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Abstract

In this paper we present an axiomatic approach to characterize the optimal
contracts, which we call “fair contracts,” in the general moral hazard model.
The two main axioms we employ are incentive efficiency and no–envyness. The
incentive efficiency requires that agents of organization select the Pareto efficient
contracts among all possible incentive compatible contracts. No–envyness is
equity requirement to ensure that each agent does not envy contracts of others
in the same organization. We then show that, due to the tension between
incentive efficiency and no-envyness, fair contracts have the very simple feature
that risk averse agents are offered the fixed wage to choose only the least costly
action.
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1 Introduction

In this paper we investigate the moral hazard model in which agents choose unob-
servable actions and provide an axiomatic approach to characterize the optimal con-
tracts, which we call “fair contracts,” in the view point of both efficiency and equity.
The standard approach to the moral hazard problem (for example see Grossman and
Hart (1983), Rogerson (1985), Jewitt (1988)) has focused only on the efficiency in
the sense that the principal chooses a contract to maximize her expected payoff sub-
ject to the set of constraints as follows. (i) incentive compatibility (IC) constraint:
contract must give the agent the proper incentive to choose a right action because
his action is not observable. (ii) individual rationality (IR) constraint: contract
should give the agent at least the reservation utility. (iii) Budget balanced (BB):
total incomes of both parties sum up to the realized total revenue. We then say
that a contract satisfies incentive efficiency (IE) if it satisfies (IC), (BB) and there
exist no other Pareto improving contracts which satisfy (IC), (BB). In the standard
principal-agent model a contract is selected in favor of the principal from all (IE)
contracts by satisfying (IR) of the agent.

We provide a slightly different approach to address the optimal contract design
problem in the moral hazard models. We impose several axioms which must be taken
into account when designing contracts to agents in organization and then charac-
terize the contracts satisfying these axioms. The axioms we will employ include not
only the standard efficiency criterion such as (IE) mentioned above but also a sort
of equity concern among agents, which we will call no-envyness (NE). Here (NE)
requires that each agent does not envy any contracts offered to others within the
same organization. This is analogous to the concept of “no-envyness” used in the
literature of social choice theory (see Thosmson (2010) for a comprehensive survey
on this topic): a resource allocation is said be no-envy if every individual does not
envy the consumption bundles allocated to others.1 We will modify this idea in the
context of the principal-agent model and utilize it as an equity condition in order
to characterize the optimal contracts.

In addition to (IE), (IR) and (NE), we also consider the possibility that the wage
scheme of each agent is non-decreasing in his own verifiable performance (output).
We call this axiom monotonicity (MON). This is also a reasonable requirement
because most wage schemes used in practice satisfy this condition. We can also give
theoretical justification for this condition by considering ex post moral hazard of
agents as follows. Each agent can secretly dispose his own output ex post after it
is realized. Then, if his wage is decreasing in some parts of his outputs, the agent
has the incentive to discard some amount of the realized output and obtain higher
wages. Thus (MON) must be satisfied for ruling out such ex post moral hazard (see
Innes (1990) and Matthews (2001) for a similar argument).

We call a contract profile of agents in organization fair contract when it satisfies
1See also Foley (1967), Pazner and Schmeidler (1974, 1978) and Varian (1974) for the classic

works on equity in economics.
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all these axioms (IE), (NE), (MON) and (IR).2 Then we show that fair contracts
have the very simple feature as follows: every risk averse agent is offered a fixed wage
so that he chooses the least costly action. On the other hand, risk neutral agents are
motivated to choose the actions which maximize the surplus of organization, given all
risk averse agents choose the least costly action. Hence the optimal contracts (“fair
contracts” in our notion) become drastically simple once we take into account not
only the incentive efficiency but also non-envyness for contracting in organizations.

The basic intuition behind our characterization result is the following: since risk
averse agents are assumed to be heterogeneous with respect to their abilities for
performing tasks, they must be offered different wage schemes which differ in the
degrees of how much their wages reflect their verifiable performances. If a wage
scheme responds more highly to the changes of the performances than another, it
is said to be higher-powered incentive scheme than the other. Put differently, a
higher-powered incentive scheme has “steeper slope” of reward with respect to the
performances than a lower-powered scheme. Of course, higher-powered incentive
scheme involves more risk on risk averse agent than lower-powered one. Then con-
sider a fair contract which induces risk averse agents with different abilities to work
hard. High ability agents can improve the probability distributions of their per-
formances at lower marginal action costs than the low abilities. Thus, less risk is
needed for the high ability agents to work as hard as the low abilities. Then, in
the view point of incentive efficiency the high ability agents should be offered lower
powered incentive scheme than the low abilities because the former can work as hard
as the latter at smaller risk. However, then the high ability agents envy the higher-
powered incentive scheme offered to the low ability agents because the former can
exploit their (high) ability under the wage scheme which more highly responds to
the verifiable performances. When facing such conflict between incentive efficiency
and no-envyness, the organization finds it impossible to have risk averse agents with
different abilities work hard together. As a consequence, any fair contract must
involve a fixed wage for different risk averse agents who are induced to choose only
the least costly action.

Our model has the relative advantage to the standard moral hazard models in
that we can provide a simple characterization result even in general production
environment. In the standard approach to the moral hazard problem, it is quite
difficult to give sharp predictions about exact features of optimal contracts: how do
optimal wages vary with verifiable performances? What shapes does the optimal
wage schedule display? Is it linear or non-linear? In contrast our result shows that
the optimal contracts become drastically simple once we take into account not only
efficiency but also some sort of equity among agents in organization.

Beside the theoretical interest, it is also important to extend the standard

2This is also analogous to the concept of “fair allocation” used in the literature of social choice
theory. An allocation is said to be fair if it satisfies Pareto efficiency and no-envyness (Thomson
(2010)). In our context the Pareto efficiency is replaced by incentive efficiency (IE) due to the
presence of the moral hazard problem.
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principal-agent models to encompass some notions of equity or fairness. This is
because in real world there are organizations which may seek different objectives
from maximizing the principal’s profit, e.g., non-profit organizations, governments,
and state–owned enterprises. These organizations may take into account the welfare
of employees, citizens and so on, and may pursue not only efficiency but also some
kinds of fairness, e.g., governments would try to design “fair” tax systems. Even in
profit organizations equity is often one of the major concerns as well as efficiency
and profitability. For example, top management of corporations might try to avoid
conflict among employees who are concerned about their relative wages in the same
workplaces.

Related Literature
There are two strands of the literature which are related to our paper. First, several
recent papers incorporate the aspects of fairness into the standard principal-agent
models.3 However, in these papers equity concern and other-regarding preferences
are directly introduced into the payoff functions of agents in some specific ways: for
example, the payoff function of an agent is assumed to depend on relative incomes
between him and his colleagues. Our approach is different from these papers because
we do not impose direct specifications of fairness concern on the payoff functions of
agents but rather we use an axiomatic approach by using (NE) as a natural axiom.
Thus our model can avoid the problem regarding what specification of the payoff
function is the most plausible to describe the preference over equity and fairness.
Second, some papers show the optimality of simple contracts in the moral hazard
environments. Holmström and Milgrom (1987) show that the optimal reward to
agent becomes linear with respect to the eventual outcomes in the dynamic model
in which agent controls the drift rate of the stochastic process of outputs (see also
Hellwig and Schmidt (2002) for further elaboration of the model). Our paper is
different from theirs because we focus on the standard static moral hazard environ-
ment only except for incorporating the concept of no-envyness as an equity concern.
Holmström and Milgrom (1994) also show that the optimal contract to agent be-
comes fixed wage in the multi-task context in which agent performs multiple tasks
at a time. Although our model also shows the optimality of the fixed wage as in
theirs, our approach is different from theirs again because we investigate the tension
between incentive efficiency and no-envyness, which results in the lower-powered
incentive schemes.

The remaining sections are organized as follows: in Section 2 we set up the basic
model of moral hazard in an organization with multiple agents. In Section 3 we
provide a characterization result that the optimal contracts which satisfy incentive
efficiency and no–envyness become the fixed wage scheme for all risk averse agents

3See for example Bartling (2010), Englmaier and Wamback (2010), Fehr and Schmidt (2000,
2004), Itoh (2004), Neilson and Stone (2010) and Rey-Biel (2008) for recent development of agency
models incorporating inequity aversion.
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when we impose some technical conditions on the probability distributions of the
verifiable performances. In Section 4 we will show more general characterization
result without imposing the specific conditions on the information structure, given
the heterogeneity among risk averse agents is sufficiently small. In Section 5 we
will proceed to show the existence proof of fair contract. Our proof is constructive.
We find a fair contract which satisfies all the axioms we have mentioned, (IE),
(NE), (MON) and (IR), under certain conditions. In Section 6 we will discuss the
robustness and extensions of our results: first, we show that our characterization
results are not substantially changed by dropping the axiom of monotonicity (MON).
Second, we will discuss the implications about the priority of efficiency and equity
for designing incentive contracts. Our concept of fair contracts is interpreted as the
one we are capturing the situation in which agents of organization first seek the
incentive efficiency and then, as the second step, they select the contracts which
satisfy no-envyness as well as other axioms. We will call such contracts efficiency–
first–optimal contracts. One might however think that in some organizations equity
may be taken as the first priority before considering the incentive efficiency. This
might be suitable in non–profit organizations and public sectors. In such situations
agents of organization first identify the set of no–envy contracts and then, as the
second step, they select the Pareto efficient contracts among all possible no-envy
contracts together with other axioms. We will call such contracts equity-first-optimal
contracts. We then show that the set of equity–first-optimal contracts is not smaller
than the set of efficiency–first–optimal contracts. This result implies that there may
exist the possibilities that high–powered incentive contracts are offered to risk averse
agents even when heterogeneity among agents is so small that all efficiency–first–
optimal contracts must have the fixed wage schemes of risk averse agents. Thus
incentive schemes offered in organizations which take equity as the first priority are
more likely to be higher powered than those in organizations which take efficiency
as the first priority.

2 Model

We consider an organization (or a team) which consists of N agents. Let I be the set
of all agents where #I = N . Let Ir be the set of risk averse agents where Nr = #Ir

and In the set of risk neutral agents where Nn = #In. Thus I = Ir ∪ In. We
assume that there exist at least two risk averse agents and one risk neutral agent in
organization:

Assumption 1. Nr ≥ 2 and Nn ≥ 1.

Agent i chooses an unobservable action ai ∈ A where A is finite and #A =
M + 1 ≥ 2. We denote by an ∈ A a generic element of A where a0 ≡ 0 ≤ a1 ≤ a2 ≤
· · · ≤ aM . Let a ≡ (a1, a2, ..., aN ) be a vector of actions taken by all agents.
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Agent i generates a verifiable performance yi ∈ Y . We can interpret yi as output
of agent i which is used to yield the revenue of organization as we will explain more
below. We assume that Y is a finite set and #Y = L ≥ 2. Let yi

n be a generic
element of Y . We denote by P i

n(a) ∈ (0, 1) the probability of the performance yi
n of

agent i being realized conditional on his action a ∈ A. Let y ≡ (y1, y2, ..., yN ) be a
vector of the realized performances of all agents. We assume that the performances
y are independently distributed among agents.

Agents are heterogeneous in terms of their abilities for performing the tasks as-
signed to them. Specifically, agents differ from each other in terms of the probability
distributions of their performances (P i

n(ai))L
n=1 and their action costs Gi(a). Agent

i has the following standard utility function which is separable between utility on
income w and disutility on action a ∈ A:

ui(w) − Gi(a) (1)

where Gi is increasing and we normalize Gi(0) = 0. Here we assume that the utility
functions on incomes are identical across all risk averse agents. Thus we set ui = u
for all i ∈ Ir. Let φ ≡ u−1 be the inverse function of u. We also suppose that the
utility function on income of risk neutral agent is given by ui(w) = w for each i ∈ In.

Remark. We can allow all A, Y and u to depend on identities of agents. However,
our main results are not substantially changed as long as the differences in these
characteristics are small.

The organization can generate the total revenue R(y) which depends on a profile
of performances (outputs) of agents y. R is increasing in each argument. In what
follows we will use notations as follows: let Ey[·|a] be expectation over the perfor-
mances of all agents y ∈ Y N conditional on an action profile of them a. Let Eyi [·|ai]
be expectation over the verifiable performance yi of agent i conditional on his action
ai. Let also Ey−i [·|a−i] denote expectation over the verifiable performances of all
other agents than i conditional on their actions a−i = (aj)j ̸=i.

Since the performances (or outputs) of agent y are verifiable but their actions a
are not, a wage scheme of agent i should be contingent only on the realizations of y.
A contract of agent i is defined by Ci = {wi(y), âi} which specifies wi(y) the wage
scheme depending on realization of verifiable performances y and an action âi ∈ A
to be taken. Let C = (Ci)i∈I be a profile of contracts. We call a wage scheme wi(y)
fixed wage when

wi(y) = w

for some constant w for all y ∈ Y N .
We suppose that the wage schemes {wi(y)}i∈I must be budget balanced ex post,

i.e. the total wages of all agents should be equal to the organization revenue, as
follows: ∑

i∈I

wi(y) = R(y) ∀ y ∈ Y N . (BB)
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We denote by C the set of all contracts satisfying (BB). We will restrict our attention
to the class of the wage schemes in C in what follows.

