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Abstract

We develop a dynamic model in which a firm exercises an option to expand production

on either a small or large scale with cash reserves and costly external funds. We show that

the financing costs greatly distort the firm’s financing and investment behavior and result

in a policy contingent on the dynamics of the cash flow and reserves. Most notably, we

prove that an intermediate level of cash reserves is likely to accelerate investment in the

small-scale project by interactions among financing costs, investment timing, and invest-

ment sizing. Our results fill the gap between two types of results: (i) empirical findings in

a U-shaped relation between the investment volume and internal funds, and (ii) empirical

predictions of a U-shaped relation between the investment timing and internal funds.

JEL Classifications Code: G13; G31; G32.

Keywords: Investment timing; Investment size; Costly external financing; Optimal stop-

ping.

∗This version: 12 April, 2012.
†Corresponding Author. Graduate School of Economics, Osaka University, 1-7 Machikaneyama, Toyonaka,

Osaka 560-0043, Japan, E-mail: nishihara@econ.osaka-u.ac.jp, Phone: 81-6-6850-5242, Fax: 81-6-6850-5277
‡Graduate School of Social Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo

192-0397, Japan, E-mail: tshibata@tmu.ac.jp, Phone: 81-42-677-2310, Fax: 81-42-677-2298

1



1 Introduction

Subsequent to the departures from Modigliani and Miller (1958)’s irrelevance proposition

in a frictionless market, there has been a long tradition in corporate finance to inves-

tigate the effects of various frictions on financing and investment decisions. Recently,

an increasing number of papers have analyzed not only the static but also the dynamic

behaviors of corporate financing and investment in the presence of frictions.1 Among

these, a real options approach plays an important role in unveiling investment timing

decisions in the presence of such frictions as liquidity constraints (Boyle and Guthrie

(2003)), shareholders-debtholders conflicts (Mauer and Sarkar (2005), Sundaresan and

Wang (2007)), and asymmetric information (Grenadier and Wang (2005), Shibata and

Nishihara (2010) Morellec and Schürhoff (2011), and Grenadier and Malenko (2011)).

We extend this line of research by revealing the interactions of costs of external fi-

nancing, investment timing, and investment size. The model is as follows: A firm owns

an option to expand production on either a small or large scale, where the price of the

output follows a geometric Brownian motion. The investment project is financed with

cash reserves and costly external funds. The firm’s cash reserves gradually increase as the

firm’s existent production generates cash flows. If the firm waits for a sufficient level of

cash reserves for each project, the investment project can be financed entirely with cash

reserves. Otherwise, the firm must rely partially on costly external financing. For the

small-scale expansion, the sufficient cash level is lower than that of for the large-scale ex-

pansion. Considering the trade-off, the firm determines its financing, investment timing,

and investment sizing policy.

As in the standard real options literature (e.g., McDonald and Siegel (1986), Dixit and

Pindyck (1994)), our model assumes the irreversibility of investing as a friction. A key

difference from most of the related papers is that we incorporate the investment sizing

decision in addition to the investment timing decision. The assumption of either a small-

or large-scale choice builds on Dixit (1993) and Décamps, Mariotti, and Villeneuve (2006).

Indeed, our model generalizes their models to a case with costs of external financing. The

financing costs are known as one of the most influential frictions in the corporate finance

literature (e.g., Altinkilic and Hansen (2000), Hennessy and Whited (2007)). According to

the pecking order hypothesis, asymmetric information problems associated with external

funding generate higher costs; therefore, managers prefer internal over external financing

(Myers (1984), Myers and Majluf (1984)). As a proportional cost accounts for the largest

part of external financing costs, we focus primarily on the case with a proportional cost.

Before describing the results, we emphasize a contribution of this paper from the

theoretical viewpoint. Most of the related papers demonstrate their results only by nu-

merical examples because the model’s complexity precludes analytic results (e.g., Boyle

1An incomplete list includes Hennessy and Whited (2005), Hennessy and Whited (2007), Hennessy, Levy,

and Whited (2007), Tsyplakov (2008), Tserlukevich (2008), and Morellec and Schürhoff (2011).
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and Guthrie (2003), Hirth and Uhrig-Homburg (2010a), Shibata and Nishihara (2012)).

Contrasted to the stream of literature, this paper analytically proves the interesting prop-

erties of the dynamic corporate financing and investment policy by developing techniques

in the mathematical finance literature (e.g., Broadie and Detemple (1997), Detemple

(2006), Bobtcheff and Villeneuve (2010)) into a case involving a non-convex payoff and a

non-geometric Brownian motion.

The results are summarized as follows. The presence of financing costs, unlike previous

results with no financing cost in Décamps, Mariotti, and Villeneuve (2006), leads the firm

to take a financing and investment policy contingent not only on the cash flow dynamics

but also on the cash reserves dynamics. Specifically, higher financing costs enhance the

firm’s incentive to wait for a sufficient level of cash reserves and use entirely internal

financing, especially for the small-scale project.

The investment threshold for the large-scale project monotonically decreases with cash

reserves. This monotonic relation is straightforwardly consistent with conventional views

of underinvestment due to financing constraints. On the other hand, the investment re-

gion for the small-scale project is not monotonic with cash reserves. The small-scale

investment is encouraged with cash reserves until cash reserves reach the investment cost

and, after that, the investment is discouraged with cash reserves. The rationale behind

the non-monotonic relation is that the firm optimizes not only investment timing but also

investment size. Consider the ratio of the total cost associated with the large-scale expan-

sion to that of the small-scale expansion. The ratio, which changes with cash reserves, is

maximized when cash reserves are equal to the amount of the small-scale investment cost.

Indeed, at that moment the small-scale project requires no external funds while the large-

scale project requires a great amount of external funds. The greatest advantage of the

small-scale project over the large-scale project plays a role in speeding up the small-scale

investment at the intermediate level of cash reserves.

Most notably, our results can link two significant results in corporate finance. The

first one is a U-shaped relation between the investment volume and internal funds. Since

arguments among Fazzari, Hubbard, and Petersen (1988), Kaplan and Zingales (1997),

and Hubbard (1998), investment-cash flow sensitivities have been the center of attention in

corporate finance. In particular, recent empirical evidence regarding this issue documented

that the investment volume does not necessarily decrease with internal funds but can

have a U-shaped relation with internal funds (Cleary, Povel, and Raith (2007), Guariglia

(2008)).

The second result is an empirical prediction that the investment threshold has a U-

shaped relation with a degree of financial constraints. The prediction has been seen in the

recent real option literature. Boyle and Guthrie (2003) examined the effects of a liquidity

constraint to the investment timing decision and predicted that the investment threshold

has a U-shaped relation with a degree of the liquidity constraint. Shibata and Nishihara

(2012), who examined the effects of a debt capacity constraint in a dynamic financing and
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capital structure model, showed that the investment threshold has a U-shaped relation

with a degree of the debt capacity constraint.2

If one identifies “earlier” investment as “increased” investment, the two results are

inconsistent with each other. However, this argument pays no attention to the point that

the investment timing studies consider fixed-scale investment models. Our results can

explain both types of results in terms of the interactions of investment timing and sizing

decisions with costly external financing. In the presence of financing costs, cash reserves

influence the trade-off between the two choices: small- or large-scale expansion. When

cash reserves are close to the amount of the small-scale investment cost, the firm has

a great incentive to invest in the small-scale project for which the investment threshold

is relatively low. When cash reserves are much higher or lower than that level, the

firm is likely to undertake the large-scale expansion for which the investment threshold

is relatively high. This mechanism can explain U-shaped relations regarding both the

investment volume and timing in the previous studies.

