment in which the

point distribution is well known to subjects as a uniform distribution with a lower bound of 1 and

an upper bound of 3000 (T1) and 5.63 in the treatment with ambiguity in the sense that the point

distribution is unknown except for a lower bound of 1 and an upper bound of 3000 (T2). The

former is longer than the latter, and the null hypothesis (H1) that the di¤erence of (T1)�(T2) is

equal to or shorter than zero is rejected at the 1% level of signi�cance. This implies that subjects

reduce their reservation point when facing ambiguity about the point distribution, thereby leading

13One US dollar was equivalent to JPY82.92 as of January 15, 2011.
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to shorter search duration. This result is consistent with the prediction of Nishimura and Ozaki

(2004). The second column shows the e¤ect of ambiguity about the point distribution on average

search duration, given that a subject ex ante commits to reservation points prior to her or his game

and then decides either to reject or to stop searching in light of precommitted reservation points.

The average search duration is shorter with ambiguity about the point distribution, but the null

hypothesis is not signi�cantly rejected. We now compare average search durations in the �rst row,

capturing the e¤ect of a di¤erence in search activity method on search duration under the uniform

distribution with a lower bound of 1 and an upper bound of 3000 ((T1) versus (T3)). Hypothesis

(H2), that there is no di¤erence in average search duration, regardless of search activity methods,

is not signi�cantly rejected. It implies that subjects engage in search activity following the optimal

stopping rule because (T3) is designed such that subjects are induced to follow the optimal stopping

rule. The same result is obtained if there is ambiguity about the point distribution ((T2) versus

(T4)).

Tables 5 and 6 show average search durations, by the extent of absolute risk aversion. The

sampled data are analyzed by risk aversion index (A) in Tables 5-1, 5-2 and 5-3 and risk aversion

index (B) in Tables 6-1, 6-2 and 6-3. According to the �rst columns of Tables 5-1 and 6-1 con�ned

to risk averse subjects, the search duration is shorter when the point distribution is unknown (T2),

relative to when it is well known to subjects as a uniform distribution with a lower bound of 1 and

an upper bound of 3000 (T1). Therefore, the null hypothesis (H1) is signi�cantly supported. The

di¤erences are larger in magnitude in Tables 5-1 and 6-1 than in Table 4, which implies that the

search duration is further shortened for risk averse subjects when there is Knightian uncertainty. On

the other hand, the �rst columns of Tables 5-2, 5-3, 6-2, and 6-3 show that for risk neutral and risk

prone subjects, the di¤erences in search duration between (T1) and (T2) are statistically minimal.

These results suggest that ambiguity about the point distribution does not a¤ect search behavior

of risk neutral and risk prone subjects. These results di¤er from our theoretical prediction and thus

do not support (H3); that is, our experimental outcomes imply that when the point distribution is

ambiguous in terms of Knightian uncertainty, the trend for the reservation point is shifted down
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only for risk averse subjects. There is essentially a correlation between attitude toward risk and

ambiguity.

Table 7 estimates linear models for determinants of search duration. The �rst two columns

use data from (T1) and (T2) while the last three columns include data from all treatments ((T1)�

(T4)). The dependent variable is the search duration of each game that each subject experienced.

In columns (1) and (2), Knight is a dummy variable representing 1 if subjects draw a point from

unknown distributions with a lower bound of 1 and an upper bound of 3000 (T2) and 0 if subjects

draw a point from a uniform distribution with a lower bound of 1 and an upper bound of 3000

(T1). Its coe¢ cient is negative at the 1% level of signi�cance in column (1). The result remains the

same after controlling for individual subject and session e¤ects (see column (2)) capturing not only

an individual subject�s risk attitude (risk averse or risk prone), but loss attitude (loss averse or loss

prone) and other unobservables. Because the subject dummies indicating individual characteristics

and the session dummy are not correlated with the Knight term at all, its coe¢ cient remains the

same even after these dummies are included. Our �nding is that the search duration is shorter

when the point distribution is unknown because of Knightian uncertainty, relative to when the

point distribution is known. This result implies that subjects reduce their own reservation point

if there is ambiguity about the point distribution. We therefore support (H1), and this result is

consistent with the main prediction of Nishimura and Ozaki (2004). The coe¢ cient on Knight

remains signi�cant using all observations, inclusive of precommitted data ((T3) and (T4)) (column

(3)).