Next we will consider several axioms to be satisfied in organization.
First, we define the efficiency concept in the presence of the moral hazard prob-

lem. One reasonable notion of efficiency is incentive efficiency (IE) which is defined
as the Pareto efficient contracts satisfying incentive compatibility (IC) of agents.
(IC) requires the following: since actions of agents are not observable, a contract
profile C ∈ C should give them the proper incentives to choose specified actions
â = (âi)i∈I . In other words a contract profile C ∈ C should require that every agent
follows the instruction to choose specified action âi given all others doing so:

Ey[ui(wi(y))|âi, â−i] − Gi(âi) ≥ Ey[ui(wi(y))|a′, â−i] − Gi(a′) ∀ a′ ̸= ai. (IC)

Here agents simultaneously choose their actions and hence each of them takes the
actions of others as given when he chooses his action because, by assumption, agents
cannot observe their actions each other. Thus an action profile â should be a Nash
equilibrium in the game in which agents simultaneously choose their actions.

We call a contract profile C ∈ C incentive feasible if it satisfies (IC). We denote
by CF ⊂ C the set of all incentive feasible contracts.

Although there are several ways to define the efficiency in the presence of private
information, we follow the argument by Holmström and Myerson (1983) and define
the efficiency on the ground of contract satisfying (IC). More formally, take an
incentive feasible contract C ∈ CF and define the resulting expected utility of agent
i as

U i(Ci) ≡
∑
n

Ey[ui(wi(y))|â] − Gi(ai). (2)

Then, our first axiom is incentive efficiency (IE) as follows:

Incentive Efficiency (IE): An incentive feasible contract C ∈ CF is incentive
efficient if there exist no other incentive feasible contract C ′ ∈ CF with C ′ ̸= C
such that U i(Ci′) ≥ U i(Ci) for all i ∈ I with strict inequality being held for at least
one agent.

In the standard principal-agent model it has been assumed that one party, say
the principal, chooses her optimal contract among all (IE) contracts given the agent
receives at least the reservation utility. In other words the optimal contract is
selected in favor of the principal on the Pareto frontier constrained by (IC). In this
paper we do not make any restrictions on bargaining powers of agents in organization
but simply we require that a contract must be incentive efficient.

In addition to (IE), we impose an axiom representing a sort of equity requirement,
which we call no–envyness (NE), as follows:

Ey[ui(wi(y))|âi, â−i]−Gi(âi) ≥ max
a′∈A

Ey[ui(wj(y))|a′, â−i]−Gi(a′) ∀ j ̸= i, a′ ∈ A.

(NE)
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(NE) states that each agent i does not envy the wage scheme of others wj(y) com-
pared to his own scheme wi(y). If agent i were offered the wage scheme of agent
j, he imagines that he could receive the expected utility corresponding to the right
hand side of (NE) given he will choose his action a′ ∈ A appropriately and all others
choose the specified actions â−i. (NE) then requires that agent i does not envy the
contract offered to others.

Note that (NE) is analogous to the concept of no-envyness used in the literature
of social choice theory (Thomson (2010)). In our model each agent imagines what
would happen if he were offered a contract of other agent before he chooses his
action. In this sense our notion of no-envyness is imposed at the ex ante stage
before agents choose actions. However, an alternative condition for no-envyness is
also possible. For example, some agent may envy others after they chose actions
and the final performances were realized. We will discuss this ex post case in the
concluding remarks later.

We also impose individual rationality (IR) as an axiom to be satisfied. We denote
by U i the reservation utility of agent i who would receive outside the organization
if he rejected the contract Ci and left the organization. Then a contract Ci should
give agent i at least the reservation utility U

i, i.e. it should be individually rational
(IR):

Ey[ui(wi(y))|â] − Gi(âi) ≥ U
i ∀ i ∈ I. (IR)

Finally, we impose monotonicity (MON) that the wage scheme of each agent is
non-decreasing in his own verifiable performance (output). This is stated formally
as follows. For all i ∈ I,

wi(yi′′ , y−i) ≥ wi(yi′ , y−i) ∀ yi′′ > yi′ , ∀ y−i (MON)

Many contracts used in practice satisfy such monotonicity and hence this is a rea-
sonable condition. As in Innes (1990) and Matthews (2001), we can also give a
theoretical justification for this as well: each agent can secretly dispose his output
yi before he provides it to the organization.4 Then, if wi(y′′, y−i) < wi(y′, y−i) for
some y′′ > y′, agent i will dispose y′′ − y′ > 0 and obtain higher wage wi(y′, y−i)
even when y′′ is realized. Thus wi must be non-decreasing in yi.

Remark. We will discuss below that we can dispense with (MON) (see Section 6).

We call a contract profile C = (Ci)i∈I ∈ C fair contract if it satisfies all the above
axioms (IE), (NE), (IR) and (MON). Let Cf denote the set of all fair contracts. It
may be the case that Cf = ∅.

4We assume here that the supplied output after the decision to dispose was made is verifiable
but it is not verifiable what outputs each agent actually produced before the decision to dispose is
made.
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3 Characterization of Fair Contracts

In this section we will characterize the fair contracts. To obtain sharper characteri-
zation result, we modify the notion of incentive efficiency slightly as follows:

Modified Incentive Efficiency (IE∗): Let C̃F ⊂ C be the set of all contracts
satisfying (IC) and (MON). Then a contract profile C ∈ C̃F is said to be modified
incentive efficient, denoted by (IE∗), if there exist no other contarcts C ′ ∈ C̃F with
C ′ ̸= C such that U i(Ci′) ≥ U i(Ci) for all i ∈ I with strict inequality being held for
at least one agent.

Let Cf
∗ denote the set of all contracts satisfying (IE∗), (NE) and (IR).

Then we can verify that Cf ⊆ Cf
∗ .

Lemma 1. Cf ⊆ Cf
∗ .

Proof. Take C ∈ Cf but suppose that C /∈ Cf
∗ . Then, since C satisfies (NE) and

(IR) but C /∈ Cf
∗ , C must not satisfy (IE∗). Since C satisfies (IC) and (MON),

we have C ∈ C̃F . Then, since C is not modified incentive efficient, there must
exist a different contract C ′ ̸= C where C ′ ∈ C̃F such that C ′ Pareto dominates C.
However, since C ′ ∈ C̃F implies that C ′ satisfies (IC), we must have C ′ ∈ CF . Then,
C ′ is incentive feasible and Pareto dominates C but this contradicts the fact that C
is incentive efficient. Q.E.D.

In this section we will focus on the set Cf
∗ which is larger than Cf . Then we

will give a characterization result on Cf
∗ which is sharper than the characterization

result on the set Cf . With a slight abuse of definition, we call C ∈ C̃F fair contract
in the same way as defined in the previous section. Then we will show that all
fair contracts C ∈ C̃F must involve fixed wages offered to risk averse agents under
certain conditions. Then Lemma 1 implies that all contracts in Cf must also have
fixed wages offered to risk averse agents.

We take any fair contract Ĉ ∈ Cf
∗ where Ĉi = {wi(y), âi} for each i ∈ I and fix

it in this section.
We first show the following result:

Lemma 2. Any fair contract Ĉi offered to risk averse agent i ∈ Ir who is induced to
choose a higher action âi > 0 than the least costly one (zero) must be individualistic
in the sense that ŵi(y) = ŵi(yi) for all i ∈ Ir.

Proof. Appendix.

Since the performance signals are statistically independent among agents, it is
efficient for wage scheme of every risk averse agent to depend solely on his own
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performances. If this is not the case for some risk averse agent, it is possible to
design the new wage scheme of that agent such that it induces the same expected
utility and the same action as under the original scheme while reducing the risk
imposed on him by eliminating the dependence of all other agents’ performances
from his wage scheme. Then some risk neutral agents are better off by reducing the
risk on the risk averse agents while unchanging their incentives. Thus (IE∗) requires
that the wage scheme of every risk averse agent must be individualistic.

Due to Lemma 2 we will denote by wi(yi) the wage scheme offered to risk averse
agent i, which solely depends on his own performance yi = yn ∈ Y .

Next we consider the following implementation problem where the expected wage
of risk averse agent j ∈ Ir is minimized when implementing an action a ∈ A from
him:
Problem (CMj − a)

min
w(yn)

∑
n

P j
n(a)w(yn)

subject to
w(y′′) ≥ w(y′) ∀ y′′ > y′ (MON)∑

n

P j
n(a)u(w(yn)) − Gj(a) ≥

∑
n

P j
n(a′)u(w(yn)) − Gj(a′), ∀ a′ ̸= a (IC)

∑
n

P j
n(a)u(w(yn) − Gj(a) ≥ Û j (IR∗)

where
Û j ≡

∑
n

P j
n(a)u(ŵj(yn)) − Gj(âj)

denotes the expected payoff of agent i under the supposed fair contract Ĉj .

Let ŵj(y|a) be the wage scheme which solves the above problem (CMj − a) to
implement a ∈ A from risk averse agent j. Let a = âj in Problem (CMj − a). Then
the optimal wage scheme ŵj(y|a) which solves Problem (CMj − âj) exists because
the fair contract Ĉj satisfies all (MON), (IC) and (IR∗) by definition and hence the
constraint set is non-empty.5 Also the optimal scheme ŵj(y|a) is unique.6

Since a contract Ĉi must be incentive efficient, it must solve Problem (CMi −
âi) for each risk averse agent i ∈ Ir. Otherwise there exists a different contract

5By a standard argument (Grossman and Hart (1983)), we can verify that the constraint set is
compact as well. Then the existence of the optimal wage scheme directly follows from the continuity
of the objective function.

6To see the uniqueness, define wn ≡ φ(un) for each yn ∈ Y and note that (IC) and (IR∗) are
both linear constraints with respect to (un). Thus the constraint set, denoted by Γ, is convex: take
any (u′

n)n and (u′′
n)n in Γ, and λu′

n +(1−λ)u′′
n for λ ∈ (0, 1). Then we can verify that φ(λu′

n +(1−
λ)u′′

n)−φ(λu′
n−1 +(1−λ)u′′

n−1) ≥ φ′(λu′
n−1 +(1−λ)u′′

n−1)(λ(u′
n −u′

n−1)+(1−λ)(u′′
n −u′′

n−1)) ≥ 0
due to convexity of φ and (u′

n), (u′′
n) ∈ Γ so that they satisfy (MON). Thus λu′

n + (1 − λ)u′′
n ∈ Γ

and hence Γ is convex.
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Ci ̸= Ĉi which satisfies (MON), (IC) and (IR∗) for agent i but yields a smaller
expected wage than the minimum attained in Problem (CMi − âi). By replacing Ĉi

by such alternative contract Ci, some risk neutral agent can be better off because the
organization can save the wage payment to the risk averse agent and gives some risk
neutral agent such saved amount while still implementing the same action profile.

This is formally shown as in the following lemma:

Lemma 3. Suppose that Ĉi = {ŵi(yi), âi} is a fair contract of risk averse agent
i ∈ Ir. Then Ĉi should solve Problem (CMi − âi) to implement âi from agent i, i.e.,
ŵi(y) = ŵi(y|âi) for each y ∈ Y and for each risk averse agent i ∈ Ir.

Proof. Appendix.

From now on, we assume that risk averse agents are heterogeneous in decreasing
order in terms of their abilities. To this end, we introduce some notation as follows:
let ∆Gi(â, a) ≡ Gi(â) − Gi(a) > 0 be the marginal action cost of agent i for â > a.
Let F i

n(a) be the distribution function of agent i’s performance conditional on his
action a ∈ A, defined by F i

n(a) ≡
∑

l≤n P i
l (a).

Then we impose the following weak condition:

Assumption 2. (i) For any i ∈ Ir and any â > a, we have F i
n(a) > F i

n(â) for any
n ≤ L − 1. (ii) For any i ̸= j, i, j ∈ Ir, and any a ∈ A, F i

n(a) > F j
n(a) holds for all

yn ∈ Y when i > j.

Assumption 2 (i) simply states that higher action can improve the probability
distribution of performances for any risk averse agent in the sense of the first order
stochastic dominance. Assumption 2 (ii) says that the risk averse agent indexed by
lower number j can improve the probability distribution of the performances in the
sense of the first order stochastic dominance than the risk averse agent indexed by
higher number i > j.

In addition to Assumption 2 we impose further restrictions on the ability ranking
among different risk averse agents. We define the following: for any two risk averse
agents k = i, j ∈ Ir, i ̸= j, and any two actions â ̸= a,

λk
n(â, a|i, j) ≡ F i

n(a) − F j
n(â)

F k
n (a) − F k

n (â)
(3)

and
λ

k(â, a|i, j) ≡ max
n

λk
n(â, a|i, j),

λk(â, a|i, j) ≡ min
n

λk
n(â, a|i, j).