In summary, the main contributions of this paper are threefold. First and most im-

portantly, this paper fills the gap between two types of results in the corporate finance

literature: (i) empirical evidence regarding a U-shaped relation between the investment

volume and internal funds and (ii) predictions of a U-shaped relation between the invest-

ment timing and internal funds. Second, this paper complements the investment timing

and sizing literature by proving that costs of external financing greatly distort the deci-

sion, leading especially to a policy dependent the dynamics of both cash flow and cash

reserves. Third, this paper contributes the mathematical finance literature by proving

the properties of exercise regions of an optimal stopping problem involving a non-convex

payoff function and a non-geometric Brownian motion.

The remainder of this paper is organized as follows. Section 2 presents the setup

and the results in the case without financing costs. Section 3 presents the results in the

case with a proportional cost and explains empirical implications. Section 4 examines

the comparative statics with respect to the price volatility and a case with fixed and

proportional costs in numerical examples. Section 5 concludes the paper. All proofs

appear in the appendix.

2Regarding the relation between the investment timing and cash holdings, Hirth and Uhrig-Homburg (2010b),

who extended Boyle and Guthrie (2003) to a case with financing costs, pointed out the possibility of various

non-monotonic relations, and Nishihara and Shibata (2011) proved that a fixed cost of external financing leads

to a non-monotonic relation.
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2 Preliminaries

2.1 Setup

Consider a risk-neutral firm that produces a commodity at a constant rate. The output

is sold at the market price X(t), which follows a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x, (1)

where B(t) denotes the standard Brownian motion defined in a probability space (Ω,F ,P)
and µ, σ(> 0) and x(> 0) are constants. For convergence, we assume that r > µ, where r

is a positive and constant interest rate. Assume that the firm owns an option to expand

production on either a small or large scale, A1(> 1) or A2(> A1), respectively, at any

time. If the small-scale (large-scale) growth option is exercised at time τ , the firm pays a

fixed investment cost at time τ and receives an instantaneous cash flow A1X(t) (A2X(t))

after time τ . Assume that the investment cost is I1(> 0) (I2(> I1)) for the small-scale

(large-scale) expansion if the whole amount of the cost is internally financed. If part

of the investment cost is externally financed, the firm pays a proportional cost C(≥
0) of external financing. The total cost associated with the investment is expressed as

Ii +Cmax(Ii − Y (τ), 0) (i = 1, 2), where Y (τ) denotes the firm’s cash reserves at time τ .

Until the investment time τ , cash reserves Y (t) follow

dY (t) = rY (t)dt+X(t)dt, (0 < t < τ) Y (0) = y, (2)

where y(≥ 0) is a constant representing the initial cash reserves. Note that Y (t) is an

increasing process.

Boyle and Guthrie (2003) assume the dynamics of cash reserves exogenously and con-

sider an option to initiate a new project. In contrast, we relate cash reserves Y (t) to

operating cash flows X(t) more directly and consider the option to expand production.

In the case of C = 0, the setup corresponds to an alternative investment model studied

in Dixit (1993) and Décamps, Mariotti, and Villeneuve (2006). For a comprehensive list

of typical situations fitting the standard model, refer to Dixit (1993), Dixit and Pindyck

(1994), and Décamps, Mariotti, and Villeneuve (2006). We extend the standard model,

which presumes that the firm needs no costs of external financing (otherwise, it has suf-

ficient internal funds), to a model involving costs of external financing. Unlike Boyle and

Guthrie (2003), who focused on a liquidity constraint in fixed-size investment, we examine

the interactions of investment timing, size, and financing costs.3

Our assumption of costly external financing is justified as follows. In the pecking order

theory, agency and asymmetric information problems cause costs of external financing,

3Hirth and Uhrig-Homburg (2010b) extended Boyle and Guthrie (2003) to a case involving both a liquidity

constraint and financing costs. Nishihara and Shibata (2011) developed a model involving financing costs,

whereas Shibata and Nishihara (2012) focused on a debt issuance constraint. However, these papers assume

fixed-scale investment.
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which leads to a preference for internal over external finance (Myers (1984), Myers and

Majluf (1984)). Practically, financing costs consist of a fixed cost (which is independent of

the issue size) and a variable cost (which depends on the issue size). A fixed cost includes

taxes, fees, and setup expenses. A variable cost increases with issue size primarily because

more underwriting services are required for more funds raised. In the standard view of

the literature, a variable cost is convex with respect to the issue size (e.g., Altinkilic

and Hansen (2000)). Hennessy and Whited (2007) estimated that proportional costs of

equity financing are approximately 5% (10%) for large (small) firms. They showed that

a proportional cost can almost completely account for costs of equity financing for large

firms, although the fixed cost effect may be not negligible for small firms. In taking

account of their results, as well as preserving tractability of the model, we examine the

case with only a proportional cost in full detail in Sections 3 and 4.1, and succinctly

explain how the results change in the case involving both fixed and proportional costs as

a supplement in Section 4.2.

2.2 Case with no financing costs

As a benchmark, this section explains results in the case of C = 0. In this case, the firm

solves the following problem:

sup
τ∈T

Ex[max
i=1,2

Eτ,X(τ)[

∫ τ

0
e−rtX(t)dt+

∫ ∞

τ
e−rtAiX(t)dt− e−rτIi]], (3)

where T denotes the set of all stopping times and Ex[·] (Eτ,X(τ)[·]) denotes the expectation
conditional on t = 0, X(0) = x (t = τ,X(t) = X(τ)). In (3), τ represents the time to

expand the scale of production, whereas maxi=1,2 Eτ,X(τ)[·] represents the sizing choice at

time τ . By the strong Markov property of X(t), (3) can be reduced to

x

r − µ
+ sup

τ∈T
Ex[e−rτ max

i=1,2

(
Ai − 1

r − µ
X(τ)− Ii

)
]︸ ︷︷ ︸

=:V0(x) the growth option value

.

The second term, denoted by V0(x), represents the growth option value. Décamps, Mar-

iotti, and Villeneuve (2006) derived a closed-form solution for this type of problem.4

Indeed, we have V0(x) depending on the relation of A1, A2, I1 and I2 as follows:

4For this type of problem, refer also to Nishihara and Ohyama (2008).
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If {(A2 − 1)/(A1 − 1)}β/(β−1) < I2/I1,

V0(x) =



(
(A1 − 1)x∗1

r − µ
− I1

)(
x

x∗1

)β

(0 < x < x∗1) waiting

(A1 − 1)x

r − µ
− I1 (x∗1 ≤ x ≤ x∗21) small-scale expansion

(A1 − 1)x∗2
γ−1 − (A2 − 1)x∗1

γ−1

β(r − µ)(x∗1
β−1x∗2

γ−1 − x∗1
γ−1x∗2

β−1)
xβ

+
(A1 − 1)x∗2

β−1 − (A2 − 1)x∗1
β−1

γ(r − µ)(x∗1
γ−1x∗2

β−1 − x∗1
β−1x∗2

γ−1)
xγ (x∗21 ≤ x ≤ x∗22) waiting

(A2 − 1)x

r − µ
− I2 (x ≥ x∗22) large-scale expansion,

(4)

where β := 1/2−µ/σ2 +
√

(µ/σ2 − 1/2)2 + 2r/σ2 (> 1) and γ := 1/2−µ/σ2 −
√

(µ/σ2 − 1/2)2 + 2r/σ2

(< 0) is positive and negative characteristic roots, respectively. Threshold x∗1 is defined

by x∗1 := β(r − µ)I1/{(A1 − 1)(β − 1)}, which is equal to the threshold for an option

to invest only in the small-scale project. On the other hand, thresholds x∗21 and x∗22 are

determined by the value matching (continuous fit) conditions at the boundaries.