Columns (4) and (5) add two dummy variables, one each for ambiguity and search method and

their cross term. Similarly to the estimates of columns (1)�(3), Knight is a dummy indicating 1 if

subjects draw a point from unknown distributions with a lower bound of 1 and an upper bound

of 3000 (either (T2) or (T4)) and 0 if subjects draw a point from a uniform distribution with a

lower bound of 1 and an upper bound of 3000 (either (T1) or (T3)). Precommitted is another

dummy representing 1 if subjects ex ante commit to their reservation points over all the 20 rounds

in advance and then decide either to reject or to stop searching, based on precommitted reservation
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points ((T3) or (T4)) and 0 if subjects decide whether to reject or accept every time a point is

drawn in each round ((T1) or (T2)). Knight*Precommitted is the cross term of the two dummy

variables.

Knight is negative at the 1�5% level of signi�cance in columns (4) and (5), so we con�rm the

same result as columns (1)�(3); that is, the search duration is shorter when there is Knightian

uncertainty, compared to when the point distribution is well known. Ambiguity about the point

distribution decreases a subject�s reservation point, thus encouraging her or him to accept in an

earlier round.

Precommitted is statistically insigni�cant, implying that there is no di¤erence in search behavior

between the decision rule in which a subject ex ante commits to reservation points for all 20 rounds

prior to a game and that in which a subject decides every time a point is drawn in each round.

(T3) and (T4) are designed so that subjects would follow the optimal stopping rule in the sense

that they ex ante are subject to calculate their reservation point in each round backward from the

last round. Subjects therefore engage in search activity following the optimal stopping rule, which

supports (H2).

Tables 8 and 9 estimate determinants of search duration by the extent of absolute risk aversion,

index (A) in Table 8, and index (B) in Table 9. Columns (1)�(3) of both tables use the subsample

from nonprecommitted games ((T1) and (T2)), while columns (4)�(6) use all observations including

data from precommitted games ((T1), (T2), (T3), and (T4)). We begin with columns (1)-(3) of

both tables. Con�ned to risk averse subjects, the coe¢ cient on Knight remains negative at the

1�5% level of signi�cance in column (3), and its coe¢ cient is larger in absolute magnitude than that

displayed in Table 7. On the other hand, columns (1) and (2) show that the signi�cance of Knight

is lower when using the subsamples of risk neutral and risk prone subjects. We con�rm that the

search duration is furthermore shorter for risk averse subjects when there is Knightian uncertainty,

relative to when the point distribution is well known among subjects, but that ambiguity about

the point distribution does not a¤ect the search behavior of risk neutral and risk prone subjects.

These results are consistent with those from Tables 5 and 6 showing a correlation between attitude
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toward risk and ambiguity.

4.2 Determinants of the Reservation Point

This subsection reports the direct e¤ect of ambiguity about the point distribution on the reservation

point. Table 10 shows the estimates of determinants of the reservation point using the round-based

data from (T3) and (T4) in which subjects commit in advance to their own reservation points for

all 20 rounds and then start to search. The bene�t of this method is to allow us to detect a change

in the reservation point from direct but subjective viewpoints.

In column (1), Knight is statistically insigni�cant, contrary to our expectation. One reason

for this result is that subjects who do not follow the optimal stopping rule are included in the

estimation. We then extract the data from those who precisely did follow the optimal stopping

rule (referred to as OSR-consistent) and then re-estimate the determinants of the reservation point.

A subject is among the OSR-consistent subsample if the following conditions are satis�ed;

� for any given round, a subject accepts a point drawn in (T1) if the point is no less than the

corresponding reservation point in (T3);

� for any given round, a subject accepts a point drawn in (T2) if the point is no less than the

corresponding reservation point in (T4);

� for any given round, a subject rejects a point drawn in (T1) if the point is lower than the

corresponding reservation point in (T3);

� for any given round, a subject rejects a point drawn in (T2) if the point is lower than the

corresponding reservation point in (T4),

and zero otherwise. At the individual level, not all subjects follow the optimal stopping rule.