Here note that λk
n(â, a|i, j) is well-defined due to Assumption 2.
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To see what λk
n(â, a|i, j) says about, suppose that risk averse agent i chooses

an action a ∈ A and, as a thought experiment, imagine that his type is changed
from i to j as well as his action is also changed from a to â. Then the distribution
function of the performance yi is changed from F i

n(a) to F j
n(â). Such total change

F j
n(â) − F i

n(a) can be decomposed into either

F i
n(a) − F j

n(â) = (F i
n(a) − F i

n(â)) + (F i
n(â) − F j

n(â)) (4)

or
F i

n(a) − F j
n(â) = (F i

n(a) − F j
n(a)) + (F j

n(a) − F j
n(â)). (5)

Such decomposition is made along with two different roots: first, type is changed
from i to j by fixing an action. Second, action is changed from a to â by fixing a
type. In this respect λk

n(â, a|i, j) can be interpreted as the inverse measure about
how much the change in agent k’s action (a → â) contributes to the total change
of F i

n(a) − F j
n(â) relative to the change of types (i → j). Then 1/λk(â, a|i, j) (resp.

1/λ
k(â, a|i, j)) represents the maximum (resp. minimum) influence of such relative

contribution of agent k’s action to the total change F i
n(a) − F j

n(â).
Then we make the following assumption:

Assumption 3. For any two risk averse agents i, j ∈ Ir and any action â > a, if
i > j, then

∆Gi(â, a)
∆Gj(â, a)

>
λ

j(â, a|i, j)
λi(â, a|i, j)

.

The left hand side of the inequality in Assumption 3 is the marginal action cost
of agent i relative to agent j. Its right hand side is the ratio between the maximal
influence of the relative contribution by agent i’s action and the minimal influence
of the relative contribution by agent j’s action as we have defined above. Thus the
right hand side represents the upper bound for the relative contribution of agent
i’s action as compared to agent j. Then Assumption 3 says that agent i incurs
larger marginal action cost than agent j even when he performs his task at the best
compared to agent j. In this sense we can say that agent i is less efficient than agent
j.

Given all these assumptions, by recalling that #Ir = Nr and #A = M + 1, we
can show the following result.

Theorem 1. Suppose that Assumption 1-3 hold. Suppose also that M + 1 ≤ Nr.
Then any fair contract must have a fixed wage for at least Nr−M risk averse agents.

Proof. Appendix.
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Theorem 1 states that offering a fixed wage to risk averse agents becomes preva-
lent feature in large organizations in which the number of risk averse agents is so
large relative to the number of actions each agent can take.

The intuition behind Theorem 1 is as follows. Since the number of actions M +1
is larger than the number of risk averse agents Nr (M + 1 ≥ Nr), if only less than
Nr −M risk averse agents choose the least costly action, there must be at least two
risk averse agents who choose the same action â > 0. Let these agents be i and
j. Then, by Assumption 3 we can label them as i > j without loss of generality.
Here agent i is less efficient than j in the sense of Assumption 3. Then we can
show that, when both i and j choose the same and higher action than the least
costly one, (IC) of more efficient agent (agent j) must be slack: the wage scheme
of less efficient agent i must be higher-powered than that of more efficient agent
j when implementing the same action â > 0 from both agents. However, agent j
then envies agent i since the former can exploit more gains of higher ability from
higher-powered scheme than the latter. Thus no-envyness and incentive efficiency
cannot be compatible with each other. Therefore, fair contract must involve a fixed
wage for at least Nr − M risk averse agents.

When the number of verifiable performances yi ∈ Y is two (#Y = 2), As-
sumption 3 is greatly simplified as follows. When #Y = 2, we have y = y1 (low
outcome) or y = y2 (high outcome). Then Assumption 3 is satisfied as long as
∆Gi(â, a)/∆Gj(â, a) > (P i

2(â)−P i
2(a))/(P j

2 (â)−P j
2 (a)) for all â > a because then we

have λk(â, a) = λ
k(â, a) = (F i

1(a)−F j
1 (â))/(F k

1 (a)−F k
1 (â)) and F k

1 (a) = 1−P k
2 (a).

Here P k
2 (â) − P k

2 (a) denotes the marginal increase in success probability of obtain-
ing high outcome y2 from exerting higher action â > a. Thus this condition simply
states that the marginal action cost of agent i relative to that of agent j is larger
than the marginal increase in success probability of agent i relative to that of agent
j.

4 More General Characterization: Small Heterogeneity

We will next consider an alternative condition to dispense with both Nr ≥ M + 1
and Assumption 3. In particular, we will show that the same characterization result
as Theorem 1 holds even when we drop Nr ≥ M + 1 and Assumption 2 if, instead,
we assume that heterogeneity among risk averse agents is sufficiently small.

We first define the marginal expected revenue of organization with respect to
action of agent i, given action of agent j, aj , and the actions of all others, denoted
by a−i−j ≡ (ak)k ̸=i,j , as follows:

∆i(aj |ai′′ , ai′) ≡ Ey[R(y)|ai′′ , aj , a−i−j ] − Ey[R(y)|ai′ , aj , a−i−j ].

Since A and Ir are finite, there exists some scalar α > 0 such that

|∆i(z|z′′, z′) − ∆j(z|z′′, z′)| ≤ α

13



for all z, z′′, z ∈ A and all i, j ∈ Ir.
Then we make the following assumption:

Assumption 4. For any two risk averse agents i, j ∈ Ir, i ̸= j, and α defined
above, (i) there exists some β̃ > 0 such that

∆i(z′′|z′′, z′) − ∆i(z′|z′′, z′) ≥ β̃

for all z′′ > z′ and (ii) β ≡ β̃ − α > 0

The first part of Assumption 4 says that the marginal expected revenue of orga-
nization with respect to action of each risk averse agent is increasing in actions of
others. Put differently, actions of agents are complement (supermodular) with each
other. The second part of Assumption 4 then means that such complementarity
gain β̃ outweighs the asymmetry α among risk averse agents.

We also weaken Assumption 3 as follows:

Assumption 5. For any two risk averse agents i, j ∈ Ir, if i > j, then

∆Gi(â, a) > ∆Gj(â, a)

for all â > a.

Assumption 5 simply states that risk averse agents are ranked in decreasing order
in terms of only their marginal action costs.

Since A and I are finite, there exists some (ε, δ) > 0 such that

δ ≥
∣∣∣∆Gj(a′′, a′) − ∆Gi(a′′, a′)

∣∣∣ (6)

for all i, j ∈ Ir and all a′′, a′ ∈ A, and

ε ≥
∣∣∣P i

n(a) − P j
n(a)

∣∣∣ (7)

for all i, j ∈ Ir, all yn ∈ Y and all a ∈ A.
Then we can show the following result:

Theorem 2. Suppose that Assumption 1, 4 and 5 hold. Then there exists some non–
empty set D ⊂ ℜ2

+ such that for all (ε, δ) ∈ D any fair contract Ĉ must have fixed
wages for all risk averse agents who are induced to choose the least costly actions
ai = 0 for all i ∈ Ir.

Proof. Appendix.

Note that Theorem 2 states that all risk averse agents are offered fixed wages in
any fair contract when heterogeneity among them are sufficiently small in the sense

14



that ε and δ defined in (6) and (7) are both small enough. Thus we can dispense
with Assumption 2 and 3 and M + 1 ≥ Nr which were used for proving Theorem 1.

The reason for this is as follows.
First, when heterogeneity among risk averse agents is small, any fair contract

must have the feature that the wage schemes of risk averse agents which implement
actions (âi)i∈Ir become close to each other. More formally, recall Lemma 3 that
the fair contract ŵi(y) for risk averse agent i must solve Problem (CMi − âi): let
ŵi(yi|âi) be the optimal wage scheme which implements action âi from risk averse
agent i in Problem (CMi − âi). Here we must have ŵi(y) = ŵi(y|âi). Then we
show that ŵi(y|â) becomes close to ŵj(y|â) for any y ∈ Y when their heterogeneity
is small enough (both ε and δ are small), provided agent i and j choose the same
action â ∈ A.

Second, we show that all risk averse agents are actually induced to choose the
same action at any fair contract if the heterogeneity is small enough. This follows
from (IE∗) and Assumption 4. By making use of the complementarity condition in
Assumption 4, we can obtain the result that the actions of risk averse agents which
satisfy (IE∗) must be symmetric. To see this, let the organizational residual surplus
define by the expected total revenue Ey[R(y)|a] minus the total wages of all risk
averse agents

∑
i∈Ir

Eyi [ŵi(yi)|ai]:

H(a) ≡ Ey[R(y)|a] −
∑
i∈Ir

Eyi [ŵi(yi)|âi].

This should be shared among all risk neutral agents due to (BB). Then (IE∗) requires
that the actions of risk averse agents (ai)i∈Ir must maximize H(a) because otherwise
other actions can be implemented from risk averse agents and hence risk neutral
agents can be better off, which contradicts (IE∗). We then show that, if Assumption
4 holds, such optimal action becomes symmetric among all risk averse agents in the
sense that ai = aj for all i, j ∈ Ir.7 Thus we can ensure that all risk averse agents
choose the same action âi = âj in any fair contract when the heterogeneity among
them is sufficiently small, given Assumption 4.

Third, we can show that Assumption 3 is satisfied when risk averse agents are
heterogeneous but such heterogeneity is larger for the differences in their marginal
action costs than the differences in the impacts of their actions on the probability
distributions of performances. In other words both ε and δ are small enough but δ
is larger than ε.

By combining all these facts, we can ensure Assumption 3 as well as the condition
that all risk averse agents choose the same action âi = âj for all i, j ∈ Ir when the
heterogeneity among risk averse agents lies in some small range. Then, by using

7Without Assumption 4, the optimal actions which maximize H over (ai)i∈Ir may be asymmetric
even when the expected revenue function Ey[R(y)|a] is symmetric with respect to (ai)i∈Ir and ŵi(·|·)
is also symmetric, i.e. ŵi(·|·) = ŵ(·|·) for all i ∈ Ir. This is essentially because H may have multiple
maximizes over (ai)i∈Ir some of which are asymmetric.
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Theorem 1, we can show that the fair contract must offer a fixed wage to each risk
averse agent.

Next we characterize the optimal contracts offered to risk neutral agents. Note
first that the wage scheme of each risk averse agent in any fair contract is individu-
alistic by Lemma 2. Recall that ŵi(yi) is the wage scheme of risk averse agent i in
a fair contract which implements action âi from him. Due to (BB), the risk neutral
agents then obtain the residual revenue R(y) after subtracting total wages paid to
all risk averse agents

∑
i∈Ir

ŵi(yi).
Then we define the actions of risk neutral agents, denoted by (ãi)i∈In , which

maximize the expected residual surplus of organization after fixing the action profile
ar ≡ (âi)i∈Ir of risk averse agents:

âi ∈ argmax
ai∈A

Ey[R(y)|ar, ai, â−i] −
∑
i∈In

Gi(ai) −
∑
i∈Ir

Eyi [ŵi(yi)|âi].

We can show the following result:

Theorem 3. In any fair contract the risk neutral agents must choose the actions
(âi)i∈In so as to maximize the residual surplus of organization, given action profile
of risk averse agents ar = (âi)i∈Ir .

Proof. Appendix.

5 Existence of Fair Contract

In this section we show the conditions under which there exists a fair contract.
Instead of showing C∗

f ̸= ∅, we will return back to the original set of fair contracts
Cf and proceed to show the stronger result that Cf ̸= ∅. Due to Lemma 1, we know
that Cf ⊆ Cf

∗ . Thus, if we can show that Cf ̸= ∅, this implies Cf
∗ ̸= ∅. Note here

that any fair contract in Cf is defined in terms of incentive efficiency (IE) but not
its modified version (IE∗).

Our strategy for existence proof is as follows: first, we set the wage scheme of
every risk averse agent as a fixed wage, i.e., wi(yi) = w for all yi ∈ Y . Thus every
risk averse agent chooses the least costly action, ai = 0 for all i ∈ Ir.

We then show that offering a fixed wage to every risk averse agent becomes
incentive efficient when we take the fixed wage w to be large enough. To see this,
note that, if the fixed wage w is not incentive efficient, there must exist a profile
of other contracts (Ci)i∈Ir for risk averse agents such that it solves the following
problem:
Problem (OP):

max
(Ci)i∈Ir

E[R(y)|ar, an] −
∑
i∈Ir

P i
n(ai)wi

n
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subject to∑
n

P i
n(ai)u(wi(yn))−Gi(ai) ≥

∑
n

P i
n(a)u(wi(yn))−Gi(a) ∀ a ̸= ai, ∀ i ∈ Ir (IC)

∑
n

P i
n(ai)u(wi(yn)) − Gi(ai) ≥ u(w) ∀ i ∈ Ir (IR∗)

where ar ≡ (ai)i∈Ir and an ≡ (ai)i∈In denote vectors of actions taken by risk averse
and neutral agents respectively. Here (IC) denotes incentive compatibility constraint
for risk averse agent i and (IR∗) denotes the constraint such that risk averse agent
i is not worse off compared to the case that he receives the fixed wage w. Note that
the expected wage paid to risk averse agent i, i.e.,

∑
n P i

n(ai)wi
n, is bounded below

from φ(Gi(ai) + u(w)) due to (IR∗) and concavity of u. Then such lower bound for
the expected wage of risk averse agent becomes large when w is taken to be large
as well. This is more likely to be so when higher action ai is implemented because
then higher payment must be compensated to risk averse agent for agreeing on an
alternative wage scheme. Thus risk neutral agents cannot be better off by offering
other wage schemes than the fixed wage w to risk averse agent when the status quo
utility u(w) is large enough. Then the optimal solution to Problem (OP) involves
the implementation of only the least costly action from risk averse agents.