If {(A2 − 1)/(A1 − 1)}β/(β−1) ≥ I2/I1,

V0(x) =


(
(A2 − 1)x∗2

r − µ
− I2

)(
x

x∗2

)β

(0 < x < x∗2) waiting

(A2 − 1)x

r − µ
− I2 (x ≥ x∗2) large-scale expansion,

(5)

where x∗2 := β(r − µ)I2/{(A2 − 1)(β − 1)}. In this case, the problem is reduced to a

problem of investing only in the large-scale project because the value (5) dominates the

value of the small-scale investment, (A1 − 1)x/(r − µ)− I1, for all x > 0.

Note that β/(β − 1) monotonically increases with σ because of ∂β/∂σ < 0. A higher

σ is more likely to lead to the case of {(A2−1)/(A1−1)}β/(β−1) ≥ I2/I1. The intuition is

that a higher σ increases the value of the large-scale growth option so that the value (5)

can dominate (A1−1)x/(r−µ)− I1 for all x > 0. For details, refer to Décamps, Mariotti,

and Villeneuve (2006). We also note that

V0(x) ≥ max
i=1,2

{
sup
τ∈T

Ex[e−rτ

(
Ai − 1

r − µ
X(τ)− Ii

)
]

}
︸ ︷︷ ︸

the value by the initial sizing choice

, (6)

where in the left-hand side the sizing decision i ∈ {1, 2} is Fτ -measurable, while in the

right-hand side i ∈ {1, 2} is F0-measurable. Dixit (1993) focused only on the right-hand

problem, and Décamps, Mariotti, and Villeneuve (2006) complemented his argument by

solving the left-hand problem. Because of the difference, in general we have the inequality

(6). However, the equality

V0(x) = max
i=1,2

{
sup
τ∈T

Ex[e−rτ

(
Ai − 1

r − µ
X(τ)− Ii

)
]

}
, (7)
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holds for x ≤ x∗1. This means that, if the initial value X(0) = x is sufficiently low, this

problem is unchanged from the case in which the firm chooses the investment size not

dynamically but at the initial time.

3 Analytic Results

3.1 Model solutions

This section provides analytic results in the case of C > 0. In this case, the growth option

value, denoted by VC(x, y), is expressed as

VC(x, y) = sup
τ∈T

Ex,y[e−rτ max
i=1,2

(
Ai − 1

r − µ
X(τ)− Ii − Cmax(Ii − Y (τ), 0)

)
], (8)

where where Ex,y[·] denotes the expectation conditional on t = 0, X(0) = x, Y (0) = y.

The term Cmax(Ii − Y (τ), 0) represents that a proportional cost is required when the

firm is short of cash reserves, whereas maxi=1,2(·) means that the firm chooses the optimal

size at the investment time τ .

First, we prove several properties of the option value VC(x, y). Consider the following

problems as approximations of VC(x, y):

VL(x, y) := sup
τ∈T

Ex[e−rτ max
i=1,2

(
Ai − 1

r − µ
X(τ)− Ii − Cmax(Ii − y, 0)

)
],

VU (x, y) := sup
τ∈T

Ex,y[e−rτ max
i=1,2

(
Ai − 1

r − µ
X(τ)− Ii − C(Ii − Y (τ))

)
].

VL(x, y) is the same type of problem as V0(x) so that it allows an explicit solution like (4)

or (5). By the strong Markov property of X(t), we can easily show

VU (x, y) = C

(
y +

x

r − µ

)
+ sup

τ∈T
Ex,y[e−rτ max

i=1,2

(
Ai − C − 1

r − µ
X(τ)− (1 + C)Ii

)
].

If A2 − C − 1 > 0, we have an explicit solution like (4) or (5). Otherwise, VU (x, y) =

C(y + x/(r − µ)) holds, which means that the growth option will be never exercised.

Note that in both VL(x, y) and VU (x, y) the exercise policies are independent of Y (t).

The following proposition indicates that VL(x, y) and VU (x, y) are closed-form bounds of

VC(x, y).

Proposition 1 (Option value)

If y < I2, VL(x, y) ≤ VC(x, y) ≤ VU (x, y) is satisfied.

Otherwise, VC(x, y) = V0(x) holds.

Proposition 1 states that, once Y (t) reaches the large-scale investment cost I2, the problem

with financing costs is reduced to that of no financing cost. We will also use the following

lemma to show the properties of the optimal financing and investment policy.
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Lemma 1

If A2 − C − 1 > 0,

0 ≤ VC(x+∆, y)− VC(x, y) ≤
(A2 − 1)∆

r − µ
(9)

holds for any positive constant ∆.

0 ≤ VC(x, y +∆)− VC(x, y) ≤ C∆ (10)

holds for any positive constant ∆.

Next, we concentrate on the exercise regions for the problem (8). The standard argu-

ment proves that the exercise region of the option is expressed as

SC := {(x, y) ∈ R2
+ | V (x, y) = max

i=1,2
{(Ai − 1)x/(r − µ)− Ii − Cmax(Ii − y, 0)}}. (11)

Furthermore, the exercise region SC can be decomposed into disjoint sets (some may be

empty) defined by

SC,1,E := {(x, y) ∈ R2
+ | V (x, y) = (A1 − 1)x/(r − µ)− I1 − C(I1 − y), y < I1},

SC,1,I := {(x, y) ∈ R2
+ | V (x, y) = (A1 − 1)x/(r − µ)− I1, y ≥ I1},

SC,2,E := {(x, y) ∈ R2
+ | V (x, y) = (A2 − 1)x/(r − µ)− I2 − C(I2 − y), y < I2},

SC,2,I := {(x, y) ∈ R2
+ | V (x, y) = (A2 − 1)x/(r − µ)− I2, y ≥ I2}.

The regions SC,1,E and SC,1,I represent small-scale investment regions partially with exter-

nal financing and entirely with internal financing, respectively, whereas SC,2,E and SC,2,I

represent large-scale investment regions partially with external financing and entirely with

internal financing, respectively. Below, we analytically prove the interesting properties of

SC,1,E , SC,1,I , SC,2,E , and SC,2,I . It immediately follows from Proposition 1 that the ex-

ercise regions coincide with those of V0(x) for y ≥ I2. Note that thresholds x∗1, x
∗
21, x

∗
22,

and x∗2 were explained in Section 2.2.