We here impose the strict assumption to distinguish between subjects who precisely follow the

optimal stopping rule and those who do not. According to Table 11, 96% of round-based decisions

are consistent with the optimal stopping rule, but when grouped by game, only 21% of games are
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consistent with the optimal stopping rule. In addition, only 20% of subjects follow the optimal

stopping rule while searching. It is also interesting to note that, on average, OSR-consistent sub-

jects earn more than OSR-inconsistent subjects. Among those who follow the optimal stopping

rule, the average payment is larger when the point distribution is well known as a uniform distri-

bution, relative to when the point distribution is unknown. This is consistent with our prediction.

However, among our other subjects the opposite is the case.

As seen in column (2) of Table 10 using the OSR-consistent subsample, Knight turns out

to be negative at the 10% level of signi�cance. It implies that subjects marginally reduce their

own reservation point when the point distribution is unknown because of Knightian uncertainty,

compared to when the point distribution is known to subjects. We con�rm the same results from

Table 7, and therefore (H1) is again supported. It should be emphasized that although we reach

this conclusion indirectly from the estimates of individual search duration from Table 7, Table 10

provides direct evidence to support the implication of Nishimura and Ozaki (2004); that is, the

reservation point is lower in the presence of Knightian uncertainty about the point distribution.

Next we explore how the e¤ect of ambiguity on the reservation point di¤ers by the degree

of attitude toward risk. Tables 12 and 13 estimate the determinants of the reservation point,

separating the sample by the extent of absolute risk aversion. Table 12 uses risk aversion index

(A) while Table 13 uses risk aversion index (B). It is noted that estimates shown in both tables

are obtained, using the OSR-consistent subsample. According to column (3) of Table 12, the

coe¢ cient on Knight is negative and larger in absolute magnitude than that displayed in column

(2) of Table 10, but its signi�cance is reduced. Similarly, Knight is statistically insigni�cant for

risk averse subjects in column (3) of Table 13. When limited to those who are either risk neutral

or risk prone, columns (1) and (2) of Tables 12 and 13 show that Knight remains insigni�cant.14

However, from di¤erences in magnitude of the coe¢ cients, we can say that risk averse subjects

lower their reservation point slightly and thus complete searching in an earlier round when the

14 It is noted that there is no estimate for risk prone subjects in Table 13 because there are no observations of risk

prone subjects who correctly follow the optimal stopping rule when the sample is analyzed by risk aversion index

(B).
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point distribution is unknown.

5 Concluding Remarks

This paper designed a laboratory experiment to explore the e¤ect of Knightian uncertainty on a sub-

ject�s search behavior in a �nite sequential search model and tested the implications of Nishimura

and Ozaki (2004). We utilized various approaches to test the e¤ect of ambiguity about the point

distribution on sequential search behavior.

It is particularly worth noting that we designed two search methods. In the �rst a subject

decides either to accept or to reject every time a point is drawn, while in the second a subject

commits to their reservation points for all 20 rounds prior to a game and only then begins to

search. The second method is designed to embody the optimal stopping rule in which a subject

must calculate their reservation points for all 20 rounds backward from the last round. If there is

no di¤erence in search behavior between the two methods, we can say that subjects always follow

the optimal stopping rule. This was supported by our estimates although there are some subjects

who do not follow the optimal stopping rule.

One �nding is that the average search duration is shorter with ambiguity rather than certainty

about the point distribution, implying that subjects are more likely to accept the o¤ered point

when the point distribution is unknown, compared to when the point distribution is well known

in advance. This result supports the prediction of Nishimura and Ozaki (2004). We also show

that subjects explicitly reduce their own reservation point when there is Knightian uncertainty,

using the data from (T3) and (T4) in which subjects commit in advance to their own reservation

point for all 20 rounds and then start to search. Although the data are obtained subjectively,

this is direct evidence supporting the implication of Nishimura and Ozaki (2004). The estimated

results from these di¤erent approaches reinforce each other, supporting the view that introducing

ambiguity about the point distribution lowers the reservation points, thus encouraging subjects

to accept an o¤ered point in an earlier round and therefore leading to shorter search duration.

Ambiguity about the point distribution has a signi�cantly negative impact on search duration for
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risk averse subjects, but not for those who are either risk neutral or risk prone.