Second, given this result, we find the wage schemes of risk neutral agents which
are induced to choose the actions maximizing the residual surplus of organization
after subtracting the fixed wages of risk averse agents. More formally, we define the
optimal actions of risk neutral agents, denoted by ãn ∈ ANn , which maximize the
total residual of surplus given all risk averse agents choosing the least costly action
ai = 0, as follows:

ãn ∈ arg max
an∈ANn

RS(an) ≡ Ey[R(y)|0,an] −
∑
i∈In

Gi(ai) (8)

where 0 denotes Nr–dimensional vector of zeros. Then we can show that there
exists a single optimal action ã ≡ ãi for any risk neutral agent i ∈ In when the
heterogeneity among risk neutral agents is small enough. Given this, we will design
the wage scheme which implements the optimal single action ã from every risk
neutral agent.

The most difficult part of the proof is that we need to show that the wage schemes
constructed in the above way must satisfy no–envyness condition (NE). To deal with
this subtle issue, we will design the wage schemes of agents by exploiting the risk
aversion of risk averse agents such that they would face risky lottery if they were
offered the wage scheme of risk neutral agent, which prevents them from envying
risk neutral agents. On the other hand, the wage scheme of risk neutral agent is
designed such that his expected payoff is equal to the fixed wage offered to risk
averse agent. Thus risk neutral agent does not envy risk averse agents.
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Now we will proceed the formal argument for the proof of existence of fair con-
tract.

First, we make the following assumptions:

Assumption 6. For any action a ∈ A and any risk neutral agents i, j ∈ In,∣∣∣Gi(a) − Gj(a)
∣∣∣ <

1
2
β

where β > 0 is given in Assumption 4.

Assumption 7. u′(+∞) = 0.

Assumption 6 says that the difference between action costs of risk neutral agents
are not so large relative to the complementarity gains of actions β defined in As-
sumption 4. Assumption 7 ensures that φ′(+∞) = +∞.

Then we can show the following:

Lemma 4. Suppose that Assumption 4 and 6 are satisfied. Then there exists a
single optimal action ã ∈ A such that ãi = ã maximizes the residual surplus of
organization RS(an) for all risk neutral agents i ∈ In.

Proof. See Appendix.

For such optimal symmetric action ã, we make the following condition:

Assumption 8. For some risk neutral agent l ∈ In there exists no M + 1–
dimensional vector (λm) ≥ 0, not all zero, such that

∑
m λm = 1,∑

m

λmF l
n(am) ≤ F l

n(ã)

and ∑
m

λmGl(am) < Gl(ã) + δ

where δ > 0 is given in (6).

Assumption 8 says that there exists some risk neutral agent, say l, who cannot
improve the probability distribution of his performances F l

n(a) in the sense of first
order stochastic dominance by using a mixes strategy λm over (am)M+1

m=1 ̸= ã at lower
expected action cost than the action ã. This condition is more likely to be satisfied
when heterogeneity among risk averse agents δ is small enough, as long as F l

n(a)
satisfies Convexity of Distribution Function Condition (CDFC) and Gl is convex.8

8CDFC means that F i
n(a) is convex function of a. Suppose that F l

n(a) satisfies CDFC and Gl
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Assumption 8 then ensures that there exists a non-decreasing wage scheme which
implements the optimal action ã from every risk neutral agent. Thus (MON) is
satisfied.

Finally, we make the following assumption:

Assumption 9. Ey[R(y)|a] = Φ(a) + F

Assumption 9 says that the expected revenue of organization can be decomposed
into two parts: one is the part which varies with unobservable actions of agents and
the other is the part which is independent of these actions. Here F can be interpreted
as the base revenue which is independent of non–contractible action choices.9

Then we can show the following result:

Theorem 4. Suppose that Assumption 1 and 6-9 are satisfied. Then, if the base
revenue of organization F is sufficiently large, there exists a fair contract Ĉ which
has the following features:

• the risk averse agents are offered the fixed wage scheme which induces them to
choose the least costly action ai = 0, and

• the risk neutral agents are offered the wage scheme which induce them to choose
the optimal action ã each so as to maximize the residual surplus of organization

E[R(y)|0,an] −
∑
j∈In

Gj(aj).

given all risk averse agents choose the least costly action ar = 0.

Proof. See Appendix.

The requirement that the base revenue F is large can ensure that the fixed wage
offered to each risk averse agent can be large enough without affecting the incentives
of risk neutral agents. Then, large enough fixed wage makes the payoff of risk averse
agents large as well so that the designed contract profile becomes incentive efficient
because it solves Problem (OP).

is convex. Then F l
n(

P

n λa(m)) <
P

m λmF l
n(a(m)) ≤ F l

n(ã) implies that a′ ≡
P

m λma(m) > ã.
However, then we have

P

m λmGl(a(m)) > Gl(a
′) > Gl(ã) which implies that

P

m λmGl(a(m)) >
Gl(ã). The last inequality cannot hold when δ is small enough.

9This does not necessarily mean that F is independent of any kinds of agents’ actions. It could
depend on contractible actions taken by agents.
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6 Discussion and Robustness

6.1 Efficiency First or Equity First?

When we have so far characterized fair contracts in Section 3 and 4, we have defined
the set of fair contracts as Cf

∗ which are the contracts satisfying (IE∗), (NE) and
(IR). In this definition (IE∗) was referred to as the set of incentive feasible (i.e.,
budget balanced and incentive compatible) and monotonic contracts which are not
Pareto dominated by all other incentive feasible and monotonic contracts. Thus we
have imposed Pareto efficiency only to the set of incentive feasible and monotonic
contracts which are not necessarily no–envy. This definition of fair contracts can
be thus interpreted as follows: as the first step, agents of organization seek the
efficiency constrained by incentive compatibility and monotonicity by ruling out the
consideration of no-envyness. Then, as the second step, they select among all these
contracts the one satisfying no–envyness (and (IR)). In other words, efficiency is
taken as the first priority to be satisfied in organization whereas equity concern is
the objective to be accomplished after efficiency is attained. In this section, by
taking into account the above interpretation, we will call fair contracts which we
have so far defined efficiency–first optimal contracts. We will denote by C∗

E the set
of efficiency–first optimal contracts. Of course, C∗

E coincides with the set of fair
contracts Ĉ which we have characterized in Section 4.

However, in contrast to this case, one might think that equity can be considered
as the first priority to be satisfied in organization whereas efficiency is the second
objective. For example, suppose that agents of organization first identify the set of
all no–envy contracts. Next, the agents find the Pareto efficient contracts among all
possible no–envy, incentive feasible and monotonic contracts. We define by C∗∗

E the
set of all the efficient contracts defined in this way and satisfying (IR). We will call
this equity–first optimal contracts.

Then, we can show the following result:

Theorem 5. C∗
E ⊆ C∗∗

E .

Proof. Take any efficiency–first optimal contract C ∈ C∗
E . Then we will show

that C ∈ C∗∗
E . To see this, suppose that C /∈ C∗∗

E . Then, C ∈ C∗
E implies that C

satisfies all (IC), (NE), (IR), (BB) and (MON). Thus, the fact that C /∈ C∗∗
E implies

that there must exist some contract C ′ /∈ C such that C ′ satisfies (IC) and (NE),
and it Pareto dominates C. In particular C ′ satisfies (IC) but Pareto dominates C.
However, since C ∈ C∗

E , C satisfies (IC), and there exist no other contracts which
satisfy (IC), and Pareto dominate C. C ′ contradicts to this fact. Q.E.D.

Thus, by Theorem 5, we may have C∗∗
E \ C∗

E ̸= ∅ so that there may exist some
equity–first optimal contract which does not have the property shown in Theorem
1-2 even when heterogeneity among agents is so small. We will show this by the
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following example:

Example. Suppose that Ir = {1, 2} and In = {p}. Here agent p is the principal.
Suppose also that A = {0, 1} and Y = {y2, y1} where y2 > y1. We also simplify
the model by assuming that R(y1, y2, yp) = R(y1, y2). Thus the principal’s action
does not affect the expected revenue of organization. We thus set ap = 0. Without
loss of generality we take the principal as the residual claimant who receives all the
residual surplus of organization after subtracting the wages to risk averse agents.
Thus (BB) is satisfied and we ignore this.

Now consider the following optimization problem which minimizes the expected
wage of the principal when implementing actions a = (a1, a2) from risk averse agents
subject to (IC), (MON) and (NE), given each risk averse agent is guaranteed a
certain utility level Û i:

min
∑
i=1,2

Ey[wi(y)|a]

subject to

Ey[u(wi(y))|a] − Gi(ai) ≥ Ey[ui(wi(y))|a, aj ] − Gi(a), ∀ a ̸= ai (IC)

Ey[u(wi(y))|a] − Gi(ai) ≥ Û i (PE)

Ey[u(wi(y))|a] − Gi(ai) ≥ Ey[u(wj(y))|a, aj ] − Gi(a), ∀ a (NE)

wi(y2, y
j) ≥ wi(y1, y

j) ∀ i ̸= j (MON)

Note that the contract which solves the above problem becomes an equity–first
optimal contract because it is Pareto efficient among all feasible contracts satisfying
(IC), (NE) and (MON).

Let EW ∗∗(a1, a2) be the expected total wage in the solution to the above prob-
lem. Then we define the principal’s expected payoff as follows:

Πp(a1, a2) ≡ Ey[R(y1, y2)|a1, a2] − EW ∗∗(a1, a2).

Then, we can verify that implementing high actions (a1, a2) = (1, 1) from both risk
averse agents maximize the principal’s expected payoff Πp(a1, a2) when ∆(1, 1) ≡
Ey[R(y)|1, 1]−maxa ̸=1 Ey[R(y)|a] is sufficiently large. This shows that the contract
which solves the above problem gives risk averse agents high–powered incentive to
choose high action instead of low action. Thus there may exist some equity–first
optimal contract having the feature that high–powered incentive schemes are offered
to risk averse agents when ∆(1, 1) is sufficiently large.

The above example is in contrast to Theorem 1–2 that all efficiency–first optimal
contracts must have fixed wage schemes offered to risk averse agents. This gives an
interesting testable implication as follows: rewards of agents are more sensitive to
their objective performances in organizations in which equity among them is taken
as the first priority to be satisfied than in organizations in which efficiency is the
first priority to be satisfied.
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6.2 Robustness of the Results

We have so far paid our attention to the class of monotonic wage schemes (MON).
Although (MON) is a reasonable and realistic restriction, one might think that, once
we remove (MON) from the consideration of possible axioms, the set of contracts
is expanded so that all axioms may be satisfied at non-fixed wages for risk averse
agents.

In this subsection we will discuss the robustness of our results when we remove
the axiom of monotonicity (MON).

First, we can show that our characterization results, Theorem 1 and Theorem 2,
still remain true even if we drop (MON) from the axioms to be considered when we
impose the monotone likelihood ratio property (MLRP) and convexity of distribution
function condition (CDFC) on the probability distribution of each risk averse agent’s
performances P i

n(a). MLRP means that the likelihood ratio P i
n(a′)/P i

n(a) of agent
i’s performance is increasing in yn conditional on a′ > a. As we have already
mentioned, CDFC means that the distribution function F i

n(a) ≡
∑

l≤n P i
n(a) is

convex with respect to action levels a ∈ A. Then, we modify Problem (CMj − âj) by
dropping (MON) from the constraint set. Then, by a similar argument to Lemma 3,
we can show that any fair contract Ĉj of risk averse agent j must solve this modified
problem. Otherwise, it is not incentive efficient. Then we can easily verify that
the optimal wage scheme which solves this modified problem becomes monotone
increasing by the standard argument when MLRP and CDFC are satisfied (see
Grossman and Hart (1983)). Thus, as long as MLRP and CDFC are met, we can
reach the same characterization results as Theorem 1-3.

Second, we will investigate the implications when we drop (MON) from the
axioms and still do not impose the restrictions on the probability distributions such
as MLRP and CDFC. We will then show that, even when we drop (MON), any
fair contract still has the fixed wage offered to every risk averse agent, provided
the heterogeneity among them is sufficiently small and the wage of each agent is
bounded below from some amount. We impose the limited liability (LL) instead of
(MON): for some w > −∞,

wi(y) ≥ w, ∀ i ∈ I, ∀ y ∈ Y N (LL)

Then we call a contract profile C incentive feasible if it satisfies (BB), (IC) and
(LL). Let CL be the set of all incentive feasible contracts. We focus on this set CL.
Similarly, we define the incentive efficient contract as follows: with a slight abuse of
definition, a contract C ∈ CL is said to be incentive efficient, denoted by (IE∗∗), if
no other contract C ∈ CL exists such that it Pareto improve the expected utilities
of agents. A fair contract C is defined analogously: C is said to be fair if it satisfies
(IE∗∗), (NE) and (IR).

Then we can show the following result:

Theorem 5. Suppose that Assumption 1, 4 and 5 hold. Suppose also that (MON)
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is replaced by (LL). Then there exists some non-empty set D ⊂ ℜ2
+ such that for all

(ε, δ) ∈ D any fair contract Ĉ involves a fixed wage offered to all risk averse agents.

Proof. See Appendix.

