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Abstract

In this paper, we introduce production into the standard general equilibrium model with asym-
metric information, which was proposed by Dubey et al. (Cowles Foundation Discussion Paper
2000; Econometrica 2005). In such an economy, there is no rational explanation for producers’ de-
livery upper bounds while the endowments naturally limit consumers’ deliveries. However, we show
that the typical equilibrium allocation of the asymmetric information economy necessarily and sub-
stantially depends on such exogenous upper bounds (Example 1 and Theorem 1). In other words,
an equilibrium existence theorem without such upper bounds, even if such exists, will typically fail
to treat the asymmetric information problem, e.g., the adverse selection problem. Hence, to treat
the equilibrium existence problem under the informational asymmetry appropriately, we have to
extend the standard model so that the delivery upper bounds need not to be specified explicitly.
For this purpose, we propose a quite natural and realistic assumption with respect to the techno-
logical condition related to the market delivery, i.e., the existence of some small standardization,
commoditization, and/or transaction costs of market deliveries is shown to be sufficient (Theorem
3).
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1 Introduction

Informational asymmetry problems have been traditionally treated using static partial equilibrium
arguments (e.g., Akerlof 1970, Rothschild and Stiglitz 1976). The approaches of Dubey et al. (2005) are
groundbreaking general equilibrium treatments for asymmetric information problems.! In the context
of asset markets, that work discussed how a certain system of pooled insurance may solve equilibrium-
existence problems in a default economy. In their model, as a buyer, every agent obtains an average
receipt (including defaults) in each asset market. As sellers, they can choose not to deliver their full
obligations. If we consider a rational expectations equilibrium, the default problem does not harm the
existence of a market equilibrium, i.e., the market viability problem is solved affirmatively under seller—

buyer informational asymmetry.

Several researchers have investigated this seller—buyer informational asymmetry using a general com-
petitive equilibrium model. Bisin and Gottardi (1999) considered a similar problem to Dubey et al.
(2005) in a probabilistic and dynamic setting. Bisin et al. (2011), Correia-da-Silva (2012), and Meier et
al. (2014) most recently considered a static setting.? Bisin et al. (2011) considered a situation where
agents only have finer information (than the market) when they are sellers. Correia-da-Silva (2012) and
Meier et al. (2014) investigated a situation where agents also have finer information as buyers and the
information varies among agents, although their models do not have the standard general equilibrium
setting. In this paper, we adopt the general equilibrium approach of Dubey et al. (2000, 2005) and Bisin

et al. (2011).

Bisin et al. (2011) considered a model of an exchange economy where agents (consumers) can make
a limited amount of delivery contracts, related to their endowments.? However, if we consider a pro-
duction economy, there is no natural counterpart for these delivery upper bounds for producers and
this fact causes some problematic situation for general equilibrium modeling of the economy. In this

paper, we show that an equilibrium may not exist if producers have no limit on delivery contracts, even

I See also Dubey et al. (2000) and their earlier draft, Dubey et al. (1989).

2 The authors investigated a static general competitive equilibrium model independently from these recent works (Urai
and Yoshimachi 2005).

3 All of the previously mentioned works also used such upper bounds for delivery contracts.



if consumers do (Example 1); that an equilibrium exists if each agent has an exogenously given upper
bound for delivery contracts (Theorem 2); and that, unfortunately, the equilibria typically depend on
the exogenous upper bounds if the asymmetric information does actually have an effect (Theorem 1).*
Theorem 1 implies that we cannot treat asymmetric information problems successfully without using
such delivery upper bounds. Therefore, to treat the market viability problem that determines an ac-
tive market structure under the asymmetric information, appropriately, we must consider the existence
problem without explicitly specified upper bounds for the delivery. Hence, to solve this problem, we
extended the model by introducing some technological conditions that represent realistic costs related
to delivery contracts such as standardization, commoditization, and/or transaction costs. We show that
the equilibrium existence problem under asymmetric information is solved affirmatively in this extended

model (Theorem 3) and that all the conditions for the market viability problem are endogenized.®

The paper is organized as follows. In Section 2, we establish the basic model and present some
substantial results for this basic setting. In Section 3, we extend the model and state the existence

theorem. All proofs are consigned to Appendix.

2 Basic Model and Results

2.1 Basic Model

The basic model and its setup are counterparts of Dubey et al. (2005) and Bisin et al. (2011), which

we modified for the standard Arrow—Debreu production economy. In the following, we introduce a class

of possible markets, agents’ optimization problems, and an equilibrium.%

4 Even in exchange economies, as long as consumers can resale their goods arbitrarily, the same problems arise. In
particular, we can construct equilibrium non-existence examples of such economies (see footnote 12). Note that our
solution to the non-existence problem, explicit modeling of costs that are related to delivery contracts, is relevant
also in such pure exchange cases.

5 We note that the determination problem of an active market structure is simplified here among a given partition of
the set of real commodities L = {1,...,¢}. Extension of this point to more general subclass of L, which may include
sets with non empty intersection, is straightforward and will be discussed in our another paper (Urai et al. 2016).

6 Let R denote the set of real numbers, let R™ denote n-dimensional Euclidean space, let RY Dbe the non-negative
orthant of R", {z = (wx)}_; € R"|wx =2 0,k = 1,...,n}, and let R}, be the strictly positive orthant of R",
{z = (z1)}_, € R"|zx > 0,k = 1,...,n}. For any vectors z,y € R", we let =2 y & =z —y € R} and
T >y x—y € RY,. Forany vector x € R™, we use notations zt := max{z,0} and = := max{—=z,0}. Note
that for all € R™, we have £ = 27 — 2~ and 21,2~ € R . For each finite set A, let A denote the number of
elements in A.