Proposition 2 (Case of sufficient cash reserves)

If {(A2−1)/(A1−1)}β/(β−1) < I2/I1, SC,1,I∩R+×[I2,∞) = [x∗1, x
∗
21]×[I2,∞) and SC,2,I =

[x∗22,∞)× [I2,∞) hold. Otherwise, SC,1,I ∩R+× [I2,∞) = ∅ and SC,2,I = [x∗2,∞)× [I2,∞)

hold.

Now, we examine the properties of the exercise regions in the region y < I2. In this

region, the optimal policy is contingent on a combination of X(t) and Y (t), and, hence, it

is quite different from the threshold policy depending only on X(t) in the region y ≥ I2.

The following proposition reveals the properties of the large-scale investment partially

with external financing, SC,2,E . Note that the region of the large-scale investment entirely

with internal financing, SC,2,I , is explicitly derived in Proposition 2.
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Proposition 3 (Large-scale expansion)

If A2 − C − 1 > 0 is satisfied,

SC,2,E = {(x, y) ∈ R2
+ | x ≥ x∗C(y), y < I2}, (12)

where x∗C(·) is a continuous and monotonically decreasing function. x∗C(y) is between

the corresponding thresholds in VL(x, y) and VU (x, y), and limy↑I2 x
∗
C(y) is equal to the

maximum of x∗2 (or x∗22) and (C + 1)rI2/(A2 − C − 1).

Otherwise, SC,2,E = ∅.

Here we limit our attention to a case in which a proportional cost is relatively low, i.e.,

A2−C−1 > 0. We will explain the case of A2−C−1 ≤ 0 below Proposition 6. In the case

of A2 − C − 1 > 0, the firm invests in the large-scale investment partially with external

financing when the output price X(t) exceeds the threshold x∗C(Y (t)). Proposition 3

ensures monotonicity in the lager-scale investment threshold x∗C(Y (t)) with respect to

cash reserves Y (t). This monotonicity can be straightforwardly explained as follows. An

increase in Y (t) decreases a financing cost C(I − Y (t)), which accelerates the large-scale

investment.

We now examine the properties of the small-scale investment regions, SC,1,E and SC,1,I .

Proposition 4 suggests the possibility that SC,1,E and SC,1,I are generated by costs of

external financing. Proposition 5 describes the properties of SC,1,E and SC,1,I on the

presumption that they exist.

Proposition 4 (Possibility of the small-scale expansion)

If {(A2 − 1)/(A1 − 1)}β/(β−1) < I2/I1, SC,1,E may not be empty and SC,1,I ̸= ∅.
If I2/I1 ≤ {(A2 − 1)/(A1 − 1)}β/(β−1) < {I2 + C(I2 − I1)}/I1, SC,1,E and SC,1,I may not

be empty.

Otherwise, SC,1,E = SC,1,I = ∅.

Proposition 5 (Small-scale expansion)

If (x, y) ∈ SC,1,E , (x, I1) ∈ SC,1,I and (x, y′) ∈ SC,1,E holds for any y′ ∈ [y, I1).

If (x, y) ∈ SC,1,I , (x, y
′) ∈ SC,1,I holds for any y′ ∈ [I1, y].

If {(A2 − 1)/(A1 − 1)}β/(β−1) < I2/I1, min{x ≥ 0 | (x, y) ∈ SC,1,I} = x∗1 holds for any

fixed y ≥ I1.

Proposition 5 shows that the small-scale investment region enhances with cash reserves

Y (t) until Y (t) = I1 and from the point it decreases with Y (t). This non-monotonic

property is in sharp contrast with the monotonicity of the large-scale investment region

proved in Proposition 3. Below, we explain the interesting result in terms of the investment

sizing choice changing with Y (t).

[Insert Figure 1 about here.]
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Figure 1 illustrates how the ratio of the total cost associated with the large-scale ex-

pansion to that of the small-scale expansion, {I2+Cmax(I2−Y (t), 0)}/{I1+Cmax(I1−
Y (t), 0)}, changes with Y (t). Note that the ratio regarding the profit expansion, (A2 −
1)/(A1 − 1), is independent of Y (t). The ratio is equal to I2/I1 for Y (t) = 0 because ex-

ternal funds cover entire investment costs in both projects. For Y (t) ∈ (0, I1], the internal

funds cover Y (t) out of I1 and I2 in the small- and large-scale projects, respectively. The

coverage ratio in the small-scale project, Y (t)/I1, increases more with Y (t) than that of the

large-scale project. Then, the ratio {I2+Cmax(I2−Y (t), 0)}/{I1+Cmax(I1−Y (t), 0)}
monotonically increases up to the maximum level {I2 + C(I2 − I1)}/I1 for Y (t) = I1.

This increase leads to the result that a higher Y (t) encourages the firm to invest in the

small-scale project until Y (t) = I1. For Y (t) ∈ [I1, I2), the small-scale project requires

no external financing, while the large-scale project requires the external funds I2 − Y (t).

An increase in Y (t) decreases the total cost associated with the large-scale investment,

preserving the small-scale investment cost unchanged. Then, the ratio {I2 + Cmax(I2 −
Y (t), 0)}/{I1 + Cmax(I1 − Y (t), 0)} monotonically falls to the minimum level I2/I1 for

Y (t) = I2. This decrease leads to the novel result that a higher Y (t) discourages the firm

to invest in the small-scale project within the region Y (t) ∈ [I1, I2].

As explained by the mechanism above, the possibility of the small-scale expansion

is maximized at the point Y (t) = I1. Proposition 4 states that, if the maximum ratio

{I2 +C(I2 − I1)}/I1 is smaller than the critical level {(A2 − 1)/(A1 − 1)}β/(β−1), the firm

never undertakes the small-scale investment. Now, compare this result with that of the

case with no financing costs. In the absence of financing costs, the firm never undertakes

the small-scale investment if I2/I1 < {(A2 − 1)/(A1 − 1)}β/(β−1) is satisfied (see Section

2.2). In the presence of financing costs, on the other hand, the firm has a possibility of

investing in the small-scale project in the region I2/I1 ≤ {(A2 − 1)/(A1 − 1)}β/(β−1) <

{I2 + C(I2 − I1)}/I1. This demonstrates that costs of external financing can trigger the

small-scale investment which is never undertaken in the case with no financing costs. This

also suggests the counter-intuitive effect that financing costs may speed up investment (but

it is small-scale).

We can prove the following proposition regarding the possibility of external financing.

Proposition 6 (Possibility of external financing)

If C < A1 − 1, SC,1,E may not be empty and SC,2,E ̸= ∅.
If A1 − 1 ≤ C < A2 − 1, SC,1,E = ∅ and SC,2,E ̸= ∅.
Otherwise, SC,1,E = SC,2,E = ∅.

It is clear that high financing costs prevent a firm from financing the project with ex-

ternal funds. Further, and more interestingly, this proposition suggests that the firm is

more likely to rely on external funds in the large-scale expansion than in the small-scale

expansion. To see this, suppose that the cost of external financing is intermediate, i.e.,

A1 − 1 ≤ C < A2 − 1. In this case, the small-scale project is always deferred until the
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project can be financed entirely with internal funds. On the other hand, the large-scale

project is undertaken partially with external financing when X(t) reaches a sufficiently

high level. The reasoning is as follows. In the region Y (t) < I1, the firm receives cost

savings of CX(t)dt+ r(1 + C)I1dt and loses (A1 − 1)X(t)dt by deferring the small-scale

investment by an infinitesimally short period dt. Then, the firm never finances the small-

scale project with external funds for any X(t) if C ≥ A1−1 is satisfied. In the case of the

large-scale project, the positive effect CX(t)dt remains unchanged,5 while the negative

effect is enlarged to (A2 − 1)X(t)dt. This increases the firm’s incentive to access external

financing in the large-scale expansion.