This experiment used a simple and speci�c environment of individual sequential search, con-

trolling information about the point distribution and search methods. However, the essence of the

results can be applied to the labor market. The presence of Knightian uncertainty about the wage

distribution induces individuals to be more cautious about search activity, which lowers the reser-

vation wage and thereby the accepted wage. It implies that the presence of Knightian uncertainty

reduces the welfare level of individuals. These experimental outcomes are useful to understand the

role of information in determining the level of individual welfare.

6 Appendix: Instruction

Note: Session 1 Instructions. Session 2 di¤ers in the order of games.

Welcome to our experiment! In this experiment, you will be asked to play 11 games. In each

game, within a limited number of 20 rounds, you will be asked to choose either to receive a point

that is randomly selected from a selected distribution or to refuse this point and move on to the

next round to wait for a higher point. If you are willing to accept an o¤ered point, you click �Y�

displayed on your PC screen, but if not, you click �N�. If you do not accept a point o¤ered in the

�nal round, your score will be zero automatically. Your score will be decided on the basis of the

points that you accept.

We have prepared 11 games and would like you to play them. Before starting the experiment,

we would like you to try the following practice. Please let us know if you have any questions.

� Practice: In each round, the computer randomly selects a point from a uniform distribution

with a lower bound of 1 and an upper bound of 3000. You decide whether or not to accept

the point drawn from this distribution. If you accept the point, you then �nish your search

and the point is your score. If you do not accept the point, you move on to the next round

and observe a point newly drawn by the computer. You can continue to search up to 20

rounds.
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Before starting each game, we explain how to play it in more detail.

� Game 1: In each round, the computer randomly selects a point from an unknown distribution

except that it has a lower bound of 1 and an upper bound of 3000, and a di¤erent distribution

may be randomly selected every round by the computer. You decide whether or not to accept

the point drawn from the unknown distribution. If you accept the point, you then �nish your

search and the point is your score. If you do not accept the point, you move on to the next

round and observe a point newly drawn by the computer. You can continue to search up to

20 rounds.

� Game 2: the same as Game 1.

� Game 3: the same as Game 1.

� Game 4: the same as Game 1

� Game 5: In each round, the computer randomly selects a point from an unknown distribution

except that it has a lower bound of 1 and an upper bound of 3000, and a di¤erent distribution

may be randomly selected every round by the computer. Please type in the minimum point

that you are willing to accept (hereafter the reservation point) for all 20 rounds before starting

this game. First, please type in your reservation point in the blank for the �rst round on

the PC screen, and then type in your reservation point in the blank for the second round,

as if you had moved on to the second round. Please repeat this until the 20th round. After

�nishing your list of 20 reservation point numbers on your PC Display, click �OK�. The

computer then starts to draw a point from an unknown distribution and compares it with

your reservation point for the �rst round. If the drawn point is equal to or higher than your

reservation point for the �rst round, you then �nish your search and the point is your score. If

the drawn point is lower than your reservation point for the �rst round, the computer moves

on to the second round and draws a point. Your search activity is left to the computer.

� Game 6: In each round, the computer randomly selects a point from a uniform distribution

with a lower bound of 1 and an upper bound of 3000. You decide whether or not to accept
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the point drawn from this distribution. If you accept the point, you then �nish your search

and the point is your score. If you do not accept the point, you move on to the next round

and observe a point newly drawn by the computer. You can continue to search up to 20

rounds.

� Game 7: the same as Game 6.

� Game 8: the same as Game 6.

� Game 9: the same as Game 6.

� Game 10: In each round, the computer randomly selects a point from a uniform distribution

with a lower bound of 1 and an upper bound of 3000. You decide on whether or not to

accept the point drawn from this distribution. Please type in the minimum point that you

are willing to accept (hereafter your reservation point) for all 20 rounds before starting this

game. First, please type in your reservation point for the �rst round on the PC screen and

then type in your reservation point for the second round, as if you had moved on to the

second round. Please repeat this until the 20th round. After �nishing listing 20 reservation

point numbers on your PC Display, click �OK�. The computer then starts to draw a point

from the uniform distribution and compares it with the reservation point of the �rst round.