By (LL), we can ensure that the utility payment for every risk averse agent
u(w(yn)) is bounded below from u ≡ u(w). Also (BB) requires that the utility
payment u(w(yn)) is bounded above by u(R − (N − 1)w) where R ≡ maxy R(y).
Thus the utility payment un ≡ u(w(yn)) is bounded for each yn ∈ Y . Then we can
show that, when heterogeneity among risk averse agents is small enough so that ε
is sufficiently small relative to δ, Assumption 3 is satisfied and hence we can reach
the same characterization result as Theorem 1 and 2.

7 Concluding Remarks

In this paper we have characterized fair contracts which are incentive efficient and
no–envy in general moral hazard environments. Then we have shown that fair
contracts must have the feature that risk averse agents are offered the fixed wage
scheme. On the other hand, risk neutral agents are motivated to work in order
to maximize the residual surplus of organization after subtracting the fixed wages
of risk averse agents. Then the tension between incentive efficiency and equity as
no–envy makes characterization of contracts drastically simple. We have also shown
the conditions under which a fair contract exists.

Our concept of no–envyness is based on ex ante view before agents choose their
actions and hence final outcomes are realized. One might think that no–envy con-
straint is binding even ex post after the final performances are realized. In such case
ex post no–envy constraint becomes more stringent than the ex ante one: suppose
that the performances of agents y ∈ Y N are realized. Then agent i does not envy
agent j ex post if and only if u(wi(yi)) ≥ u(wj(yi)), conditional on his own perfor-
mance yi. Then, we must have wi(y) = wj(y) for any y ∈ Y and all i ̸= j. Hence
we can reach the same conclusions as Theorem 1 and 2.

8 Appendix

8.1 Proof of Lemma 2

Suppose that some fair contract Ĉi is not individualistic for some risk averse agent
k ∈ Ir, i.e., ŵk(y) depends on y−k. Let ûk(y) ≡ uk(ŵk(y)). Then we define the new
contract ũk(yk) for that agent k as

ũk(yk) ≡ Ey−k [ûk(yk, y−k)|â−k]

and consider an alternative contract C ̸= Ĉ as follows:
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• For the risk averse agent k, the new contract C = {ũk, âk} is offered.

• Pick one risk neutral agent, say agent n. Then, for all other agents i ̸= n, k,
we define a new wage scheme as

w̃i(yi) ≡ Ey−i [ŵi(yi, y−i)|â−i] ∀ yi ∈ Y.

• For the risk neutral agent n, the following wage scheme w̃n(y) is offered

w̃n(y) ≡ R(y) −
∑

i∈I,i̸=k

w̃i(y) − w̃k(yk)

where w̃k(yk) ≡ φ(ũk(yk)).

First, note that such alternative wage scheme (ũk
n)yn∈Y offered to risk averse

agent k satisfies (MON) because the original scheme (uk
n)yn∈Y satisfies (MON) and

yi and y−i are statistically independent. By the same reason, the new scheme w̃i(yi)
offered to agent i ̸= k, n is also non-decreasing and hence (MON) is satisfied. Since
w̃i(yi), i ̸= k, n, is independent of the performance of the selected risk neutral agent
n, w̃n(y) is also non-decreasing in yn because R is non-decreasing in yn. Thus
(MON) is satisfied for the risk neutral agent n as well.

Second, since (IC) is satisfied at Ĉk, we have

Ey[ûk(y)|âk, â−k] − Gk(âk) ≥ Ey[ûk(y)|ak, â−k] − Gk(ak), ∀ ak ̸= âk,

which, by independence of yi and y−i, implies that

Eyk [ũk(yk)|âk] − Gk(âk) ≥ Eyk [ũk(yk)|ak] − Gk(ak), ∀ ak ̸= âk.

Thus the new contract ũk satisfies (IC) for the risk averse agent k who chooses the
same action âk, given â−k. All other agents than k and n also choose the same
actions â−k−n as well. It is also true that all agents except n will obtain the same
expected payoffs under the new contract as under the original one.

Now consider the incentive of the risk neutral agent n. Agent n would receive
the following expected payoff under the new contract w̃n(y):

max
an∈A

Ey[w̃n(y)|an, â−n] − Gn(an) ≥ Ey[w̃n(y)|ân, â−n] − Gn(ân)

= Ey[R(y)|â] −
∑

i∈I,i̸=k,n

Ey[ŵi(y)|âi]

−Eyk
[w̃k(yk)|âk] − Gn(ân)

> Ey[R(y)|â] −
∑

i∈I,i̸=k,n

Ey[ŵi(y)|â] − Ey[ŵk(y)|â] − Gn(ân).

= Ey[ŵn(y)|â] − Gn(ân)
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Here the last equality follows from (BB) and the strict inequality from the risk
aversion of agent k (concavity of u), the Jensen’s inequality and the dependence of
ŵk(yk, y−k) on y−k:

Ey[ŵk(yk, y−k)|â]
= Ey[φ(ûk(yk, y−k))|âk, â−k]
= Eyk [Ey−k [φ(ûk(yk, y−k))|â−k]âk]

> Eyk [φ(Ey−k [ûk(yk, y−k)|â−k])|âk]

= Eyk [φ(ũk(yk))|âk]

= Eyk [w̃k(yk)|âk]

respectively. Thus the risk neutral agent n can be strictly better off under the new
contract w̃n(y), which contradicts the fact that Ĉ is incentive efficient. Q.E.D.

8.2 Proof of Lemma 3

Consider Problem (CMj − âj) for implementing the action a = âj specified in the
fair contract Ĉj from risk averse agent j. As we have argued in the main text, the
constraint set of such problem is non-empty, compact and convex. Thus the optimal
wage scheme which solves Problem (CMj − âj) exists and is unique. We denote by
ŵj(y|âj) the optimal wage scheme which solves Problem (CMj − âj).

Suppose that for some risk averse agent j ∈ Ir the the wage scheme ŵj(y)
specified in the fair contract Ĉj = {ŵj(y), âj} differs from the optimal wage scheme
ŵj(y|âj): ŵj(y) ̸= ŵj(y|âj) for some y ∈ Y . Then, note that ŵj(y) satisfies (IC) and
(IR∗) in Problem (CMj − âj) so that it is feasible in Problem (CMj − âj) and that
ŵj(y|âj) is uniquely determined to solve the problem (CMj − âj) given Û j . Thus
we must have

Eyj [ŵj(yj)|âj ] ≡
∑

n

P j
n(âj)ŵj(yn) > Eyj [ŵj(yj |âj)|âj ] ≡

∑
n

P j
n(âj)ŵj(yn|âj).

Then consider an alternative contract offered to the above risk averse agent j as
Cj = {ŵj(yj |âj), âj}. Without loss of generality we can also assume that the wage
schemes of other risk neutral agents than n depend solely on their own performances
because (yi, y−i) are statistically independent and hence their action incentives are
not changed by removing the dependence of the others’ performances on their wage
schemes. Thus all others than n choose the same actions âi as before.

But now consider an alternative contract offered to the selected risk neutral agent
n ∈ In as Cn = {w̃n(y), ãn} where

w̃n(y) = R(y) −
∑
l ̸=j

ŵl(yl) − ŵj(yj |âj)
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and ãn is defined as the action to maximize the expected utility of agent n:

ãn ∈ arg max
a∈A

Ey[w̃n(y)|a, â−n] − Gn(a).

Then such risk neutral agent n can be strictly better off because

Ey[w̃n(y)|ãn, â−n] − Gn(ãn)
≥ Ey[w̃n(y)|ân, â−n] − Gn(ân)

= Ey[R(y)|â] −
∑
l ̸=j

Eyl [ŵl(yl)|âl] − Eyj [ŵj(yj |âj)|âj ] − Gn(ân)

> Ey[R(y)|â] −
∑
i∈I

Ey[ŵi(yi)|âi] − Gn(ân)

= Ey[ŵn(y)|ân] − Gn(ân)

where the first inequality follows from the definition of ãn which maximizes the agent
n’s expected utility, the second inequality from Eyj [ŵj(yj)|âj ] > Eyj [ŵj(yj |âj)|âj ]
and the final equality from (BB) respectively. Q.E.D.

8.3 Proof of Theorem 1

Take any fair contract Ĉ. Suppose contrary to the claim that there are less than
Nr − M risk averse agents who choose the least costly action (zero). Then, by our
supposition that #A = M + 1 ≤ #Ir = Nr, there must exist at least two risk
averse agents, say i and j, who choose the same action, say â > 0. Without loss of
generality we suppose that i > j in the sense of Assumption 3.

Let ûk
n ≡ u(ŵk(yn)), k = i, j, for each yn ∈ Y . Then we obtain the following
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series of expressions:∑
n

P j
n(â)ûj

n − Gj(â)

≥
∑

n

P j
n(â)ûi

n − Gj(â)

=
∑

n

P i
n(â)ûi

n − Gi(â) +

{
Gi(â) − Gj(â) +

∑
n

(P j
n(â) − P i

n(â))ûi
n

}

≥
∑

n

P i
n(a)ûj

n − Gi(a) +

{
Gi(â) − Gj(â) +

∑
n

(P j
n(â) − P i

n(â))ûi
n

}
=

∑
n

P j
n(a)ûj

n − Gj(a)

+

{
Gj(a) − Gi(a) +

∑
n

(P i
n(a) − P j

n(a))ûi
n

}
+

{
Gi(â) − Gj(â) +

∑
n

(P j
n(â) − P i

n(â))ûj
n

}
=

∑
n

P j
n(a)ûj

n − Gj(a)

+

{
∆Gi(â, a) − ∆Gj(â, a) +

∑
n

(P j
n(â) − P i

n(â))ûi
n −

∑
n

(P j
n(a) − P i

n(a))ûj
n

}

for any a < â. Here the first inequality follows from (NE) for agent j and the
second inequality from (NE) of agent i respectively. Thus we can reach the following
inequality: ∑

n

P j
n(â)ûj

n − Gj(â) ≥
∑

n

P j
n(a)ûj

n − Gj(a) + W (â, a|ûi, ûj) (A1)

where ûk ≡ (ûk
n)L

n=1 denotes the vector of the utility payments for k = i, j and

W (â, a|ûi, ûj) ≡

{
∆Gi(â, a) − ∆Gj(â, a) +

∑
n

(P j
n(â) − P i

n(â))ûi
n −

∑
n

(P j
n(a) − P i

n(a))ûj
n

}
.

Since the above inequality (A1) holds for any action a < â, we take an action
a < â such that (IC) of agent j is binding:∑

n

P j
n(â)ûj

n − Gj(â) =
∑

n

P j
n(a)ûj

n − Gj(a).

Such action a must exist: otherwise the action â must be the smallest among all
relevant actions when solving Problem (CMj − â) because (IC) of agent j in that
problem is not binding at any a < â. Thus the optimal wage which solves Problem
(CMj − â), denoted ŵj(y|â), must be the fixed wage but then this does not satisfy
(IC). Thus (IC) of agent j must be binding at some a < â.
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Now we show that W (â, a|ûi, ûj) > 0 for such action a < â that (IC) of agent j
is binding. To see this, note that ûi = (ûi

n)L
n=1 must satisfy (IC) of agent i:∑

n

P i
n(â)ûi

n − Gi(â) ≥
∑

n

P i
n(a)ûi

n − Gi(a)

which can be written by∑
n

(F i
n(a) − F i

n(â))∆ui
n ≥ ∆Gi(â, a)

where ∆ui
n ≡ ûi

n − ui
n−1 for each i = 2, ..., L. By (MON) ∆ui

n ≥ 0 must hold for
each i = 2, ..., L.

Then, since F i
n(a) > F i

n(â) for each n when â > a, we can show that∑
n

(P j
n(â) − P i

n(â))ûi
n =

∑
n

(F i
n(â) − F j

n(â))∆ui
n

=
∑

n

(
F i

n(â) − F j
n(â)

F i
n(a) − F i

n(â)

)
(F i

n(a) − F i
n(â))∆ui

n

=
∑

n

(
F i

n(a) − F j
n(â)

F i
n(a) − F i

n(â)
− 1

)
(F i

n(a) − F i
n(â))∆ui

n

=
∑

n

λi
n(â, a|i, j)(F i

n(a) − F i
n(â))∆ui

n

≥ (λi(â, a|i, j) − 1)
∑

n

(F i
n(a) − F i

n(â))∆ui
n

≥ (λi(â, a|i, j) − 1)∆Gi(â, a)

where the last inequality follows from (IC) of agent i and λi > 1 (due to F j
n(â) <

F i
n(a) for i > j by Assumption 2 (ii)).

Next, the binding (IC) of agent j can be written by∑
n

(F j
n(a) − F j

n(â))∆uj
n = ∆Gj(â, a).
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By using this and F j
n(a) > F j

n(â) for â > a, we can show that∑
n

(P j
n(a) − P i

n(a))ûj
n =

∑
n

(F i
n(a) − F j

n(a))∆uj
n

=
∑

n

(
F i

n(a) − F j
n(a)

F j
n(a) − F j

n(â)

)
(F j

n(a) − F j
n(â))∆uj

n

=
∑

n

(
F i

n(a) − F j
n(â)

F j
n(a) − F j

n(â)
− 1

)
(F j

n(a) − F j
n(â))∆uj

n

=
∑

n

λj
n(â, a|i, j)(F j

n(a) − F j
n(â))∆uj

n

≤ (λj(â, a|i, j) − 1)
∑

n

(F j
n(a) − F j

n(â))∆uj
n

= (λj(â, a|i, j) − 1)∆Gj(â, a)

By combining the above inequalities, we obtain∑
n

(P j
n(â) − P i

n(â))ûi
n −

∑
n

(Pnj(a) − P i
n(a))ûj

n

=
∑

n

(F i
n(â) − F j

n(â))∆ui
n −

∑
n

(F i
n(a) − F j

n(a))∆uj
n

≥ (λi(â, a|i, j) − 1)∆Gi(â, a) − (λj(â, a|i, j) − 1)∆Gj(â, a)
> −∆Gi(â, a) + ∆Gj(â, a)

due to Assumption 3. Thus we have established that W (â, a|ûi, ûj) > 0 for the
action a < â such that (IC) of agent j is binding.