3.2 Empirical implications

In this subsection, we provide empirical implications obtained from the propositions in

Section 3.1 and clarify our contributions to the literature.

[Insert Figure 2 about here.]

Figure 2 summarizes the properties of the financing and investment policy in Propo-

sitions 3–6.6 The first, second, and third rows correspond to the cases with high, inter-

mediate, and low cost of external financing, respectively. The first, second, and third

columns correspond to the cases with high, intermediate, and low values of I2/I1 (or

(A1 − 1)/(A2 − 1)). In the hatched regions the firm invests entirely with internal financ-

ing, while in the other regions it relies partially on external financing. The figure also

indicates the investment size the firm chooses in the exercise region.

When I2/I1 (or (A1−1)/(A2−1)) is sufficiently low, i.e., in the first column, the financ-

ing and investment policy is the same as that of the case with only the large-scale project

(fixed-scale investment model). This case is studied in details by Nishihara and Shibata

(2011), and, hence, we omit the explanation. The second and third columns present more

interesting panels, in which the firm optimizes the investment size as well as investment

timing. The panels show that costs of external financing bring many differences from the

case with no financing constraint in Section 2.2 (refer also to Décamps, Mariotti, and

Villeneuve (2006)). Among all, a key difference is regarding the necessity of dynamically

deciding the investment size. Except for Panel (ix) the firm cannot determine the invest-

ment size at the initial time even if the initial value X(0) = x is low. The firm invests in

either the small- or large-scale project depending on the dynamics of (X(t), Y (t)). Recall

5The term r(1 + C)I2dt is negligible when X(t) is high.
6In all figures in this paper, we set the axes in the same way as Boyle and Guthrie (2003), Hirth and Uhrig-

Homburg (2010b), and Nishihara and Shibata (2011) for comparison. This figure illustrates the cases in which

x∗
2 (or x∗

22) in problem V0(x) is larger than (C +1)rI2/(A2 −C − 1) in Proposition 3. Otherwise, there is a gap

between limy↑I2 x
∗
C(y) and x∗

2 (or x∗
22) for Y (t) = I2. The characteristics remain unchanged except for the gap

at the point Y (t) = I2.
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that in Section 2.2 the dynamic choice is not necessary for a sufficiently low X(0) = x.

Our results complement Dixit (1993) and Décamps, Mariotti, and Villeneuve (2006) by

revealing the significance of the firm’s dynamic sizing choice in the presence of costs of

external financing.

Next, we clarify a significant contribution to the corporate finance literature. In cor-

porate finance, there have been long-term arguments about sensitivities of investment to

cash flow since seminal works by Fazzari, Hubbard, and Petersen (1988), Kaplan and

Zingales (1997), and Hubbard (1998). Recently, several empirical studies regarding this

issue have demonstrated a counter-intuitive result that the investment volume does not

necessarily decrease with a degree of financing constraints. Specifically, Cleary, Povel, and

Raith (2007) and Guariglia (2008) documented a U-shaped relation between the invest-

ment volume and internal funds. This suggests that an intermediate level of financing

constraint can lead to underinvestment.

On the other hand, a recent stream of real options literature has provided another pre-

diction: an intermediate level of financing constraint can lead a firm to hasten investment.

Boyle and Guthrie (2003) showed that the investment threshold has a U-shaped relation

with a degree of a liquidity constraint because of a firm’s incentive to avoid the risk of

a cash shortfall. Shibata and Nishihara (2012) showed that a firm’s consideration of the

optimal capital structure leads to a U-shaped relation between the investment threshold

and a debt capacity constraint. If “hastened” investment is equal to “increased” invest-

ment, the prediction from the real options literature is contrary to the empirical evidence.

However, this argument is not precise because the investment timing studies consider

fixed-scale investment models. Indeed, by integrating both investment timing and sizing

problems, we can demonstrate that the two results do not conflict but complement each

other.

[Insert Figure 3 about here.]

To see this clearly, we concentrate on the most interesting case, Panel (viii) (or (v))

in Figure 2.7 Figure 3 illustrates the minimum threshold price in which the firm invests

and the project that is chosen at the threshold in this case. This figure indicates that

the firm with low or high cash reserves undertakes the large-scale project on the later

timing, while, with intermediate cash reserves (Y (t) ≈ I1), it invests in the small-scale

project on the earlier timing. An intermediate level of cash holdings can play both roles

in accelerating the investment time and decreasing the investment size. In the presence

of the cost of external financing, as explained with Figure 1, an intermediate level of

cash reserves provides the greatest incentive for the firm to undertake the small-scale

expansion rather than the large-scale expansion. Then, from the viewpoint of investment

7In other cases, our model can also explain the conventional results, i.e., the monotonic relations regarding

the investment volume and timing. In the real options literature, Milne and Robertson (1996), Nishihara and

Shibata (2010), and Hirth and Uhrig-Homburg (2010a) are in line with the monotonicity.

13



size, the investment is scaled down from the first-best level of a case with no financing

cost. At the same time, from the viewpoint of investment timing, the investment takes

place earlier than the first-best timing because the small-scale investment has a lower

value of the deferring option than that of the large-scale investment. Unlike Boyle and

Guthrie (2003) and Shibata and Nishihara (2012), by the interaction of financing costs,

investment timing, and investment size, we can explain both non-monotonic relations

regarding the investment volume and timing. This mechanism fills the gap between the

investment volume and timing literature.

Lastly, we explain a contribution to the literature from a technical viewpoint. This

paper, unlike most of the related papers relying on numerical simulations, attains analytic

results. Although some of the techniques used in the proof are inspired by the mathemati-

cal finance literature (e.g., Broadie and Detemple (1997), Detemple (2006), Bobtcheff and

Villeneuve (2010)), several developments are attained by this paper.8 While the mathe-

matical finance studies investigated the exercise regions of American options that involve

a multi-dimensional geometric Brownian motion, the stochastic process Y (t) in our model

is not a geometric Brownian motion; instead, it is defined by (2). Furthermore, the pay-

off function of problem (8) is not convex, which makes the proofs more difficult. These

technical developments can be potentially applied to a variety of investment timing and

sizing problems.

4 Numerical examples

As mentioned in Section 1, the main contribution of this paper is to attain analytic results

regarding the firm’s optimal financing and investment policy in Section 3. We supplement

the results from two aspects in numerical examples. Section 4.1 presents the comparative

statics results with respect to the output price volatility σ. Section 4.2 we present the

results in a case with a fixed cost in addition to a proportional cost of external financing.

4.1 Base case

We explore the effects of output price uncertainty to the financing and investment policy.

The base parameter values are set as follows:

r = 0.07, µ = 0.03, σ = 0.2, I1 = 50, I2 = 100, A1 = 1.385, A2 = 1.5, C = 0.1. (13)

For comparison, we set the parameter values for the large-scale expansion at the same

values as Nishihara and Shibata (2011). These parameter values are also similar to those

of the standard real options literature.