If the drawn point is equal to or higher than your reservation point for the �rst round, you

then �nish your search and the point is your score. If the drawn point is lower than your

reservation point for the �rst round, the computer moves on to the second round and draws

a point. Your search activity is left to the computer.

After the experiment, please respond to our questionnaire. You will be paid an attendance fee

of JPY1000. Your performance pay is determined by one of the points from the 11 games randomly

chosen by you. This payment treats one scoring point as JPY1. You will be paid both fees as soon

as the experiment is completed. Please be quiet and do not communicate with other participants

during the experiment. Thank you for your participation.
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Table 1
Trends in the Reservation Points

No Ambiguity Ambiguity (Epsilon=0.1) Ambiguity (Epsilon=0.25) Ambiguity (Epsilon=0.5)
Risk Neutral Risk Averse Risk Neutral Risk Averse Risk Neutral Risk Averse Risk Neutral Risk Averse

Round R1 r1 R2 r2 R3 r3 R4 r4
1 2749.3 2738.4 2474.3 2464.6 2061.9 2053.8 1374.6 1369.2
2 2737.8 2726.1 2464.0 2453.5 2053.3 2044.6 1368.9 1363.1
3 2725.2 2712.5 2452.7 2441.3 2043.9 2034.4 1362.6 1356.3
4 2711.3 2697.5 2440.2 2427.8 2033.5 2023.2 1355.7 1348.8
5 2695.9 2680.9 2426.3 2412.8 2021.9 2010.6 1347.9 1340.4
6 2678.7 2662.2 2410.8 2396.0 2009.0 1996.6 1339.3 1331.1
7 2659.3 2641.1 2393.4 2377.0 1994.5 1980.9 1329.7 1320.6
8 2637.4 2617.2 2373.7 2355.5 1978.1 1962.9 1318.7 1308.6
9 2612.4 2589.8 2351.1 2330.8 1959.3 1942.3 1306.2 1294.9

10 2583.4 2558.0 2325.1 2302.2 1937.6 1918.5 1291.7 1279.0
11 2549.6 2520.7 2294.7 2268.6 1912.2 1890.5 1274.8 1260.3
12 2509.5 2476.3 2258.6 2228.6 1882.1 1857.2 1254.8 1238.1
13 2461.1 2422.4 2215.0 2180.1 1845.8 1816.8 1230.5 1211.2
14 2401.3 2355.5 2161.2 2120.0 1801.0 1766.7 1200.7 1177.8
15 2325.5 2270.2 2092.9 2043.2 1744.1 1702.7 1162.7 1135.1
16 2225.4 2157.1 2002.9 1941.4 1669.1 1617.8 1112.7 1078.5
17 2086.2 1998.8 1877.6 1798.9 1564.7 1499.1 1043.1 999.4
18 1875.4 1758.3 1687.8 1582.4 1406.5 1318.7 937.7 879.1
19 1500.5 1334.2 1350.5 1200.8 1125.4 1000.7 750.3 667.1
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2
Decrease Rates of the Reservation Point by Risk Attitude and Ambiguity

Risk Neutral Risk Averse Risk N[eutral Risk Averse Risk Neutral Risk Averse
(R2-R1)/R1 (r2-r1)/r1 (R3-R1)/R1 (r3-r1)/r1 (R4-R1)/R1 (r4-r1)/r1

-0.10 -0.10 -0.25 -0.25 -0.50 -0.50

Note: The decrease rate is the same for all rounds. The decrease rate is the
same as the epsilon value indicating the extent of ambiguity.

Note: The utility function for risk neutrality is defined as linear in the accepted point (x) while the utility
function for risk aversion is CRRA with the measure of risk aversion, 0.5.

28



Table 3
Summary Statistics

Session 1 Session 2 Total

# of subjects 21 23 44
   # of females 11 7 18
   Average age 20.6 19.4 20
   Average absolute risk aversion (A) 0.0012 0.0014 0.0013

# of subjects (risk aversion (A)>0) 11 11 22
# of subjects (risk aversion (A)=0) 3 5 8
# of subjects (risk aversion (A)<0) 6 6 12

Risk aversion (A) unavailable 1 1 2
   Average absolute risk aversion (B) 0.00038 0.00032 0.00035

# of subjects (risk aversion (B)>0) 16 15 31
# of subjects (risk aversion (B)=0) 2 5 7
# of subjects (risk aversion (B)<0) 2 2 4