Then inequality (A1) implies that∑
n

P j
n(â)ûj

n − Gj(â) >
∑

n

P j
n(a)ûj

n − Gj(a)

which contradicts the supposition that (IC) of agent j is binding at a < â.
Thus our first supposition that there are less than Nr − M risk averse agents

who choose the least costly action is false. This completes our proof. Q.E.D.

8.4 Proof of Theorem 2

First, note that Assumption 3 is satisfied when ε is small enough because then
λ

k(â, a) → 1 and λk(â, a) → 1 for all i, j ∈ Ir and all â, a ∈ A. Then Assumption 5
implies Assumption 3 when we take ε to be small enough given δ.

By Lemma 3, the wage scheme ŵj(yj) specified in fair contract Ĉj must be equal
to ŵj(yj |âj) for any risk averse agent j ∈ Ir which solves problem (CMj − âj). Now
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replace agent j by agent i in Problem (CMj − âj), denoted by Problem (CMi − âj)
which minimizes the expected wage paid to risk averse agent i, i.e.

∑
n P i

n(âj)w(yn),
subject to (IC) and (IR∗) for agent i (but not agent j) who is induced to choose
the action âj specified in the fair contract offered to agent j (but not agent i). In
general, such problem may have no optimal solutions because the constraint set
may be empty as opposed to Problem (CMj − âj). However, we can show that when
heterogeneity among risk averse agents is sufficiently small ((ε, δ) is small enough)
the optimal wage scheme which solves the problem (CMi − âj) exists and is very
close to ŵj(y|âj) the optimal wage scheme which solves Problem (CMj − âj).

Lemma A1. There exist some δ > 0 and ε > 0 such that∣∣∣∣∣ ∑
n

P j
n(âj)ŵj(yn|âj) −

∑
n

P i
n(âj)ŵi(yn|âj)

∣∣∣∣∣ <
1
2
β

for any risk averse agents i, j ∈ Ir, i ̸= j, where β is given in Assumption 4.

Proof. Take any fair contract Ĉ and the corresponding expected utility of agent i
as Û i.

Then we first show the following:

Claim A1-1. |Û i−Û j | goes to zero as the difference between agents i and j (captured
by δ and ε) becomes very small.

Proof. Let ŵk
n ≡ ŵk(yn) and ∆ui

n ≡ ûk
n − ûk

n−1 for each yn ∈ Y .
Then we derive

Û j ≡
∑

n

P j
n(âj)u(ŵj

n) − Gj(âj)

≥
∑

n

P j
n(âi)u(ŵi

n) − Gj(âi) (by (NE))

=
∑

n

P j
n(âi)u(ŵi

n) − Gi(âi) + {Gi(âi) − Gj(âi)}

=
∑

n

(1 − F j
n(âi))∆ui

n − Gi(âi) + {Gi(âi) − Gj(âi)}

=
∑

n

(1 − F i
n(âi))∆ui

n − Gi(âi) + {Gi(âi) − Gj(âi)} +
∑

n

(F i
n(âi) − F j

n(âi))∆ui
n

= Û i + {Gi(âi) − Gj(âi)} +
∑

n

(F i
n(âi) − F j

n(âi))∆ui
n

≥ Û i + {Gi(âi) − Gj(âi)} + (λ i(âi, a) − 1)∆Gi(âi, a)
≥ Û i − ε̃ + {Gi(âi) − Gj(âi)}

where ε̃ > 0 is defined as

ε̃ ≥ |(λi(â, a) − 1)∆Gi(â, a)| (A2)
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for all â, a ∈ A and all i ∈ Ir. Note that ε̃ can be close to zero as ε → 0 because
then λi(â, a) → 1.

Thus we obtain
Û j ≥ Û i − ε̃ + {Gi(âi) − Gj(âi)} (A3)

Similarly, we have
Û i ≥ Û j − ε̃ + {Gj(âj) − Gi(âj)}. (A4)

By adding (A3) and (A4), we derive

{Gi(âj) − Gj(âj)} + ε̃ + Û i

≥ Û j

≥ Û i − ε̃ + {Gi(âi) − Gj(âi)}
≥ Û i − ε̃ + {Gi(âj) − Gj(âj)} − δ

from which Û i − Û j goes to zero as δ and ε go to zero (hence ε̃ → 0). Also, when
ε = 0 and δ = 0, we have Û i = Û j . Thus there exists some small ρ̃ > 0 such that
|Û i − Û j | ≤ ρ̃ for any i, j ∈ Ir, when (ε, δ) → 0. Q.E.D.

Now, we pick any risk averse agents i, j ∈ Ir. Then we consider the modified
problem of Problem (CMj − a) which implements a ∈ A from risk averse agent j by
keeping (MON) while replacing (IR) and (IC∗) by∑

n

P j
n(a)u(w(yn)) − Gj(a) ≥ Û j − ρ (IR∗

ρ)

and∑
n

P j
n(a)u(w(yn)) − Gj(a) ≥

∑
n

P j
n(a′)u(w(yn)) − Gj(a′) − ρ, ∀ a′ ̸= a (ICρ)

respectively where ρ > 0 (we will give a precise definition of ρ later.)
We call such modified problem of (CMj − a) Problem (CMj

ρ − a). Then we can
show the following result:

Claim A1-2. The solution to Problem (CMj
ρ − a), denoted (ŵj

ρ(yn|a))n, exists and
is uniquely determined if the constraint set is non-empty.

Proof. To save notation, we drop superscript j to index agent j in the following
proof. Let w(yn) ≡ wn for each yn ∈ Y . We change the variable as un ≡ u(wn)
and hence wn = φ(un) where φ = u−1 is inverse of u. Then (MON) is replaced by
φ(un) ≥ φ(un−1) because of yn > yn−1.

Let Γ(a) be the constraint the set of u ≡ (un)n satisfying all (ICρ), (IR∗
ρ) and

(MON) in Problem (CMj
ρ − a). Then we show that Γ(a) is a convex set. Take

u,u′ ∈ Γ(a) and let u′′ ≡ λu + (1 − λ)u′ for a scalar λ ∈ (0, 1). Then we can see
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that u′′ satisfies (ICρ) and (IR∗
ρ) because these constraints are linear with u. Thus

it suffices to show that u′′ satisfies (MON). To see this, note that

φ(u′′
n) − φ(u′′

n−1) ≥ φ′(u′′
n−1)(u

′′
n − u′′

n−1)
= φ′(u′′

n−1)[λ(un − un−1) + (1 − λ)(u′
n − u′

n−1)]
≥ 0

due to φ′ > 0 and u′
n ≥ u′

n−1 and un ≥ un−1 by (MON). Thus u′′ ∈ Γ(a) and hence
Γ(a) is a convex set.

Note that Γ(a) is closed because φ is continuous. Also Γ(a) can be bounded (see
Grossman and Hart (1983)). Thus Γ(a) is compact set. Since the objective function∑

n P j
n(a)φ(un) is continuous and convex with respect to un, a solution to Problem

(CMj
ρ − a) exists and is unique if the constraint set Γ(a) is non-empty. Q.E.D.

Thus, if the constraint set of Problem (CMj
ρ − a) is non-empty, by the Berge’s

Maximum Theorem, ŵj
ρ(y|a) is continuous in ρ.

Recall that ŵj(y|âj) is the optimal wage scheme which solves Problem (CMj−âj).
We denote ûi

n ≡ u(ŵi(yn)) and ûi(yn|a) ≡ ui(ŵi(yn|a)). Then Lemma 3 shows that
the fair contract ŵj(y) must be equal to ŵj(y|âj). Thus we have ûi

n ≡ ûi(yn|âi) for
each i ∈ Ir.

Then we show the following claim.

Claim A1-3. There exists some K < +∞ such that |Û i| ≤ K for all i ∈ Ir.

Proof. By (IR), we have Û i ≥ U
i. Thus Û i is bounded below.

Second, by using Problem (CMi−âi) and convexity of φ, we also obtain
∑

n P i
n(âi)φ(ûi

n) =∑
n P i

n(âi)(ûi(yn|âi)) ≥ φ
(∑

n P i
n(âi)ûi(yn|âi)

)
≥ φ(Gi(âi) + Û i). Thus, if Û i →

+∞ for some i ∈ Ir, the expected wage of such agent i goes to infinity, i.e.,∑
n P i

n(âi)φ(ûi
n) → +∞, so that the payoff of some risk neutral agent must be

negatively infinite but this violates (IR) of that agent. Thus Û i must be bounded
above as well. Q.E.D.

As we have already mentioned, ŵi(y|âi) which solves Problem (CMi − âi) for
implementing âi exists and is unique. Thus ŵi(y|âi) is well-defined. Then ŵi(y|âi) is
bounded for all Û i ∈ [U i

,K], i.e., there exists some M < +∞ such that |u(ŵi(y|âi))| ≤
M for all y ∈ Y and all Û i ∈ [U i

,K].
Then we can show the following:

Claim A1-4. For all a ∈ A and all i ̸= j, i, j ∈ Ir, we have∣∣∣∣∣∑
n

P i
n(a)ûi(yn|âi) − Gi(a) −

{∑
n

P j
n(a)ûi(yn|âi) − Gj(a)

}∣∣∣∣∣ → 0
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as (ε, δ) → 0

Proof. We obtain ∣∣∣∣∣∑
n

(P i
n(a) − P j

n(a))ûi(yn|âi) + (Gj(a) − Gi(a))

∣∣∣∣∣
≤

∑
n

∣∣P i
n(a) − P j

n(a)
∣∣ûi(yn|âi) +

∣∣Gj(a) − Gi(a)
∣∣

≤
∑

n

∣∣P i
n(a) − P j

n(a)
∣∣M +

∣∣Gj(a) − Gi(a)
∣∣

which goes to zero as (ε, δ) → 0 for all a ∈ A (note that A is a finite set). Q.E.D.

By Claim A1-4, we can find some small enough ρ̂ > 0 such that∣∣∣∣∣∑
n

P i
n(a)ûi(yn|âi) − Gi(a) −

{∑
n

P j
n(a)ûi(yn|âi) − Gj(a)

}∣∣∣∣∣≤ ρ̂ (A5)

when (ε, δ) is small enough.
In what follows we define ρ ≡ max{ρ̃ + ρ̂, 2ρ̂}.
Now we consider Problem (CMj

ρ − âi) for the defined value ρ > 0 and then show
that the wage scheme ŵi(y|âi) is feasible in Problem (CMj

ρ− âi) for implementing âi,
i.e., it satisfies (MON), (IR∗

ρ) and (ICρ). It is clear that (MON) is satisfied because
ŵi(y|âi) is monotonic by definition. To see that it also satisfies (IR∗

ρ) and (ICρ),
note first that∑

n

P j
n(âi)u(ŵi(yn|âi)) − Gj(âi) ≥

∑
n

P i
n(âi)u(ŵi(yn|âi)) − Gi(âi) − ρ̂

≥ Û i − ρ̂

≥ Û j − (ρ̃ + ρ̂)
≥ Û j − ρ

where the first inequality follows from Claim 4-4, the second inequality from the fact
that ŵi(y|âi) satisfies (IR∗) of Problem (CMi − âi) to implement âi from agent i,
the third inequality from |Û j − Û i| ≤ ρ̃ and the last inequality from the definition
of ρ respectively. This shows that ŵi(y|âi) satisfies (IR∗

ρ) in Problem (CMj − âi) for
implementation of âi.
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Also we have∑
n

P j
n(âi)u(ŵi(yn|âi)) − Gj(âi) ≥

∑
n

P i
n(a)u(ŵi(yn|a)) − Gi(a) − ρ̂

≥
∑

n

P i
n(a′)u(ŵi(yn|a)) − Gi(a′) − ρ̂

≥
∑

n

P j
n(a′)u(ŵi(yn|a)) − Gj(a′) − 2ρ̂

≥
∑

n

P j
n(a′)u(ŵi(yn|a)) − Gj(a′) − ρ

where the first and third inequalities follow from the definition of ρ̂ (see (A5)), the
second inequality from the fact that ŵi(y|âi) satisfies (IC) of Problem (CMi − âi)
to implement âi ∈ A from agent i and the last inequality from the definition of ρ
respectively.

The above argument shows that ŵi(y|âi) satisfies (IR∗
ρ), (IC∗

ρ) and (MON) of
Problem (CMj

ρ − âi). Thus ŵi(y|âi) is feasible in Problem (CMj
ρ − âi). This implies

that the constraint set of Problem (CMj
ρ− âi) is non-empty for implementation of âi.

Thus the optimal wage scheme ŵj
ρ(y|âi) which solves such problem is well-defined.