Class of possible markets: There are ¢ types of real commodities (goods and services) indexed

by k=1,...,¢ Let L:={1,2,...,¢} denote the set of real commodity indices and M:= {Lq,..., Ly}

A
k=1

denote a class of non-empty subset of L such that L = J L. The class M is interpreted here as
the class of all possible markets and, by using this, we describe a situation that in market L,, € M real
commodities k, k" € L are not distinguished as long as k, k" € L. In our model, a market structure will
be determined as the set of markets in M with non-zero amount of trade in an equilibrium. We also
assume that each commodity is traded in exactly one market, i.e., L, N Ly = 0 for all k,x’ € {1,...,A}
with x # k’. Although we can treat a more general class of possible markets, here we adapt the
simplest partitioned case to concentrate our attention on the problem concerning the exogenous delivery
upper bounds. Moreover, in most standard economic settings such as adverse selection, we only need
the partitioned possible markets framework as argued in Bisin et al. (2011). We also note that this
partitioned possible markets framework contains the standard Arrow—Debreu economy as a special case
with the finest partition: {{1},...,{¢}}.

Since there are only A types of markets indexed by x = 1,..., A and the economy evaluates A types
of marketed contracts, or standardized commodities, the price space is a subset of the A-dimensional
Euclidean space R*, instead of the (-dimensional one. Let A := {(p1,...,px) € R} | 22:1 pe = 1}

be the price space. For each market L, € M, all types of real commodities k € L, are evaluated by

identical price p,, given a price system p = (p1,...,px) € A.

Agents: There are m types of consumers and n types of producers in this economy and they are
indexed by ¢ = 1,...,m and j = 1,...,n, respectively. In our model, we assume that each agent (each
consumer and each producer) can buy and sell standardized commodities in all the markets. We also
assume that, for all market L,, € M and all types of real commodities that belong to L, every agents can
identify each of these commodity types as long as it is possessed by themselves, and use each of them as an
unit of delivery to the market L,,. However, they can only obtain a mixture of such real commodities when
they buy a standardized commodity from the market L. Hence, we treat their behaviors (consumptions
and productions) and their transactions (demands and supplies) as different variables. More precisely,
we describe consumption plans x; (i = 1,...,m) and production plans y; (j = 1,...,n) as points of R’

and demand plans 2z; (i = 1,...,m +n) and supply plans ;" (i = 1,...,m + n) as points of Rj‘_.



Agents as sellers: For all agents ¢ = 1,..., m+n, we assume that the supply plan zl+ = (z;g, ceey zj;\)
must satisfy
(Z;E,,Z:g\) = ( Z Viky « Z 'Uik)y
k€L, k€L
where (vi1,...,Vik,...,0i) € Rﬂ_ is a bundle of real commodities that agent ¢ plans to deliver to the

markets. This equation describes the above mentioned situation that agents can identify each of the real
commodity types in a market L, € M and use each of them as an unit of delivery to the same market
L,,, although the market L, does not distinguish them and hence recognizes the delivery from agent ¢ as

+ )
the sum z;|, = ZkeLN Vik-

Agents as buyers and expectations of real receipts: As we described above, in this setting, a
marketed contract x is actually a mixture of L, kinds of real commodities. Therefore, we assume that
agents have a certain kind of ezpectation for their real receipts. So we introduce an additional exogenous
parameter, s”, which represents the ratio of the L, types of real commodities in the total quantity of
contracts supplied to market x. Formally, for each k = 1,...,\, we let R~ denote the subspace of R’
constructed by elements with k-th coordinates equal to 0 if k ¢ L; that is, REx == {z = (z4){_, €
R|zp =0 if k ¢ L.}, and we take expectation s = (s!,...,s") as s € A® 1= {z = (v1,...,2¢) €
Ri*‘ | Zizl 2 = 1} for all Kk = 1,...,A. This allows us to parametrize the uncertainty about real

receipts in the same way that we treat the prices of goods in general equilibrium modelings.

Next, we describe agents’ optimization problems. In this model, agents’ optimization problems have
two kinds of macro parameters: price p = (p1,...,px) and expectations of real receipts s = (s1,...,s*).
Note that given these two parameters, which are determined in equilibrium, agents choose micro variables:

consumption or production plan x;/y;, demand plan z; , and actual delivery of real commodities v; (which

constitutes supply plan zf ).

Consumers’ problems: Consumer ¢ = 1,...,m has initial endowment w; € Rﬂ 4 of real commodi-

ties, consumption set X; C Rf, and utility function u; : X; — R. Given price p € A and the expectation

of their receipts for each real commodity through the market, s = (s',...,s*) € Hi:l A", consumer 1

+

chooses consumption plan z; with market transaction plans (v;, z;), where z; = z;” — z;, to solve the

following maximization problem:



max  u;(x;) (1)

sub. to
(337;,’()1'727;) S X7, X Rﬂ_ X R)\ (2)
v; = by, (3)
e (s Y ), @
k€L, keLy
T+ v = w4zt 280, (5)
Pz :p~2;_+zeij7rj(p,s), (6)
j=1

where 7;(p, s) is the profit of producer j under price p and expectation s (in the maximization problems
described below), 6;; denotes i’s share of the profit of producer j (a non-negative real number satisfying
Z;il 6;; = 1 for each j), and b; € Rﬁ 4 is an arbitrary taken upper bound for the consumer’s delivery.
For example, it is natural to take b; = w; for alli =1,...,m.