8Nishihara and Shibata (2011) developed similar techniques to prove the properties of the optimal financing

and investment policy in the presence of a proportional cost of external financing, but they assumed a fixed

investment size.
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For the base parameter values (13), we have {(A2 − 1)/(A1 − 1)}β/(β−1) = 1.9569 <

I2/I1 = 2 regarding the possibility of the small-scale expansion (Proposition 4). This

means that the firm may undertake the small-scale investment. We also have C = 0.1 <

A1−1 = 0.285 regarding the possibility of external financing (Proposition 6). This means

that the projects may be financed partially with external financing. In the computation,

we make a tri-nomial lattice model that approximates to a geometric Brownian motion

(1), and we use a value function iteration algorithm.

[Insert Figure 4 about here.]

Figure 4 plots the exercise regions with varying levels of σ. We can see from Figure 4

that a higher σ decreases the exercise regions, which implies that the investment threshold

and the option value enhance with σ. This volatility effect is straightforwardly consistent

with the standard results with neither financing costs nor sizing choice.

Further and more notably, Figure 4 demonstrates that the volatility effect is stronger

for the small-scale investment than for the large-scale investment. As σ increases up

to 0.2, the region of the small-scale investment partially with external financing, SC,1,E ,

disappears first. As σ increases up to 0.25, the region of the small-scale investment entirely

with internal financing, SC,1,I , disappears either. Then, for σ = 0.25 and 0.3, the financing

and investment policy is the same as that of a case in which the investment size is fixed

at the large scale. The rationale is based on Proposition 4. Indeed, we have {(A2 −
1)/(A1 − 1)}β/(β−1) < I2/I1 for σ = 0.1, 0.15, 0.2, I2/I1 ≤ {(A2 − 1)/(A1 − 1)}β/(β−1) <

{I2+C(I2− I1)}/I1 for σ = 0.213, and {I2+C(I2− I1)}/I1 ≤ {(A2−1)/(A1−1)}β/(β−1)

for σ = 0.25, 0.3. Note that β/(β − 1) monotonically increases with σ. As a result, the

financing and investment policy becomes like panel (ix) → panel (vi) → panel (v) → panel

(iv) in Figure 2 with an increase in σ. A higher σ, like a higher I2/I1 or (A1−1)/(A2−1),

increases the advantage of the large-scale expansion over the small-scale expansion. It

should be also noted that the panel of σ = 0.213 corresponds to the most interesting case,

panel (v) in Figure 2 (or Figure 3).

4.2 Extension to a case with fixed and proportional costs

So far we have concentrated on a proportional cost of external financing because a propor-

tional cost accounts for the greatest part of financing (e.g., Hennessy and Whited (2007)).

However, according to Hennessy and Whited (2007), the effects of a fixed cost may be

observable for small firms. To check the robustness, we present a case with both fixed

and proportional costs of external financing.

[Insert Figure 5 about here.]

Figure 5 illustrates the exercise regions in the extended case with varying levels of σ. In

the numerical examples, the fixed cost is set at 1. This means that the total financing cost
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is equal to 0.1max(Ii − Y (t), 0) + 1{Ii−Y (t)>0}, where 1{·} denotes the indicator function.

For Y (t) ↑ Ii, a fixed cost provides the greatest incentive for the firm to wait and invest

entirely with internal funds. Then, the firm never invests when Y (t) reach nearly I1 =

50 or I2 = 100, which leads to disconnected exercise regions. This fixed cost effect is

documented in Nishihara and Shibata (2011) who examined the fixed cost effects in a

fixed-scale investment model. Furthermore, we can see from Figure 5 that the fixed cost

effect is strong particularly in the small-scale project. Indeed, compared to Figure 4,

Figure 5 has no small-scale investment region partially with external financing, SC,1,E ,

at all. The presence of a fixed cost removes the possibility of investing in the small-

scale project partially with external financing. Figure 5 inherits the other characteristics

from Figure 4. Most notably, the panel of σ = 0.213 still holds an island-like small-scale

investment region even if a fixed cost is considered.

5 Conclusion

This paper examined the interactions of financing costs, investment timing, and invest-

ment sizing in a dynamic model. We assumed that a firm can invest in either a small-

or large-scale project with cash reserves, which are increasing with time, and external

funds that require a proportional cost. We, unlike most of the related papers, analytically

proved the properties of the corporate financing and investment policy. The results are

summarized as follows.

Financing costs lead to the financing and investment policy strongly contingent on the

dynamics of both the cash flow and reserves. In particular, in the presence of financing

costs, the firm is more likely to invest in the small-scale project entirely using internal

funds. The investment threshold for the large-scale project monotonically decreases with

cash reserves, while the investment region for the small-scale project has a non-monotonic

relation with cash reserves. Most notably, an intermediate level of cash reserves can play

both roles in speeding up the investment and in decreasing the investment size. Our

results can explain two types of results in corporate finance: (i) empirical findings that

the investment volume has a U-shaped relation with internal funds, and (ii) empirical

predictions that the investment threshold has a U-shaped relation with internal funds.
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A Proof of Proposition 1

Since Y (t) monotonically increases from the initial value y, we have

Ii − Y (t) ≤ max(Ii − Y (t), 0) ≤ max(Ii − y, 0) (i = 1, 2)

at any time t. This implies that VL(x, y) ≤ VC(x, y) ≤ VU (x, y) holds. The problem (8)

can be reduced to the problem with no financing cost when y ≥ I2.

B Proof of Lemma 1

First, we prove (9). Note that E1[·] represents the expectation with X(t) starting from

X(0) = 1. For any positive constant ∆, we have

VC(x+∆, y)

= sup
τ∈T

E1[e−rτ max
i=1,2

(
(Ai − 1)(x+∆)

r − µ
X(τ)− Ii − Cmax(Ii − erτy −

∫ τ

0
er(τ−s)(x+∆)X(s)ds, 0)

)
]

≤ sup
τ∈T

E1[e−rτ

(
max
i=1,2

(
(Ai − 1)x

r − µ
X(τ)− Ii − Cmax(Ii − erτy −

∫ τ

0
er(τ−s)xX(s)ds, 0)

)
+

(A2 − 1)∆

r − µ
X(τ) + C∆

∫ τ

0
er(τ−s)X(s)ds

)
] (14)

≤ sup
τ∈T

E1[e−rτ max
i=1,2

(
(Ai − 1)x

r − µ
X(τ)− Ii − Cmax(I − erτy −

∫ τ

0
er(τ−s)xX(s)ds, 0)

)
]︸ ︷︷ ︸

=VC(x,y)

+ sup
τ∈T

E1[e−rτ

(
(A2 − 1)∆

r − µ
X(τ) + C∆

∫ τ

0
er(τ−s)X(s)ds

)
]

=VC(x, y) + sup
τ∈T

E1[e−rτ

(
(A2 − 1)∆

r − µ
X(τ)

)
+ C∆

(∫ ∞

0
e−rsX(s)ds−

∫ ∞

τ
e−rsX(s)ds

)
]