Risk aversion (B) unavailable 1 1 2
# of subject-games 252 276 528
   Average outcome (JPY) 2703.5 2661.2 2681.3
   Average search duration 7.4 5.4 6.4
# of subject-game-rounds 4620 5060 9680
   Average reservation point

Round 1 2623.0 2440.8 2527.7
Round 2 2609.6 2414.6 2507.7
Round 3 2594.9 2381.5 2483.4
Round 4 2592.0 2366.2 2474.0
Round 5 2587.9 2362.8 2470.3
Round 6 2589.8 2334.5 2456.3
Round 7 2577.9 2300.7 2433.0
Round 8 2572.9 2283.2 2421.4
Round 9 2571.4 2255.9 2406.5

Round 10 2556.4 2241.6 2391.9
Round 11 2492.3 2163.3 2320.3
Round 12 2450.9 2139.2 2288.0
Round 13 2404.0 2095.7 2242.8
Round 14 2352.8 2053.2 2196.2
Round 15 2320.4 1974.8 2139.7
Round 16 2229.4 1891.0 2052.5
Round 17 2157.8 1775.7 1958.0
Round 18 2022.2 1601.7 1802.4
Round 19 1778.6 1288.5 1522.4
Round 20 569.5 437.5 500.5

29



Table 4
Average Search Durations (Total)

Nonprecommitted games Precommitted games
Uniform 6.81 [T1] 7.20 [T3] -0.40 (0.90)
Knight 5.63 [T2] 6.16 [T4] -0.53 (0.77)

Difference 1.18 1.05
(0.50) (1.23)

Table 5-1
Average Search Durations by the Extent of Risk Attitude (A) (Risk Averse Subjects Only)

Nonprecommitted games Precommitted games
Uniform 6.66 [T1] 6.27 [T3] 0.39 (1.22)
Knight 5.05 [T2] 6.22 [T4] -1.17 (1.05)

Difference 1.61 0.05
(0.67) (1.68)

Table 5-2
Average Search Durations by the Extent of Risk Attitude (A) (Risk Neutral Subjects Only)

Nonprecommitted games Precommitted games
Uniform 7.85 [T1] 7.00 [T3] 0.85 (2.19)
Knight 6.91 [T2] 4.88 [T4] 2.03 (2.04)

Difference 0.94 2.13
(1.30) (2.52)

Table 5-3
Average Search Durations by the Extent of Risk Attitude (A) (Risk Prone Subjects Only)

Nonprecommitted games Precommitted gaames
Uniform 6.55 [T1] 8.83 [T3] -2.28 (1.78)
Knight 6.04 [T2] 7.08 [T4] -1.04 (1.45)

Difference 0.51 1.75
(0.92) (2.75)

Note: Standard errors in parentheses. Averages are calculated on the treatment base. The extent of risk
attitude is calculated from a subject's response to the post-experimental questionnaire: how much is a
subject willing to pay for a lottery of a 25% chance of winning JPY200, but a 75% chance of winning
nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Difference

Difference

Note: Standard errors in parentheses. Averages are calculated on the treatment base.

Difference

Difference

Note: Standard errors in parentheses. Averages are calculated on the treatment base. The extent of risk
attitude is calculated from a subject's response to the post-experimental questionnaire: how much is a
subject willing to pay for a lottery of a 25% chance of winning JPY200, but a 75% chance of winning
nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Note: Standard errors in parentheses. Averages are calculated on the treatment base. The extent of risk
attitude is calculated from a subject's response to the post-experimental questionnaire: how much is a
subject willing to pay for a lottery of a 25% chance of winning JPY200, but a 75% chance of winning
nothing according to Cramer, Hartog, Jonker, and van Praag (2002).
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Table 6-1
Average Search Durations by the Extent of Risk Attitude (B) (Risk Averse Subjects Only)

Nonprecommitted games Precommitted games
Uniform 6.63 [T1] 6.90 [T3] -0.27 (1.06)
Knight 5.21 [T2] 6.13 [T4] -0.92 (0.36)

Difference 1.42 0.77
(0.57) (1.52)

Table 6-2
Average Search Durations by the Extent of Risk Attitude (B) (Risk Neutral Subjects Only)