The following are the interpretations of the constraints. Formula (2) indicates the domains of the
variables; consumption plan z; must be taken from consumption set X;. Eq.(3) expresses that none

of the consumer ¢ can supply arbitrarily large amounts of real commodities. Eq. (4) means that supply

plan z;" consists of the delivery of real commodity v;. Eq.(5) denotes that consumption z; and actual
delivery v; must be covered by the consumer’s own endowments w; and purchase z;;s' +- -+ 27, s*. Note
that z; s" € Rﬂ_ for k =1,..., ) because s" € A" C Rﬁ_. Finally, Eq. (6) is the budget constraint under

p € A.

In the above, we can chose w; as a natural candidate of upper bound b; in the constraint (3). This
is a natural assumption when we only consider the consumers in an economy, i.e., when we consider a
pure exchange economy, and such an assumption was also used in all of the early works: Dubey et al.
(2005), Bisin et al. (2011), Correia-da-Silva (2012), and Meier et al. (2014). For a production economy,
however, since producers do not have endowments, they have no such natural upper bounds. However,
Example 1 below shows that without upper bounds for the producers, an equilibrium may fail to exist
even if consumers’ delivery amounts are bounded, as in Formula (3) with b; = w;. For this reason, in the
basic model, we also introduce the upper bound condition (Eq. (9)) for each producer using given upper

bound parameter b; € Rﬁ . although it does not have a natural interpretation.



Producers’ problems: Producer j = 1,...,n has production technology Y; C R!. Given two
exogenous parameters, price p and the expectations of their real receipts, s = (s!,...,s*), producer j
chooses production plan y; with market transaction plans (v;,z;) to solve the following maximization

problem:

max p-z (7)
sub. to
(yj,'Uj,Zj) c Y} X Rﬁ_ X RA, (8)
v; = by, (9)
z;r:(Zvjk,..., Z’Ujk), (10)
kel keLy
vj :ijrzj_ller...JrZJf)\s)‘_ (11)

Constraints (8)—(11) can be interpreted in the same way as in the consumers’ problems. In Formula

(9), we use b; € Rﬁ 4 as an exogenously given upper bound, as previously discussed.

Finally, we define the equilibrium.

Equilibrium: Let & = ((Xy,w;, us, bi, (055)-1)7%1, (Y5, 0;)7—1, M) denote the above economy. An
equilibrium for economy & is a pair ((2,v;, 2i)i 1, (Y5, v5, 25)7=1) € [Ty (Xi x RY x RY) x [T- (v x
R{ x R*) and (p, s) € Ax H2:1 A", which satisfies Egs. (1)—(11) and the market clearing condition (12)

with exzpectation specification (13) for each k € {1,...,A}:

m—+n
> zin =0, (12)
i=1
ann pry, (vi) =
W =s" as long as Z Zj/; > 07 (13)
i=1 “ix i=1
where pr; denotes the projection onto subspace R~ of Rt for each Kk =1,..., A, i.e., for each z € R’,

the k-th coordinate of pr;, () is 0if k ¢ L, and xy, if k € L. Note that we only consider Eq. (13) when

ST 2k > 0. Hence, if 71" 27 = 0 we have no restrictions on the expectation specifications.



2.2 Results for the Basic Model

As previously mentioned, the upper bound condition (9) is problematic because it is difficult to interpret
and/or to justify it from a natural economic point of view. However, as shown in the next theorem and
the non-existence example, the condition is not only necessary but also essential to analyze asymmetric
information problems. More precisely, an equilibrium allocation of the model typically depends on the
upper bound parameters, b;, as long as we want to analyze a situation where the asymmetric informational
problem actually matters. In other words, we can prove that if an equilibrium for this standard setting
does not depend on the upper bound parameters, the equilibrium allocation is typically Pareto-optimal.”
To state this fact formally, we introduce some standard definitions.

We say that an allocation ((x;)j%q, (y;)}=1), where z; € X; (i =1,...,m)and y; €Y; (j =1,...,n),
is feasible if it satisfies Y;", @, = Y20 y; + D%, wi. Feasible allocation ((z)i%y, (y;)j=,) is Pareto-
optimal if there is no other feasible allocation ((x7)i%y, (y})j—;) such that x} Z; z; for alli =1,...,m
and x} »; x; for some i = 1,...,m, where 7=, and >; are respectively agent i’s preference and strict

preference relations.

Theorem 1. Suppose that, for each i =1,...,m, consumer i’s preference >=; is monotone and convex.?

m

If equilibrium state ((z7,v], 2 )iy, (Y], v}, 2])j=1,p", 8") satisfies vi < b; for alli=1,--- ,m+n and

st e Rf_i forall k=1, |\, then equilibrium allocation ((x7)i™y, (y})j=1) is Pareto-optimal.

Hence, in economies with asymmetric information, where Pareto-optimality typically does not hold,
there must exist some agent 7 that delivers real commodity k with its limit amount b;; or real commodity
k' that is vanishing from the market, i.e., sf, = 0. In this sense, to treat the asymmetric information
problem such as the adverse selection problem in the standard setting, we cannot avoid the arbitrariness

caused by exogenous upper bound parameters b;.’

7 Suppose that the asymmetric information is based on the different quality of commodities in a certain standardized
market. Assuming that each agent’s expectation for a standardized commodity typically satisfies the condition that
for each delivery of the standardized commodity there is a non-zero possibility to obtain all real commodities that
belong to this market, then an equilibrium, which does not depend on the delivery upper bound constraints, is always
Pareto-optimal.