=VC(x, y) +
C∆

r − µ
+

(A2 − 1− C)∆

r − µ
sup
τ∈T

E1[e−rτX(τ)]︸ ︷︷ ︸
=1

(15)

=VC(x, y) +
(A2 − 1)∆

r − µ
,

where (14) follows from A1 < A2, and in (15) supτ∈T E1[e−rτX(τ)] = 1 follows from

µ < r.
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Next, we prove (10). For any positive constant ∆, we have

VC(x, y +∆)

= sup
τ∈T

Ex[e−rτ max
i=1,2

(
(Ai − 1)

r − µ
X(τ)− Ii − Cmax(Ii − erτ (y +∆−

∫ τ

0
er(τ−s)X(s)ds, 0)

)
]

≤ sup
τ∈T

Ex[e−rτ

(
max
i=1,2

(
(Ai − 1)

r − µ
X(τ)− Ii − Cmax(Ii − erτy −

∫ τ

0
er(τ−s)X(s)ds, 0)

)
+ erτC∆

)
]

= sup
τ∈T

Ex[e−rτ max
i=1,2

(
(Ai − 1)

r − µ
X(τ)− Ii − Cmax(Ii − erτy −

∫ τ

0
er(τ−s)X(s)ds, 0)

)
]︸ ︷︷ ︸

=VC(x,y)

+C∆

=VC(x, y) + C∆.

C Proof of Proposition 2

Note that Y (t) monotonically increases from the initial value y. Once Y (t) reached I2,

VC(x, y) can be reduced to V0(x, y). Then, the exercise region agrees with the exercise

region for the benchmark problem V0(x, y) which is explicitly obtained in Section 2.2.

D Proof of Proposition 3

First, consider the case of A2−C−1 > 0. Fix (x, y) ∈ SC,2,E and (x′, y′) satisfying x ≤ x′

and y ≤ y′ < I2. Using Lemma 1, we have

VC(x
′, y′) = VC(x

′, y′)− VC(x, y
′) + VC(x, y

′)− VC(x, y) + VC(x, y)

≤ (A2 − 1)(x′ − x)

r − µ
+ C(y′ − y) + VC(x, y)

=
(A2 − 1)(x′ − x)

r − µ
+ C(y′ − y) +

(A2 − 1)x

r − µ
− I2 − C(I2 − y)

=
(A2 − 1)x′

r − µ
− I2 − C(I2 − y′),

where the last inequality implies (x′, y′) ∈ SC,2,E . This proves that SC,2,E is expressed as

(12) with the decreasing function x∗C(·). By Proposition 1, we can immediately show that

x∗C(y) is between the corresponding thresholds in VL(x, y) and VU (x, y).

Next, we derive limy↑I2 x
∗
C(y). Clearly we have limy↑I2 x

∗
C(y) ≥ x∗2. Here we explain

the case of {(A2 − 1)/(A1 − 1)}β/(β−1) ≥ I2/I1. Replace x∗2 with x∗22 in the case of

{(A2 − 1)/(A1 − 1)}β/(β−1) < I2/I1. Denote

f2(x, y) :=
(A2 − 1)x

r − µ
− I2 − C(I2 − y). (16)
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We have

Lf2(x, y)− rf2(x, y) ≤ 0

⇔(A2 − 1)µx

r − µ
+ C(x+ ry)− r

(
(A2 − 1)x

r − µ
− I2 − C(I2 − y)

)
≤ 0

⇔x ≥ (C + 1)rI2
A2 − C − 1

, (17)

where L denotes the generating operator of (X(t), Y (t)), i.e.,

L := µx
∂

∂x
+

1

2
σ2x2

∂2

∂x2
+ (x+ ry)

∂

∂y
. (18)

Since the general theory of optimal stopping ensures LVC(x, y) − rVC(x, y) ≤ 0 (refer

to Peskir and Shiryaev (2006)), (17) implies that f2(x, y) is not equal to VC(x, y) for

x < (C + 1)rI2/(A2 − C − 1) and y < I2. In other words, the option is not exercised

in the region {(x, y) ∈ R2
+ | x < (C + 1)rI2/(A2 − C − 1), y < I2}. This proves that

limy↑I2 x
∗
C(y) ≥ (C + 1)rI2/(A2 − C − 1).

[Insert Figure 6 about here.]

Now, suppose that (C + 1)rI2/(A2 − C − 1) ≤ x∗2 < limy↑I2 x
∗
C(y). See Figure 6. We

can lead to contradiction as follows. Consider problem

sup
τ∈T ,τ≤T

Ex,y[e−rτf2(X(τ), Y (τ))] (19)

with a finite maturity T . Generally, the exercise region of an American option converges

to the region Lf2 − rf2 ≤ 0, when the remaining life of the option goes to zero (refer

to Detemple (2006)). Then, because of (17), the exercise region of problem (19) with a

finite maturity T converges to {(x, y) ∈ R2
+ | x ≥ (C + 1)rI2/(A2 − C − 1)} when T ↓ 0.

Consider the exercise region of problem (8) for a fixed x satisfying x∗2 < x < limy↑I2 x
∗
C(y)

and y ↑ I2. Note that inf{t ≥ 0 | X(t) ≥ x∗2, Y (t) ≥ I2} converges to 0 as y ↑ I2.

Accordingly, the exercise region of the problem (8) for the fixed x and y ↑ I2 converges to

that of problem (19) with T ↓ 0. This implies that limy↑I2 x
∗
C(y) = (C+1)rI2/(A2−C−1),

which contradicts the assumption of (C + 1)rI2/(A2 − C − 1) < limy↑I2 x
∗
C(y). Similarly

we can lead to contradiction if x∗2 < (C +1)rI2/(A2−C − 1) < limy↑I2 x
∗
C(y) is supposed.

Thus, we have limy↑I2 x
∗
C(y) = max(x∗2, (C + 1)rI2/(A2 − C − 1)).

We can show the continuity of x∗C(·) as follows. By Lemma 1 we have the continuity of

VC(x, y). Since VC(x, y) and (A2 − 1)x/r − µ− I2−Cmax(I2−y, 0) are both continuous,

SC,2,E ∪ SC,2,I is a closed set. Consider any fixed y(< I2). Then, we have limϵ↓0(x
∗
C(y +

ϵ), y + ϵ) ∈ SC,2,E , which leads to limϵ↓0 x
∗
C(y + ϵ) ≥ x∗C(y). We have limϵ↓0 x

∗
C(y + ϵ) ≤

x∗C(y) because x∗C(·) is a decreasing function. Thus, we obtain the right-continuity of

x∗C(·). Now, suppose that there exists y(< I2) satisfying x∗C(y) < limϵ↓0 x
∗
C(y−ϵ). We can

lead to contradiction as the same method as the proof of limy↑I2 x
∗
C(y) = max(x∗2, (C +

1)rI2/(A2 −C − 1)). Consider the exercise region of problem (19) for a fixed x satisfying
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x∗C(y) < x < limϵ↓0 x
∗
C(y − ϵ) and y − ϵ. Note that inf{t ≥ 0 | X(t) ≥ x∗C(Y (t))}

converges to 0 as ϵ ↓ 0. Then, the exercise region converges to that of problem (19)

with T ↓ 0. This implies limϵ↓0 x
∗
C(y − ϵ) = (C + 1)rI2/(A2 − C − 1), which contradicts

(C + 1)rI2/(A2 − C − 1) ≤ x∗C(y) < limϵ↓0 x
∗
C(y − ϵ). Thus, we obtain the left-continuity

of x∗C(·).
Lastly, consider the case of A2 − C − 1 ≤ 0. In this case, we have for any (x, y) ∈ R2

+

Lf2(x, y)− rf2(x, y) = −(A2 − C − 1)x+ (C + 1)rI2 > 0,

where L is the generating operator defined by (18) and f2(x, y) is defined by (16). Since

LVC(x, y) − rVC(x, y) ≤ 0 follows from the general theory of optimal stopping, f2(x, y)

does not agree with VC(x, y). This implies SC,2,E = ∅. The proof is completed.