Also, by optimality of ŵj
ρ(y|âi), we have∑

n

P j
n(âi)ŵi(yn|âi) ≥

∑
n

P j
n(âi)ŵj

ρ(yn|âi). (A6)

By changing the role of i and j in the above argument, we can show that ŵj(y|âj)
is feasible in the problem (CMi

ρ − âj). Thus we have∑
n

P i
n(âj)ŵj(yn|âj) ≥

∑
n

P i
n(âj)ŵi

ρ(yn|âj). (A7)

Then we show Lemma A1 as follows: first, note that ŵj
ρ(y|âi) is continuous in ρ

and that limρ→0 ŵj
ρ(y|âi) = ŵj(y|âi) = ŵi(y|âi) for each y ∈ Y because Û i = Û j ,

P j
n(a) = P i

n(a) and Gi(a) = Gj(a) are all satisfied when ρ = 0 so that (ε, δ) = (0, 0),
and hence the optimal wage schemes which solve Problem (CMk − âi) for agents
k = i, j must be the same for implementation of a given action âi. Then, since
ŵi(y|âi) is well-defined, ŵj(y|âi) does so when ρ = 0. Then, by letting ε and δ
to be small enough (thus ρ → 0), we obtain from (A6) that

∑
n P i

n(âi)ŵi(yn|âi) ≅∑
n P j

n(âi)ŵi(yn|âi) ≥
∑

n P j
n(âi)ŵj

ρ(yn|âi) ≅
∑

n P j
n(âi)ŵj(yn|âi). Also, from (A7)

we obtain
∑

n P j
n(âj)ŵj(yn|âj) ≅

∑
n P i

n(âj)ŵj(yn|âj) ≥
∑

n P i
n(âj)ŵi

ρ(yn|âj) ≅∑
n P i

n(âj)ŵi(yn|âj). Thus, by taking small enough (ε, δ) so that ρ is close to zero,
we can ensure the inequalities in Lemma A1. Q.E.D.

In what follows we fix such ε > 0 and δ > 0 to ensure Lemma A1.
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Lemma A2. âi = âj must hold for all risk averse agents i, j ∈ Ir in any fair
contract Ĉ.

Proof. Take any fair contract Ĉ. Then first note that the action profile âr ∈ ANr

of risk averse agents must maximize the expected residual surplus which the risk
neutral agents totally receive after paying the total expected wages to all risk averse
agents:

Ey[R(y)|ar,an] −
∑
i∈Ir

Eyi [ŵ
i(yi)|ai].

Otherwise, Ĉ is not incentive efficient because some risk neutral agents can be strictly
better off by implementing the action profile of risk averse agents ar which maximizes
the above expected residual surplus. In this proof we will omit the vector of the risk
neutral agents’ actions an from the argument of the above function because it does
not play any role in the proof.

Here recall that, since the fair contract must solve Problem (CMi − âi) for each
risk averse agent i ∈ Ir, we have ŵi(y) = ŵi(y|âi) for each i ∈ Ir.

Now suppose that âj ≡ a′′ > âi ≡ a′ for some risk averse agents i, j ∈ Ir. Then
we have

Ey[R(y)|âj , âi, â−i−j ] − Eyj [ŵ
j(yj |âj)|âj ]

≥ Ey[R(y)|âi, âi, â−i−j ] − Eyj [ŵj(yj |âi)|âi]

and

Ey[R(y)|âi, âj , â−i−j ] − Eyi [ŵi(yi|âi)|âi]

≥ Ey[R(y)|âj , âj , â−i−j ] − Eyi [ŵi(yi|âj)|âj ].

From these inequalities, we derive

Eyi [ŵi(yi|a′′)|a′′] − Eyi [ŵi(yi|a′)|a′]
≥ ∆i(a′′|a′′, a′)
≥ ∆j(a′′|a′′, a′) − α

≥ ∆j(a′|a′′, a′) + β̃ − α (by Assumption 4)
≥ Eyj [ŵj(yj |a′′)|a′′] − Eyj [ŵj(yj |a′)|a′] + β

and hence by Lemma A1

1
2
β > Eyi [ŵi(yi|a′′)|a′′] − Eyj [ŵj(yj |a′′)|a′′]

≥ Eyi [ŵi(yi|a′)|a′] − Eyj [ŵj(yj |a′)|a′] + β

> −1
2
β + β

=
1
2
β,
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a contradiction. Thus we must have âj = âi. Q.E.D.

By Lemma A2, we must have âj = âi for any i, j ∈ Ir, i ̸= j, in any fair contract
Ĉ. Thus we will denote âi = â for all i ∈ Ir.

Now we pick any two risk averse agents i, j ∈ Ir where i > j in the sense of
Assumption 5. Suppose then that â ≡ âi = âj > 0. Then, since Assumption 3 is
satisfied under Assumption 5 when ε is small enough given δ, we know from the
proof of Theorem 1 that (IC) of Problem (CMj − â) must be slack for more efficient
risk averse agent j at any action a < âj = â under the fair contract ŵj(y). However,
this contradicts to the fact that the optimal wage scheme ŵj(y) = ŵj(y|â) which
solves Problem (CMj− â) must have the property that (IC) is binding at some a < â
(otherwise, the contract which solves Problem (CMj − â) must be the fixed wage
contract but then it cannot satisfy (IC) for agent j to choose â > 0). Thus the
supposition that â > 0 is false, so we must have â = 0. Since âl = âk for all l, k ∈ Ir

by Lemma A2, we then have âi = 0 for all i ∈ Ir. Then (IE∗) implies that ŵi(y)
must be the fixed wage contract, i.e., ŵi(y) does not depend on y ∈ Y for all i ∈ Ir

(otherwise, âj = 0 but ŵj(y) is not fixed wage for some j ∈ Ir. However this is
not incentive efficient because offering a fixed wage contract to such agent j ∈ Ir

improves the welfare of some risk neutral agents while keeping all the actions and
contracts of others unchanged.)

We define the set of the values ε and δ representing the heterogeneity of agents
as follows:

D ≡ {(ε, δ) ∈ ℜ+ | (ε, δ) satisfies (6), (7) and Lemma A1.}.

Then we obtain Theorem 2 for all (ε, δ) ∈ D. Q.E.D.

8.5 Proof of Theorem 3

Given an action profile of risk averse agents in a fair contract ar = (âi)i∈Ir , the
maximum residual surplus which all risk neutral agents can share is

E[R(y)|ar,an] −
∑
i∈In

Gi(ai) −
∑
i∈Ir

Eyi [ŵi(yi)|âi]

where an = (ai)i∈In denotes the vector of actions of risk neutral agents.
By definition, (ãi)i∈In maximizes the above surplus. Let define the best response

of action ai for each risk neutral agent i ∈ In, given a−i ∈ ANn−1:

BRi(a−i) ≡ argmax
ai∈A

Ey[R(y)|ar, (ai, a−i)] −
∑
i∈In

Gi(ai).

Then, the definition of ãi means that ãi ∈ BRi(ã−i) for each i ∈ In.
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Now suppose contrary to the claim that the wage schemes of risk neutral agents
in some fair contract ŵi(y) do not implement the optimal actions (ãi)i∈In defined
above. Let (âi)i∈In be the implemented action profile of risk neutral agents under
{ŵi(y)}i∈In . Since (âi) does not maximize the residual surplus, there must exist
some risk neutral agent k such that

âk /∈ BRk(â−k).

Then we define the alternative wage schemes as follows:

w̃i(yi) ≡ Ey−i [ŵi(yi, y−i)|â−i], ∀ i ̸= k ∀ i ∈ In, ,

w̃i(yi) = ŵi(yi) ∀ i ∈ Ir,

and
w̃k(y) = R(y) −

∑
i̸=k,i∈I

w̃i(yi)

Note that the wage scheme of risk neutral agent k depends on y−k only through
R(y) so that its expected wage depends on a−k only through E[R(y)|ak, a−k].

These new schemes satisfy (BB) by construction. Also, since {ŵi(y)}i∈In imple-
ments the action profile (âi)i∈In and (yi)i∈In are statistically independent, the new
scheme w̃i(yi) still implements action âi from agent i ̸= k. Thus all agents but k
chooses the same actions âi as before. Finally, risk neutral agent k has the strict in-
centive to choose some action in BRk(â−k) rather than âk because of âk /∈ BRk(â−k).
Then we have

max
a∈A

Ey[w̃k(y)|ar, (a, â−k)] − Gk(a) −
∑
i̸=k

Eyi [w̃i(yi)|âi]

= max
a∈A

Ey[R(y)|ar, (a, â−k)] − Gk(a) −
∑
i̸=k

Ey[ŵi(y)|â]

> Ey[R(y)|ar, âk, â−k] − Gk(a) −
∑
i̸=k

Eyi [ŵi(yi)|â]

= Ey[ŵk(y)|ar, (âk, â−k)] − Gk(âk)

where the inequality follows from âk /∈ BRk(â−k) and the last equality from (BB):
R(y) =

∑
i∈I ŵi(y).

However, then this contradicts the fact that Ĉi = {ŵi, âi} is incentive efficient.
Q.E.D.

8.6 Proof of Lemma 4

Suppose that Assumption 4 and 6 hold. Suppose also contrary to the claim that
there exists some asymmetric optimal action profile ãn which maximizes the residual
surplus RS(an). Then there must exist some l, k ∈ In, l ̸= k such that ãl ̸= ãk.
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Let a′′ ≡ ãl > a′ ≡ ãk without loss of generality. Then we have

Ey[R(y)|0, a′′, a′, ã−l−k] − Gl(a′′)
≥ Ey[R(y)|0, a′, a′, ã−l−k] − Gl(a′)

and

Ey[R(y)|0, a′, a′′, ã−l−k] − Gk(a′)
≥ Ey[R(y)|0, a′′, a′′, ã−l−k] − Gk(a′′).

By adding these inequalities, we have

Gk(a′′) − Gk(a′) ≥ ∆k(a′′|a′′, a′)
≥ ∆k(a′|a′′, a′) + β̃

≥ ∆l(a′|a′′, a′) − α + β̃

= ∆l(a′|a′′, a′) + β

≥ Gl(a′′) − Gl(a′) + β

which implies that

1
2
β > Gl(a′) − Gk(a′)

≥ Gl(a′′) − Gk(a′′) + β

> −1
2
β + β

=
1
2
β,

a contradiction. Q.E.D.

8.7 Proof of Theorem 4

By Lemma 4, we can ensure the existence of a symmetric optimal action ã which
maximizes the residual surplus of organization RS(an) over the actions of risk neutral
agents an after subtracting fixed wages of risk averse agents. In what follows we
take such action ã and consider the implementation of ai = ã from all risk neutral
agents i ∈ In.

Now we will show that offering a fixed wage w to every risk averse agent i ∈ Ir

becomes incentive efficient. To this end, it suffices to show that the fixed wage
contract C ≡ {w, ai = 0} maximizes the residual surplus of organization which
belongs to all risk neutral agents, given any action profile of risk neutral agents
an ∈ ANn . This is because then there exist no other feasible contracts which Pareto
dominate the fixed wage contract.
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Formally, we show the following lemma:

Lemma A3. When the fixed wage w is large enough, it becomes incentive efficient.

Proof. We consider the following maximization problem which states that the
expected residual surplus of risk neutral agents is maximized subject to (IC) and
the acceptance constraint ensuring that risk averse agent cannot be worse off by
switching to a new contract rather than sticking to the fixed wage w:

Problem (OP)

max
ar∈ANr ,wi(y)

Ey[R(y)|ar,an] −
∑
i∈Ir

Eyi [wi(yi)|ai]

subject to

Eyi [u(wi(yi))|ai, a−i] − Gi(ai) ≥ Eyi [u(wi(yi))|a, a−i] − Gi(a) ∀ a ̸= ai (IC)

Eyi [u(wi(yi))|ai, a−i] − Gi(ai) ≥ u(w) (PE)

Here (PE) is the constraint to ensure that risk averse agent i ∈ Ir can be better off
by accepting a contract Ci ̸= C.

Then we show that the contract to solve the above problem becomes the fixed
wage contract C for any given action profile of risk neutral agents an when w is
large enough. To see this, note that the objective function in the above problem is
bounded above by

Ey[R(y)|ar,an] −
∑
i∈Ir

φ(Gi(ai) + u(w))

because, by concavity of u and (PE), we have

Ey[wi(y)|ai] ≥ φ(Gi(ai) + u(w)).

Now consider the following maximization problem:

max
ar∈ANr

Ey[R(y)|ar,an] −
∑
i∈Ir

φ(Gi(ai) + u(w)).

Then we can verify that ar = 0 solves this maximization problem when

φ(Gi(ai) + u(w)) − φ(Gi(0) + u(w)) ≥ Ey[R(y)|0,an] − Ey[R(y)|ar,an].

In fact we can find some w so that the above inequality holds because the right hand
side is finite (by finiteness of A) but the left hand side goes to +∞ as w → +∞:

φ(Gi(ai) + u(w)) − φ(Gi(0) + u(w))
> φ′(Gi(0) + u(w))(Gi(ai) − Gi(0))
→ +∞ as w → +∞
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due to the convexity of φ and limw→+∞ φ′(w) = +∞. Thus, when w is large enough,
the optimal contract which solves Problem (OP) becomes the fixed wage w for all
risk averse agents. Q.E.D.