8 Preference relation - is monotone if x > y implies © > y. Preference relation - is convez if = > y implies

tz + (1 —t)y >y for all ¢ € (0,1]. (For the definition of a preference relation’s convexity, see also Debreu (1959).)
9 Note that here, the situation is different from the one concerning the short selling upper bound in the incomplete



Furthermore, as we noted above, we cannot even ensure the equilibrium existence without the upper
bound condition (9). In the following, we describe a non-existence example. The setting is the same as
for the existence theorem (Theorem 2 below), but without the upper bound condition for the producer
(Condition (9)). Hence, without the upper bounds for the producers, an equilibrium may not exist even

if the consumer’s delivery amount is bounded, as in Formula (3) with b; = w;.

Example 1: Non-existence of equilibrium without an upper bound

Suppose we have two real goods, one consumer, and one producer in an economy. Additionally, suppose
there is only one market, and hence the two goods are traded at an identical price: p € R,. These agents
expect that they will receive s € [0, 1] units of good 1 and (1 — s) units of good 2 when they contract to
buy one unit from the market. The producer has technology Y = {(y1,—v2) € R? : y1 < 2y2,y2 = 0},
and there is no upper bound on its delivery. (Hence this producer’s problem is specified by Egs. (7), (8),
(10), and (11)). The consumer has consumption set X = R2, utility function u(zy,z2) = 221 + 22, and
endowment (1, 1), and his actual delivery amounts must be bounded by his endowments. (This problem
is specified by Egs. (1)—(6) with b; = w; = (1,1). ) In this economy, the consumer prefers real good 1 to
good 2, and real good 2 is the raw material for the producer. Let (vp1, vp2, sz) and (Ve1, V2, z}) denote
the producer’s and consumer’s transaction plans.

First, note that price p = 0 never constitutes an equilibrium, because the consumer can make infinite
purchases; i.e., the consumer problem has no maximum. Next, note that for any price p > 0, the
producer’s problem is reduced to max{pyz|(1 — s)z, 2 y2 = 0 and z, = 0}, and the producer’s actual
deliveries are characterized by (vp1,vp2) = (2y2 + 52, , —y2 + (1 — 5)z, ).'°

If p > 0 and s # 1, then the producer can get his raw material (real good 2) from the market and make

market model (Hart 1975). In the incomplete market model, it is just desirable from an economic modeling point
of view to remove the short selling upper bound, whereas in the model of an asymmetric information economy, the
removal of the upper bound implies the removal of the asymmetric information problem itself, as shown by Theorem
1.

10 To see that the original problem described by Egs. (7), (8), (10), and (11) can be reduced to the stated problem with
two variables (y2 and z;, ), we eliminate other variables as follows. First, we can eliminate v,1 and vp2 by substituting
Up1 = Y1 +5zp and vpz = —y2+(1—s)z, into all the relevant restrictions (i.e., substituting Eq. (11) into Egs. (8) and
(10)). We can also eliminate 2z, by substituting Eq. (10) into the profit function of Eq. (7). Finally, if p > 0, then y; =
2y2 must hold in an optimum, so we can also eliminate y; by substituting it into all the relevant restrictions and the
profit function. Then the reduced problem is actually max{py2|(1 — s)zp = y2 2 0 and z, = 0}, and this problem is
equivalent to the original problem. The actual deliveries are characterized by (vp1,vp2) = (2y2+s2p , —y2+(1—5)zp )
by substituting the equation y; = 2y2 to eliminate y;.



twice as much product (real good 1) as raw material. Moreover, the prices of these two goods are the
same, p > 0, and there is no upper bound for his delivery, so the producer can make an infinite amount of

profit. Indeed, if s # 1, then the reduced problem has no maximum because y2 can be made arbitrarily

large by taking z, such that z, 2 {£.. Hence, an equilibrium only exists when p > 0 and s = 1.

If p > 0 and s = 1, then the producer expects that he cannot get raw material for production.
Hence, no-production is his optimal production plan. The reduced problem has maximum solutions
(y2 =0, z, = arbitrary) with maximum profit 7 = 0, and the actual deliveries are (vp1,vp2) = (2, ,0)."!
However, the consumer wants to exchange endowed good 2 with more preferable good 1 through the
market, because he only expects to get good 1 when he purchases it from the market, s = 1. So in the
optimum, ves > 0 must hold. Hence, there is a positive delivery of commodity 2, while the agents expect

no delivery for good 2, (1 — s) = 0. Therefore, Eq. (13) never holds. This means that if p > 0 and s = 1,

there is never an equilibrium. Consequently, no equilibrium exists in this economy.'? O

Now we state a general equilibrium existence theorem for production economies with asymmetric
information. We can ensure that an equilibrium exists as long as all agents have upper bounds for their

deliveries.

Theorem 2. Economy & = ((Xy,wi, wi, bi, (0:5)7-1)i% 1, (Yj, b5)7—1, M) has an equilibrium, ((z}, v}, 2 )i%,,

(Y5, v5,25)j—1, P, 8°), if the following conditions are satisfied:

(Consumers) Each consumer i = 1,...,m has (i) a closed convex consumption set, X; D R%,
bounded from below; (ii) a convex preference induced by a strictly monotone and continuous utility
function u; : X; — R; and (iii) endowment w; € intX;.'3

(Producers) For each j=1,...,n,Y; C R is a closed convex set that contains 0.