Nonprecommitted games Precommitted games
Uniform 6.83 [T1] 7.14 [T3] -0.31 (2.00)
Knight 6.93 [T2] 5.00 [T4] 1.93 (2.04)

Difference -0.10 2.14
(1.24) (2.38)

Table 6-3
Average Search Durations by the Extent of Risk Attitude (B) (Risk Prone Subjects Only)

Nonprecommitted games Precommitted games
Uniform 8.65 [T1] 9.00 [T3] -0.35 (3.58)
Knight 7.25 [T2] 9.00 [T4] -1.75 (2.82)

Difference 1.40 0.00
(1.91) (4.93)

Note: Standard errors in parentheses. Averages are calculated on the treatment base. The extent of
risk attitude is calculated from a subject's response to the post-experimental questionnaire: how
much is a subject willing to pay for a lottery of a 25% chance of winning JPY2000, but a 75%
chance of winning nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Note: Standard errors in parentheses. Averages are calculated on the treatment base. The extent of
risk attitude is calculated from a subject's response to the post-experimental questionnaire: how
much is a subject willing to pay for a lottery of a 25% chance of winning JPY2000, but a 75%
chance of winning nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Note: Standard errors in parentheses. Averages are calculated on the treatment base. The extent of
risk attitude is calculated from a subject's response to the post-experimental questionnaire: how
much is a subject willing to pay for a lottery of a 25% chance of winning JPY2000, but a 75%
chance of winning nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Difference

Difference

Difference
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Table 7
Search Duration under Knightian Uncertainty

(1) (2) (3) (4) (5)
-1.178 -1.178 -1.139 -1.178 -1.178
(0.488) *** (0.451) ** (0.456) ** (0.488) ** (0.455) ***

0.395 0.395
( 1.010) ( 0.872)
0.133 0.133

(1.314) (1.175)

Subject dummies Yes. Yes.
Session dummy Yes. Yes.

R-squared 0.014 0.266 0.012 0.014 0.253
N 396 396 484 484 484
Note: Robust standard errors in parentheses. *** 1%, ** 5%, * 10% significance.

Knight*Precommitted

Precommitted (=1)

All observationsNonprecommitted games

Knight (=1)
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Table 8
Search Duration under Knightian Uncertainty by the Extent of Risk Attitude (A)

(1) (2) (3) (4) (5) (6)
Risk prone Risk neutral Risk averse Risk prone Risk neutral Risk averse

-0.508 1.215 -1.607 -0.508 -0.944 -1.607
(0.862) -(0.780) (0.631) ** (0.877) (1.222) (0.657) **

2.283 -0.850 -0.391
(1.759) (1.818) (1.073) 
-1.242 -1.181 1.561

(2.349) (2.747) (1.534) 

Subject dummies Yes. Yes. Yes. Yes. Yes. Yes.
Session dummy Yes. Yes. Yes. Yes. Yes. Yes.

R-squared 0.190 0.243 0.298 0.244 0.223 0.274
N 108 72 198 132 88 242

Table 9
Search Duration under Knightian Uncertainty by the Extent of Risk Attitude (B)

(1) (2) (3) (4) (5) (6)
Risk prone Risk neutral Risk averse Risk prone Risk neutral Risk averse

-1.400 0.100 -1.423 -1.400 0.100 -1.423
(1.808) (1.209) (0.533) *** (1.866) (1.223) (0.564) **

0.350 0.314 0.271
(2.241) (2.255) (0.921) 

1.400 -2.243 0.648
(3.611) (2.520) (1.316) 

Subject dummies Yes. Yes. Yes. Yes. Yes. Yes.
Session dummy Yes. Yes. Yes. Yes. Yes. Yes.