Next we consider the incentives of risk neutral agents. We take the risk neutral
agent r ∈ In whose action cost is the largest among all risk neutral agents, i.e.,

r ∈ argmax
i∈In

Gi(ã).

We will define the wage scheme of the residual claimant later.
For the wage schemes of all other risk neutral agents than the residual claimant

r, we will apply the following lemma.

Lemma A4. Suppose that Assumption 8 is satisfied. Then there exists a non-
decreasing individualistic wage scheme w̃(yl) for each risk neutral agent l ∈ In with
l ̸= r such that it implements the optimal action ã:

Eyl [w̃(yl)|ã] − Gl(ã) ≥ Eyl [w̃(yl)|a] − Gl(a) + δ

for all a ̸= ã where δ is given in (6) in the main text.

Proof. The implementation problem above is reduced to find a L − 1 dimensional
vector (∆wn)L−1

n=1 such that∑
n

(1 − F l
n(ã))∆wn − Gl(ã) ≥

∑
n

(1 − Fn(a))∆wn − Gl(a) + δ, ∀ a ̸= ã.

and
∆wn ≥ 0, n = 1, 2, ..., L − 1.

The last condition is monotonicity requirement (MON) that the wage schedule wn

must be non-decreasing. By Avis and Kaluzny (Theorem 2, 2004), such non-negative
vector (∆wn) exists under Assumption 8. Q.E.D.

By Lemma A4, we obtain

Ez[w̃(z)|ã] − Ez[w̃(z)|a] ≥ Gl(ã) − Gl(a) + δ

≥ Gi(ã) − Gi(a).

for all i ∈ In with i ̸= n. Thus every risk neutral agent i ∈ In other than the residual
claimant r chooses the same optimal action ã under the same scheme w̃.

Define ŵ(yi) ≡ w̃(yi) + f for i ∈ In, i ̸= r, where f will be specified below, and
offer such scheme to all i ̸= r, i ∈ In. Then it is clear that every risk neutral agent
i ̸= r, i ∈ In, does not envy other risk neutral agent j ̸= i, r, j ∈ In.
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The wage scheme for residual claimant r is given by

wr(yr, y−r) ≡ R(yr, y−r) − Nrw −
∑
i∈In

ŵ(yi) + ŵ(yr).

Since ŵ(yi) depends only on his performance yi for each risk neutral agent i except
the residual claimant r, the wage scheme of residual claimant wr(yr, y−r) depends
on his performance yr only through R(yr, y−r). Since R is monotone increasing in
yr, wr does so. Thus (MON) is satisfied for the residual claimant r as well.

We also define the fixed wage which is offered to risk averse agent:

w =
1
N

{E[R(y)|0, ã] − NnGr(ã)}.

Given such w, we set f to satisfy

E[w̃(z)|ã] + f = Gr(ã) + w.

Then, given such (w, f), we can show that

Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gr(ã)
= Ey[R(y)|0, ã] − Nrw − (Nn − 1)(Ez[w̃(z)|ã] + f) − Gr(ã)
= Ez[w̃(z)|ã] + f − Gr(ã)
= w.

Then we show the following series of lemmas:

Lemma A5. The residual claimant r does not envy other agents.

Proof. By using the wage schemes defined above, we can verify that the residual
claimant r does not envy other risk neutral agent i ̸= r, i ∈ In, because

max
ar∈A

Ey[R(y)|0, (ar, ã−r)] − Nrw − (Nn − 1)E[ŵ(z)|ã] − Gr(ar)

≥ Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gr(ã)
= Ez[ŵ(z)|ã] − Gr(ã)
= Ez[w̃(z)|ã] + f − Gr(ã)
≥ Ez[w̃(z)|a] − Gr(a) + f

= Ez[ŵ(z)|a] − Gr(a) ∀ a ∈ A

Also the residual claimant r does not envy any risk averse agent j ∈ Ir because

max
ar∈A

Ey[R(y)|0, ar, ã−r] − Nrw − (Nn − 1)E[ŵ(z)|ã] − Gr(ar)

≥ Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gr(ã)
= w

≥ w − Gr(a).
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Q.E.D.

Lemma A6. Each risk neutral agent other than the residual claimant r does not
envy other agents.

Proof. First we show that any other risk neutral agent i ∈ In than the residual
claimant r does not envy any risk averse agent. This is because

Ez[ŵ(z)|ã] − Gi(ã) ≥ Ez[ŵ(z)|ã] − Gr(ã)
= w

≥ w − Gi(a)

for all a ̸= ã, where Gi(ã) ≤ Gr(ã) for all i ̸= r.
We also show that every risk neutral agent i ∈ In, i ̸= r, does not envy the

residual claimant r because the expected payoff of agent i ̸= r would be the following
if he were offered the wage scheme of agent r (i.e., he were residual claimant):

Ey[R(y)|0, ai, ã−i] − Nrw −
∑

j∈In,j ̸=i

Eyj [ŵ(yj)|ã] − Gi(ai)

where agent i was supposed to choose ai. Since agent i obtains Eyi [ŵ(yi)|ã]−Gi(ã)
under his own contract, he prefers his own contract ŵ to the one offered to the
residual claimant r if

Ez[ŵ(z)|ã] − Gi(ã)

≥ Ey[R(y)|0, ai, ã−i] − Nrw −
∑

j∈In,j ̸=i

Eyi [ŵ(yj)|ã] − Gi(ai)

where the right hand side cannot be greater than

Ey[R(y)|0, ã, ã−i] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gi(ã)

by definition of ã (which maximizes Ey[R(y)|0, ai, ã−i] − Gi(a) over a ∈ A). Thus
it suffices to show that

Ez[ŵ(z)|ã] − Gi(ã)
≥ Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gi(ã)

which is equivalent to

Ez[ŵ(z)|ã] ≥ Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã].

This holds as equality due to the definitions of ŵ(z) = w̃(z) + f and w.
Finally, it is clear that any risk neutral agent j ̸= r does not envy other risk

neutral agent k ̸= r because they are offered the same wage scheme. Q.E.D.
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Lemma A7. Each risk averse agent i ∈ Ir does not envy other agents when δ is
small enough and F is large enough.

Proof. First we show that every risk averse agent does not envy any other risk
neutral agent j ∈ In than the residual claimant r when δ is small and w is large
enough. To see this, we define ηi for each i ∈ I, which satisfies

E[ŵ(z)|ã] − Gi(ã) − w = ηi.

Note here that ηr = 0 and ηi → 0 as δ → 0. Take any risk averse agent i ∈ Ir. Then
we can show that when δ > 0 is sufficiently small and the fixed wage w can be large
enough, we have

u(w) − u(Ez[ŵ(z)|a])
≥ u′(w){w − Ez[ŵ(z)|a]}
= u′(w){Ez[ŵ(z)|ã] − Gi(ã) − ηi − Ez[ŵ(z)|a]}
≥ u′(w){−Gi(a) − ηi}
≥ −Gi(a) − ηi

where the first inequality follows from concavity of u, the second inequality from
the fact that Ez[ŵ(z)|ã] − Gi(ã) ≥ Ez[ŵ(z)|a] − Gi(a) for all a ̸= ã, and the third
inequality from the fact that u′(w) ≤ 1 for large enough w (by using u′(+∞) = 0)
respectively. Thus we obtain

u(w) ≥ u(E[zŵ(z)|a]) − Gi(a) − ηi

> Ez[u(ŵ(z))|a] − Gi(a)

for all a ∈ A when δ is so small that ηi can be close to zero if w becomes large
enough.

Next we show that every risk averse agent i ∈ Ir does not envy the residual
claimant r when ε is sufficiently small. To see this, note that

u(w)

= u

(
1
N

{Ey[R(y)|0, ã] − NnGr(ã)}
)

= u(Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gr(ã)).

Then we want to show

u(w) ≥ E

u

R(y) − Nrw −
∑
j∈Ir

ŵ(yj) + ŵ(yi)

∣∣∣∣∣ai, â−i

 − Gi(ai) (A8)
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for all ai ∈ A. For this, by the Jensen’s inequality, it suffices to show that

u(Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gr(ã))
≥ u(Ey[R(y)|0, ai, ã−i] − Nrw − NnEz[ŵ(z)|ã] + Ez[ŵ(z)|ai]) − Gi(ai)

for all ai ∈ A. To show this, note that by definition of w,

w = Ey[R(y)|0, ã] − Nrw − (Nn − 1)Ez[ŵ(z)|ã] − Gr(ã).

Let
B ≡ Ey[R(y)|0, ai, ã−i] − Nrw − NnEz[ŵ(z)|ã] + Ez[ŵ(z)|ai].

Then the above inequality (A8) can be written by

u(w) ≥ u(B) − Gi(ai)

which can be further written by

u(w) − [u(B) − Gi(ai)]
≥ u′(w)(w − B) + Gi(ai)

where

w − B = Ey[R(y)|0, ã] − Ey[R(y)|0, ai, ã−i]
+ Ez[ŵ(z)|ã] − Gr(ã) − Ez[ŵ(z)|ai].

Under Assumption 9 Ey[R(y)|0, ã]−Ey[R(y)|0, ai, ã−i] is independent of F . We
also know that Ez[ŵ(z)|ã]−Ez[ŵ(z)|a] = Ez[w̃(z)|ã]−Ez[w̃(z)|a] is independent of
F (because w̃(z) is independent of F ). Thus Ez[ŵ(z)|ã]−Ez[ŵ(z)|a] is independent
of F as well. Also the optimal action of risk neutral agents ã does not vary with F .
Then the above term w−B is independent of F . We can also show that w increases
in F (because the optimal action ã is independent of F so that it does not change
with F ). Thus we can ensure that u′(w) → 0 as F → +∞, and hence

u(w) − [u(B) − Gi(ai)] ≥ u′(w)(w − B) + Gi(ai)
≅ Gi(ai)
> 0

for all ai > 0 when F is sufficiently large. Thus, since u is strictly concave and
R(y)−Nrw−

∑
j ̸=r ŵ(yj)+ŵ(yr) is random, we can verify that when F is sufficiently

large,

u(w)
≥ u(B) − Gi(ai)

> Ey

u

R(y) − Nrw −
∑
j∈In

ŵ(yj) + ŵ(yi)

∣∣∣∣∣0, ai, ã−i

 − Gi(ai)
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for all ai ∈ A. Thus agent i ∈ Ir does not envy the residual claimant r. Q.E.D.

From Lemma A5-A7, we have established the result that any agent does not
envy others under the constructed contract.

Finally, when F is large enough, we can take large f and w so that

Ez[ŵ(z)|ã] − Gi(ã) ≥ U
i

for all i ∈ In but i ̸= r. Thus we can satisfy (IR) for all i ∈ In. Also, since the
expected payoff of the residual claimant r is same as w, we can also ensure that the
residual claimant r and all risk averse agents i ∈ Ir obtain larger payoffs than their
reservation payoffs U

i as well when F is sufficiently large (note that w can be large
when F is large).

8.8 Proof of Theorem 6

We will modify the proof of Theorem 2 by replacing (MON) by (LL). The main
modification of the proof is that we show that Assumption 3 is satisfied when we
drop (MON) but impose (LL), if ε is sufficiently small given δ.

Take two risk averse agents i and j. Here agent j is more efficient than i in the
sense that ∆Gi(â, a) > ∆Gj(â, a) for all â > a (Assumption 5). Recall that these
agents must choose the same action â due to Lemma 5, when their heterogeneity is
sufficiently small.

Now suppose that â > 0 as in the proof of Theorem 2. Then recall that we have
reached the following conclusion that (IC) of more efficient risk averse agent j is
slack at â > 0 if

∆Gi(â, a) − ∆Gj(â, a) +
∑

n

(P j
n(â) − P i

n(â))ûi
n −

∑
n

(P j
n(a) − P i

n(a))ûj
n (A9)

is strictly positive for all a < â.
From now on we will show that this is actually the case when ε is sufficiently

small, given (LL). Since u ≥ ûi
n ≥ u for all yn ∈ Y due to (BB) and (LL), the second

term in (A9) is bounded below from

Γij(â) ≡
∑

yn∈Y (â)

(P j
n(â) − P i

n(â))u −
∑

yn∈Y \Y (â)

(P j
n(â) − P i

n(â))u

where Y (â) is defined as Y (â) ≡ {yn ∈ Y | P j
n(â) ≥ P i

n(â)}. Also, the third term in
(A9) is bounded above by

Ωij(a) ≡
∑

yn∈Y (a)

(P j
n(a) − P i

n(a))u +
∑

yn∈Y \Y (a)

(P j
n(a) − P i

n(a))u.

Thus (A9) is bounded below from

∆Gi(â, a) − ∆Gj(â, a) + Γij(â) − Ωij(a).
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Here, if we take ε to be sufficiently small, both Γij(â) and Ωij(a) become small
enough. Then, since ∆Gi(â, a) > ∆Gj(â, a) for i > j by Assumption 5, we can show
that

∆Gi(â, a) − ∆Gj(â, a) + Γij(â) − Ωij(a) > 0

for all â > a when ε is sufficiently small, given δ. Thus, when we take ε to be
sufficiently small given δ, we can establish the result that (IC) of more efficient risk
averse agent j is not binding at the action â > 0 at fair contract Ĉj . However, this
is not incentive efficient as we have argued in the proof of Theorem 2. Q.E.D.
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