(Attainable Set) The attainable sets for each agents are bounded.™*

11 Here we observe that the producer’s constraint correspondence does not satisfy upper semicontinuity at s = 1.

12 Note that even in exchange economies, the same problem arises if consumers can resale their goods arbitrarily.
Suppose two goods, one market, two consumers, and no producer in an economy. The two goods are traded at
identical price p € R4. Suppose that consumers can resale their goods arbitrarily, i.e., consumers’ problems are
specified by Egs. (1), (2), (4), (5) and (6). Assume that consumer 1’s attributes are X; = Ri, uy(z1,x2) = 221 + 22,
and w; = (1,2), and that consumer 2’s attributes are Xo = Ri, uz(z1,22) = 21 + 222 and we = (1,1). It is
straightforward to see that no equilibrium exists in this economy because they always can get a more preferable
consumption bundle through the unbounded transactions.

13 Preference relation - is strictly monotone if ' > x, &’ # x implies 2’ > x.

14 Allocation ((z;)™,, (y5)j=1) is attainable if 377", x; < 377 y; + 3077 w;. The attainable sets for agents, i =

10



Although this theorem ensures the equilibrium existence, as shown in Theorem 1, the equilibrium
typically depends on exogenous upper bounds b;, and their removal induces the removal of the asymmetric
information problem itself. Moreover, as shown in Example 1, we cannot even technically remove the
upper bound condition because an equilibrium may not exist. In the next section, we endogenize this

upper bound condition by introducing natural cost for the market deliveries and solve this problem.

3 Model without Exogenous Upper Bounds and Equilibrium Existence

Given the class of possible markets M= {Lq,..., Ly}, each agent must sell his real goods as A types
of market contracts. Therefore, he should standardize or commoditize his real goods to sell them in the
market depending on the class of possible markets M. It is quite natural to assume that this procedure
will cost each agent some loss of goods or services that may be delivered to the market, because it will
cost each agent at least some labor to standardize, package, and/or deliver real commodities to the
market, which has the class of possible markets. We describe such standardization, commoditization,
and/or transaction costs by assuming that each agent has a certain kind of technology for standardizing
his real goods.

Assume that each agent i = 1,..., n+m (each of consumers and producers) has function F; : Rf_ — Rf_

that satisfies the following conditions:

(C1) F; is a continuous function;

(C2) for all k=1,...,¢, Fy is a concave function, where Fy is a k-th coordinate of Fy;

(C3) for each k =1,...,Aand v € Rﬁ, ZkeLn Fi.(v) = 0 is equivalent to v, := (vk)ker, = 0;
for each Kk = 1,...,\ and v,v' € Rﬁ, vp, = vy and vy, # vy implies Y, ; Fig(v) <
>oker, Fir(v);

(C4) Fi(v) S wvforallve RY; and

(C5) for each k such that L, = {k} for some k, F;;(v) = vg;

for each k such that L, = 2, and for each sequence {v"}22, C Rﬂ, if ZkeLm Fi(v”) — oo

v=1

1,...,n 4+ m, are defined as X; := {x; € X;|z;constitutes an attainable allocation with some z;; € X, (Vi #
i),y; € Y;(¥j = 1,...,m)}, and Y; := {y; € Y|y, constitutes an attainable allocation with some z; € X; (Vi =

177”)71/]’ EYJ’ (v]l 75])}

11



(v — 00), then there exists some L, such that >, o, , (vf = Firx(v")) = 0o (v — 00).

As we will formalize later, each agent supplies his real goods and services to the market with the class of
possible markets M= {Ly,..., Ly} as a Atuple (3 ,cp, Fin(v), ..., Y pep, Fir(v)) € R} (see Eqgs. (16)
and (20) below). We call F; agent i’s standardizing technology. Condition (C5) means that no agent can
sell his real goods in the market with the class of possible markets M ={Ly,..., Ly} at no cost, and this

is the crucial assumption as we see in the following example.

Example 1 revisited: Non-existence of equilibrium without the cost condition (C5)

Recall that there are two goods, one market, one consumer, and one producer in Example 1. Note that
in Example 1, only the consumer has an upper bound for delivery contract. Consider a model without
the upper bound condition for each agents by removing consumer’s upper bound in Example 1. In such a
model, each agent’s “standardizing technology” can be formalized as (Fj;(v1, v2), Fia(v1, v2)) := (v1, v2)
and this formalization means that agents can standardize their goods at no cost.!® Formally, these
functions F; : R — R satisfy all the conditions but (C5). Indeed, for each sequence {v”}32, C R%,
we have 32y coq oy (v) = Fir(v")) = X opeqn 0 (vy —vy) =0 for all » = 1,2,.. ., and hence condition (C5)
must be violated. (Note that there is only one market L; := {1,2} in this economy.) Moreover, by a

similar argument in Example 1, it is straightforward to see that there is no equilibrium in this model,

i.e., we cannot ensure the existence of an equilibrium without condition (C5). g

Note that the cost imposed by condition (C5) of standardizing technologies F; (or, the transaction cost)
for consumers and producers (i = 1,...,m + n) and the transformation cost represented by production
technologies Y; for producers (j = 1,...,n) are two independent concepts, and in general we specify
these two independently. In particular, in Example 1, while the transformation cost represented by
production set Y = {(y1, —y2) € R? : y1 < 2ya,92 = 0} is positive, the transaction cost represented by
F; is zero since Yy oy oy (V) — Fir(0Y)) = D pc 1,2y (vF — v§) = 0 and because of the latter fact we have
no equilibrium. In the following, we show that by introducing the transaction costs expressed by (C5),

we can ensure the equilibrium existence.'®

15 Note that with this notation and the agents’ attributes given in Example 1, the model specified here is identical with
a model specified by Egs. (14)—(22) that define our extended model below.
16 Also, note that (C5) requires such standardizing costs only if L, is not a singleton set because if some Ly, is a singleton,

12



Now we propose the following modifications to the model. The formalization is almost the same as the

basic model in Egs. (1)—(11), except that we remove the upper bound conditions (3) and (9) and replace
(4) and (10) by “z;" = (ZkeLl Fip(vi), .., ZkeLA Fip(vi))”.