R-squared 0.153 0.177 0.290 0.226 0.168 0.921
N 36 63 279 44 77 341
Note: Robust standard errors in parentheses. *** 1%, ** 5%, * 10% significance. The extent of risk attitude is calculated from a subject's
response to the post-experimental questionnaire: how much is a subject willing to pay for a lottery of a 25% chance of winning JPY2000, but a
75% chance of winning nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Precommitted (=1)

Knight*Precommitted

Knight (=1)

Precommitted (=1)

Knight*Precommitted

Knight (=1)

Note: Robust standard errors in parentheses. *** 1%, ** 5%, * 10% significance. The extent of risk attitude is calculated from a subject's
response to the post-experimental questionnaire: how much is a subject willing to pay for a lottery of a 25% chance of winning JPY200, but a
75% chance of winning nothing according to Cramer, Hartog, Jonker, and van Praag (2002).
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Table 10
Knightian Uncertainty on Reservation Point

(1) (2)
0.965 -52.788

(13.127) (28.365) *

Subject dummies Yes. Yes.
Round dummies Yes. Yes.
Session dummy Yes. Yes.

R-squared 0.831 0.859
N 1760 360

All observation OSR-consistent subjects only

Reservation point in precommitted games

Knight (=1)

Note: Robust standard errors in parentheses. *** 1%, ** 5%, * 10%
significance. A subject is among the OSR-consistent subsample if the
following conditions are satisfied; (1) for any given round, a subject
accepts a point drawn in (T1) if the point is no less than the corresponding
reservation point in (T3); (2) for any given round, a subject accepts a point
drawn in (T2) if the point is no less than the corresponding reservation
point in (T4); (3) for any given round, a subject rejects a point drawn in
(T1) if the point is lower than the corresponding reservation point in (T3);
(4) for any given round, a subject rejects a point drawn in (T2) if the point
is lower than the corresponding reservation point in (T4), and zero
otherwise.
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Table 11
Detecting Inconsistency with the Optimal Stopping Rule

Number of observations
round-base 2395 [96%] 94 [4%]
game-base 312 [21%] 84 [79%]

subject-base 9 [20%] 35 [80%]
Average final payoff

uniform 2732.04 2495.40 236.64 (47.03)
knight 2711.73 2536.58 175.15 (60.08)

Note: Standard deviations in parentheses.

Consistent with OSR Inconsistent with OSR Difference
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Table 12
Knightian Uncertainty on Reservation Point by the Extent of Risk Attitude (A)

(1) (2) (3)
risk prone risk neutral risk averse
-10.000 -29.417 -55.000
(6.882) (48.261) (41.616) 

Subject dummies Yes. Yes. Yes.
Round dummies Yes. Yes. Yes.
Session dummy Yes. Yes. Yes.

R-squared 0.9994 0.7572 0.7511
N 40 160 80

OSR-consistent subjects OSR-consistent subjects OSR-consistent subjects 

Table 13
Knightian Uncertainty on Reservation Point by the Extent of Risk Attitude (B)

(1) (2) (3)
risk prone risk neutral risk averse

-43.333 -19.250
(38.944) (44.507) 

Subject dummies Yes. Yes.

Session dummy Yes. Yes.

R-squared 0.905 0.654
N No observations 120 160

OSR-consistent subjects OSR-consistent subjects OSR-consistent subjects 
Note: Robust standard errors in parentheses. *** 1%, ** 5%, * 10% significance. The extent of
risk attitude is calculated from a subject's response to the post-experimental questionnaire: how
much is a subject willing to pay for a lottery of a 25% chance of winning JPY2000, but a 75%
chance of winning nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Reservation point in precommitted games

Knight (=1)

Knight (=1)

Note: Robust standard errors in parentheses. *** 1%, ** 5%, * 10% significance. The extent of
risk attitude is calculated from a subject's response to the post-experimental questionnaire: how
much is a subject willing to pay for a lottery of a 25% chance of winning JPY200, but a 75%
chance of winning nothing according to Cramer, Hartog, Jonker, and van Praag (2002).

Round dummies Yes. Yes.

Reservation point in precommitted games
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Figure 1:Trends in the Reservation Point by the Extent of Ambiguity (Risk Neutral Agent)

R1: No ambigutiy
R2: Ambiguity (Epsilon = 0.1)
R3: Ambigutiy (Epsilon = 0.25)
R4: Ambigutiy (Epsilon = 0.5)

Figure 2:Trends in the Reservation Point by the Extent of Ambiguity (Risk Averse Agent)

r1: No ambigutiy
r2: Ambiguity (Epsilon = 0.1)
r3: Ambigutiy (Epsilon = 0.25)
r4: Ambigutiy (Epsilon = 0.5)
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