E Proof of Proposition 4

Note that VC(x, y) can be reduced to V0(x, y) for y ≥ I2. In the case of {(A2 − 1)/(A1 −
1)}β/(β−1) < I2/I1, the problem V0(x, y) has the small-scale expansion region [x∗1, x

∗
21]

(recall Section 2.2). Then, we have [x∗1, x
∗
21]× [I2,∞) ⊂ SC,1,I , which implies that SC,1,I ̸=

∅.
Next, consider the case of {(A2 − 1)/(A1 − 1)}β/(β−1) ≥ (I2 + C(I2 − I1))/I1. By

Proposition 1, we have VC(x, y) ≥ VL(x, y). Since we have(
A2 − 1

A1 − 1

) β
β−1

≥ I2 + C(I2 − I1)

I1

≥ I2 + Cmax(I2 − y, 0)

I1 + Cmax(I1 − y, 0)

for any y, the problem VL(x, y) has no small-scale expansion region (cf. Section 2.2). This

implies that

VL(x, y) >
(A1 − 1)x

r − µ
− I1 − Cmax(I1 − y, 0). (20)

By (20) and VC(x, y) ≥ VL(x, y), we have SC,1,E = SC,1,I = ∅.
Note that, in the case of I2/I1 ≤ {(A2 − 1)/(A1 − 1)}β/(β−1) < (I2 + C(I2 − I1))/I1,

We have no clear results, but, as seen in the argument above, SC,1,E and SC,1,I may exist

within the region 0 ≤ y < I2.

F Proof of Proposition 5

Take any (x, y) ∈ SC,1,E and y′ ∈ [y, I1). By (10) in Lemma 1, we have

VC(x, y
′) ≤ VC(x, y) + C(y′ − y)

=
(A1 − 1)x

r − µ
− I1 − C(I1 − y) + C(y′ − y)

=
(A1 − 1)x

r − µ
− I1 − C(I1 − y′),

20



where the last inequality implies (x, y) ∈ SC,1,E . Similarly, we have

VC(x, I1) ≤
(A1 − 1)x

r − µ
− I1,

which means (x, I1) ∈ SC,1,I .

Next, consider any (x, y) ∈ SC,1,I and y′ ∈ [I1, y). We have

VC(x, y
′) ≤ VC(x, y)

=
(A1 − 1)x

r − µ
− I1,

where the last inequality implies (x, y) ∈ SC,1,I .

Lastly, we focus on the case of {(A2 − 1)/(A1 − 1)}β/(β−1) < I2/I1. In this case, it

follows from (4) that

VC(x, y) ≤ V0(x)

=

(
(A1 − 1)x∗1

r − µ
− I1

)(
x

x∗1

)β

, (21)

for x < x∗1. Consider the problem VC(x, y) with a initial point (X(0), Y (0)) = (x, y)

satisfying x < x∗1 and y ≥ I1. For the problem, we can realize the right-hand side of (21)

by the stopping time inf{t ≥ 0 | X(t) ≥ x∗1}. Then, this threshold policy inf{t ≥ 0 |
X(t) ≥ x∗1} is optimal. In other words, min{x ≥ 0 | (x, y) ∈ SC,1,I} = x∗1 holds for any

fixed y ≥ I1.

G Proof of Proposition 6

We have already proved the properties of SC,2,E in Proposition 3, and, hence, we focus

on the properties of SC,1,E below. In the same manner as the proof of Proposition 3, we

can show the properties. Define

f1(x, y) :=
(A1 − 1)x

r − µ
− I1 − C(I1 − y),

and consider the case of C ≥ A1 − 1. We have for any (x, y) ∈ R2
+

Lf1(x, y)− rf1(x, y) = −(A1 − C − 1)x+ (C + 1)rI1 > 0,

where L is the generating operator defined by (18). Since LVC(x, y) − rVC(x, y) ≤ 0

follows from the general theory of optimal stopping, f1(x, y) does not agree with VC(x, y)

for any (x, y) ∈ R2
+. This implies that SC,1,E = ∅. The proof is completed.
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Figure 1: The ratio {I2+Cmax(I2−Y (t), 0)}/{I1+Cmax(I1−Y (t), 0)}. The ratio is unimodal

and has the maximum value {I2 + C(I2 − I1)}/I1 for Y (t) = I1.
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Figure 2: The exercise regions SC,1,E, SC,1,I , SC,2,E, and SC,2,I . This figure summarizes the

properties proved in Propositions 3–6. The first, second, and third rows correspond to the cases

with high, intermediate, and low cost of external financing, respectively. The first, second, and

third columns correspond to the cases with high, intermediate, and low values of I2/I1 (or

(A1 − 1)/(A2 − 1)). The hatched regions correspond to the entirely internal financing regions,

SC,1,I and SC,2,I , while the other regions correspond to the partially external financing regions,

SC,1,E and SC,2,E.
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Figure 3: The minimum output price for which the firm invests. This figure corresponds to

Panel (viii) in Figure 2.

26



Y(t)

X
(t

)

40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

S
C,2,E S

C,2,I

S
C,1,E

σ=0.1

S
C,1,I

Y(t)

X
(t

)

40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

S
C,2,E

S
C,1,IS

C,1,E

S
C,2,I

σ=0.15

40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

Y(t)

X
(t

)

 

 

S
C,1,I

S
C,2,E S

C,2,I

σ=0.2

40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

Y(t)

X
(t

)

 

 

S
C,2,I

S
C,2,E

S
C,1,I

σ=0.213

Y(t)

X
(t

)

40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

S
C,2,E S

C,2,I

σ=0.25

Y(t)

X
(t

)

40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

S
C,2,E S

C,2,I

σ=0.3

Figure 4: The comparative statics. The figure plots the exercise regions in the case with a

proportional cost of external financing with varying levels of σ. The parameter values other

than σ are set at the base case (13).
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Figure 5: The comparative statics. The figure plots the exercise regions in the case with

both fixed and proportional costs of external financing with varying levels of σ. The fixed

cost is set at 1, and the other parameter values are set at the base case (13). Note that

SC,2,E := {(x, y) ∈ R2
+ | V (x, y) = (A2 − 1)x/(r − µ) − I2 − C(I2 − y) − 1, y < I2} because of

the fixed cost.

28



Y(t)0

X(t) ����� ���������
y

x

Figure 6: The assumption of x∗
2 < limy↑I2 x

∗
C(y). The dot represents the initial point (x, y)

satisfying x∗
2 < x < limy↑I2 x

∗
C(y) and y ≈ I2.
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