Agents’ Problems: The producers’ problems are defined as:

max p- z;r —-p- z]_ (14)
sub. to
(,vj,2)) € Yy x RS x R, (15)
Z;r = ( Z ij('l}j), ey Z ij(vj))7 (16)
keLy keLx
v :yj—|-zj_151—|—~~-+zj_>\s)‘- (17)

Similarly, the consumers’ problems are defined as:

max  u;(x;) (18)
sub. to
(3,01, 2) € X; x R x R, (19)
k€L, k€L
xi+v¢:w¢+zi_lsl+~-+zi_,\SA7 (21)
Pz =p-z+ > 0imi(p,s). (22)
j=1

Equilibrium: Let & = ((Xy,w;, ui, Fi, (045)7-1)7% 1, (Yj, Fj)7—;, M) denote the above economy. An
equilibrium for economy & is a pair ((zi,vi, zi){%1, (Y5, V5, 2;)7=1) and (p, s), satisfying (14)—(22) and the

market clearing condition (23) with an expectation specification (24) for each k € {1,...,A\} and k € L,;:

m—+n
Z Ziw — 0, (23)
i=1
m4n m—+n
i1 Fir(v;
w = s as long as Z zh > 0. (24)
i=1 Zix i=1

We state the existence theorem for this modified economy.

then there is no difference between a real good and a standardized commodity in the corresponding market, and hence,
in such cases, the argument about standardizing costs can be negligible. Condition (C5) expresses this point using
the case §L, =1, i.e., L, = {k} for some k.

13



Theorem 3. Economy & = ((Xi,w;,us, Fi, (0i5)7-1)i%1, (Y5, Fj)i—1, M) has an equilibrium, ((z},z],

Vi), (Y7, 25, v7)=1,p", 8%), if the following conditions are satisfied.

(Consumers) Fach consumer i = 1,...,m has a non-empty closed convex consumption set
X; D Rﬂ that is bounded from below with a convex preference induced by a strictly monotone
and continuous utility function u; : X; — R4, and initial endowment w; € intX;.

(Producers) For each j=1,...,n,Y; C R’ is a closed convex set containing 0.

(Attainable Set) The attainable sets for all agents (X; (i = 1,...,m) or Y; (j = 1,...,n)) are
bounded.'”

(Standardizing Technologies) For each agenti=1,...,m+n F; : R‘i — Rﬂ satisfies condi-

tions (C1)—(C5).

As shown by Theorem 3, with standardizing technologies F; : Rﬂ — Ri (i=1,....,n+m), we
can remove the exogenous upper bound conditions (3) and (9). Agents choose to deliver v; so that
the standardizing cost represented by Fj : Rﬂ — Rﬁ never harms their own total payoff. Note that
the assumptions on production structure are quite standard as a general equilibrium economy of the
Arrow—Debreu type. Therefore, it would be possible to interpret our existence result as follows: we can
dispense with concerns over the production structure or the delivery upper bounds as long as we impose

restrictions on the structure of standardization, commoditization, and/or transaction costs.

Appendix
Proof of Theorem 1

Suppose, on the contrary, that there is an allocation ((z;){;,(y;)7—;) which Pareto-dominates
(@), (y))j=1). Take (v, 2) € R x R* (i =1,--- ,m +n) to satisfy conditions (4), (5), (10), and
(11) with allocation z; or y;.'® Note, here, that (3) and/or (9) are not necessarily satisfied. Since we

assume that v; < b; for all i =1,--- ,m + n, we can construct state ((Zi, vi, )21, (U;, V), Zj)}j—1) such

17 For the definitions of X; and }7]-, see footnote 14 of Theorem 2.
18 Since we assume s"* € Ril for all kK = 1,--- , A, we can take z; and v; to satisfy condition (5) (or (11)) for each
i=1,---,m+ n. Then, take z;r to satisfy (4) (or (10)).
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that ((Z:)72;, (4;)7—,) is feasible and Pareto-dominates the equilibrium allocation and satisfies conditions
(3), (4), (5), (9), (10), and (11). (For example, if we denote (Z;, ;, Z;) = (1 — t)(xf, v}, 2}) + t(x;, vi, 2;)
and let t — 0, then 7; < b;, in particular condition (3) (or (9)), holds for sufficiently small ¢. By taking
a sufficiently small and identical ¢ for all agents ¢ = 1,--- ,m + n we can construct a feasible state
((Z:)i1, (5j)j=1) that satisfies these conditions. Pareto-dominance is particularly preserved since each

consumer’s preference is convex.)

Note that the following two conditions hold:

n
j=1
n
T miwp = ptez ZptoEt+ Y 0imi(pt,s”) (26)
j=1
(where m;(p*, s*) is the maximized profit of producer j = 1,--- ,n under (p*, s*)) since, if not, we have a

contradiction to the fact that «} is an utility maximizing consumption plan under (p*, s*), s"* € Rij_ for
all r, and each consumer’s preference is monotone. Hence, the Pareto-dominance of ((z;)i, (7;)7-;) with
(25), (26), and the profit maximization assumption of the equilibrium state implies that Y ;" p* - z; >

Z?Zl p* - Z; holds. We can rewrite this inequality as follows:'?

i{ D pi(win —Ta) + -+ Y pilwin — m)} > zn:{ Dopim e+ Y p’iﬂjk}- (27)

i=1 k€L keLy =1 kel keLy

However, (27) contradicts the fact that ((Z;);L,, (;)}j=;) is feasible. Indeed, if we define “extended price”

p=(p1,...,p0) ER aspp =ptif k€ Ly (k=1,...,4, k=1,...,)) and evaluate feasibility condition

S (T —wy) = Z?zl y; by extended price p, then (27) must hold with equality.

Proof of Existence Theorems

Here, we make some notes regarding the proof of Theorem 2. Theorem 2 corresponds to the case
Fi(v;) = v; for all v; € {v € R{|v < b;} in the extended standardizing technology setting of Section 3.
This F; satisfies (C1)-(C4) on the compact domain {v € R [v < b;}. Although it does not satisfy (C5),

this assumption is not needed if the domain of F; is compact on R’. (Footnote 22 clarifies this point.)

19 From conditions (4), (5), (10), and (11).
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Now, we proceed to the proof of Theorem 3. There are some difficulties related to the agents’ problems
(14)—(22). In particular, we cannot ensure that the constraint correspondences satisfy upper and lower
semicontinuity and have convex values. More specifically, first, the difficulty related to the upper semi-
continuity is due to non-bounded deliveries, and was observed in Example 1. Next, equality constrains
(17), (21), and (22) cause some difficulties in showing the lower semi-continuity with respect to the vector
valued parameters s = (s1,...,5x). Finally, equality constraints (16) and (20) create problems when
ensuring the convexity of the values of the constraint correspondences, because F; (i =1,...,n+m) are
generally not linear.

To avoid these difficulties, we first modify the original problems in two ways; we truncate the variables
and relax the equality constraints (in Producers’ Problems and Consumers’ Problems). Then,
we obtain a kind of an “equilibrium” for the modified problem as a fixed point of a correspondence
(in Fixed Point Argument). Finally, we show that the fixed point is actually an equilibrium of our
original model in the limit of truncation argument (in Relationship to the Original Problem and

Limit Argument).
Producers’ Problems: For any t > 1, define subset Qf C R’ x Rﬂ x R as
Q= [—t, ] x [0,4]° x [t ] (28)

Now, take an arbitrarily large number ¢ > 1. We consider a modified version of the original problem

(14)—(17). Specifically, we replace the variable constraint (15) by the following truncated version:
(y;,v5,25) € (Y x R x RY) N Q.

43

Moreover, we relax the constraints (16) and (17) by replacing equalities “=" with inequalities “<7. We
refer those modified constraints as (15°), (16°), and (17’), respectively. Recall that Y; C R’ is closed and
convex, and contains 0, and F; satisfies (C1) — (C5) for each j =1,...,n.

We denote by nf(p, s) the set of solutions to the modified maximization problem; (14) subject to (15’),
(16%), and (17’) under (p,s). It is clear that 77§ (p, s) is non-empty, closed, and convex. (In particular,
convexity is assured since we relaxed equality constraint (16) by inequality constraint (16’) and Fj is a

concave function for each k =1,...,¢ from condition (C2).) Also, we can prove that the correspondence
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775» A X H:zl AF — ! has a closed graph. Indeed, we can see that the constraint correspondence
(p, s) = { (y;,v5,2;) € Q| (y;,v;,2;) satisfies (157), (16), and (17’) under (p, s) }

has a closed graph and that its value and range are compact. (The compactness of the value is assured
since we truncated the variables and hence the difficulty on upper semi-continuity which we pointed out
in Example 1 can be avoided. Note that the continuity of F}, condition (C1), is used here.) Therefore,
the constraint correspondence is upper semi-continuous. Moreover, it is clear that the constraint corre-
spondence is lower semi-continuous because F; satisfies (C3) and constraints are inequality, and hence
the standard argument is applicable. Thus, the constraint correspondence is continuous. Therefore,
Berge’s maximum theorem is applicable (cf. Debreu (1959, p. 19)). In this case, it is simultaneously

assured that the profit function of this truncated problem, 7r§ (p, s), is continuous.

Consumers’ Problems: As in the producer case, we consider the modified version of the original

problem (18)—(22). First, for each ¢ > 1, define number ¢;(¢) > 1 as

n A
t1(t) ::t-max{l—l—ZW;(p,s)\(p,s) €A X HA“}. (29)

i=1 k=1

Note that such number ¢1(t) exists since A X Hi:l A" is compact and each 7r§- (p, s) is continuous. Also,

note that, since 0 € Y; N [—t,¢]* implies 7T§ (p,s) 2 0forall j=1,...,n, we have

n A
t1(¢) :t~maX{1+Z7r§(p,s)|(p,s) €A x HA"} >t-1=t

j=1 k=1
for all ¢ > 1. Hence, we can take an arbitrarily large ¢1(¢) > 1 by taking sufficiently large ¢ > 1.

Now, consider the modified version of the original problem. Namely, variables are truncated as
(zi,vis2) € (X; x RE x RM) N Q@ where Q9 ® is defined as in (28), and all the equalities “="
in constrains (20)-(22) are replaced with inequalities “<”. Moreover, we replace each profit m;(p, s) in
constraint (22) by 7}(p, s), which is the maximized profit of each producer in the modified maximization
problem we argued above. We refer those modified constraints as (19), (20°), (217), and (22’), respec-

tively. Denote by &!(p, s) the set of all solutions to the modified maximization problem; (18) subject to
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(197)(22’) under (p, s).2° The correspondence & @ A x Hizl AF — Q41 is non-empty closed convex
valued and has a closed graph. The argument is almost the same as the producer case and hence we

omit.

Fixed Point Argument: We have defined solution correspondences 77;1 A X Hi:l AF — QF and
& A X H2:1 AF — Q1M for agents’ modified problems for any ¢ > 1. Now, consider the product map
® of these correspondences:

A m
o:Ax [[A3 (p,s)— [[&ps) x Hnj p,s) C ()™ ()", (30)
k=1 i=1

The mapping ® has a closed graph. Then, define a price-expectation manipulation correspondence ¥ as

follows:
A

U ([0, 82 (0] x [=ta (), b (D)™ < ([0, 1 X [=£, 1Y) 3 (03, 2) 4™ = O((2) 4™ xE((0)21™) € Ax [T A%,
31)

where © is the price manipulation mapping and = is the correspondence that assigns the real mixture

ratio of the goods for each market. More precisely, we define

m—+n m—+n

o)) == {pe AlVg e Aqg- Y. % 2p- Y. )

i=1 i=1

for each (2;)74", and the k-th coordinate of = by

S pry, (Fi(vi))
Zm+n( ZkeL Fik (UZ) )

Z((0)[) = , (32)

as long as an+7l(zkeL Fix(v;)) # 0, and otherwise by =, ((v;)21™) := A* for each (v;)1™. (We use
the notation pr;_ for the projection onto subspace RI= of R* for each k = 1,...,\.) Note that the right
hand side of Eq. (32) is always an element of A* when Z"H_”(ZkeL ,k(vl)) # 0. It is routine to check
that © and = are non-empty closed convex valued correspondence with a closed graph. In particular, =

has a closed graph since the right hand side of Eq. (32) is continuous when 37"+ (EkeL Fir(vi)) #0.

20 We denote the solution set by {f (p, s) instead of Etl(t (p, s) for notational simplicity.

18



Now, the product of the mappings ® and ¥,

A A
o x WA x (JTA%) x (@O)m s (@) — Ax (J]A%) x (@)™ x (9h)", (33)
r=1 k=1
is a non-empty closed convex valued correspondence with a closed graph. By Kakutani’s fixed point
t oot ot t

theorem, ® x W has a fixed point (p*,s’, (¢}, v}, 2§)i%y, (y5, v%, 28)j_, ) for any ¢ > 1.

i Vi <5 Hiad}

Relationship to the Original Problem and Limit Argument: In this part, we show that
the fixed point we obtained above is an equilibrium point of our original model for some number
t > 1. Take number ¢ > 1 sufficiently large so that the bounded attainable sets, X; C R’ and
Y; C R, to be subsets of the interiors of [—t1(t),t(t)]* and [—t,t]¢, respectively. Take a fixed point

t oot Lt t

(p', ', (xf,vf, 20) 72y, (5, vt 25)%_ ) we obtained above.

First, we show that (22’) holds with equality, i.e., for all i = 1,...,m, we have

n
plozlm =pt 2t 4 Z@jW;(pt, sh). (34)
j=1
Indeed, if we assume p'- 2/~ < pt- 2/t + Z?Zl 057 (p*, s*) for some i = 1,...,m, we have a contradiction
to the consumer’s utility maximization. More precisely, we have three cases; z/™ # (t1(t),...,t1(t)),

27 = (t1(t),...,t1(t)) and 2IT # (0,...,0), and, 2/~ = (t1(¢),...,t1(t)) and 2/" = (0,...,0). For
the first case, since consumer’s utility function is strictly monotone, we can make a preferable choice
(%;,v!,2;) by purchasing more in some market x and consumes more. For the second case, also, we
can make a preferable choice (Z;,0;, 2;) by selling less in some market x by using condition (C3) of the

standardizing technology F; and consumes more. For the third case, we have
n
Pl (t(t),. () =p' 2l <ph AT D0yl s") Z 05 (
j=1

and this implies 1 (t) < >°7_, 7t(p’, s*) since pf +---+p§ =1 and 0;; < 1 for all j = 1,...,n. However,
this inequality contradicts to the definition (29) of ¢;(¢) and the assumption that ¢ > 1.
Therefore, from condition (34) and equalities 7 (p*, s*) = p* - 2% for all j = 1,...,n, it is clear that we

have Walras’ Law; pt - (321" 2¢) = 0. Then, by the definition of ©, we also have

m+n m+n
g (D2 zp (Y2 =0 forallge A,
=1 i=1
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Hnece, for each k = 1,..., A, the k-th coordinates of (ZZ”J{" z!) must satisfy that

m—+n
> .20 (35)
=1
and
m—+n
> 2l >0 ifandonlyif p. =0. (36)
=1

Here, we note that the real state ()72, (y5)%—,) of the fixed point satisfies
m m

Zfﬂ“zyﬁzww (37)

ie., ! and y; are in the bounded attainable sets X; and f’j, respectively. Indeed, for each Kk = 1,..., A

such that an[n 28t > 0 and each k € L, we have the following inequalities:

- t - ¢ arer) Ty = t t
D (wn—wi) + Y v 2 Z Z iy
i=1 j=1 =1
+ + +
@5y _"‘Z S Fu(o)
i T
i=1 Zm nZk/eL Fig: (v7)
H mzﬂv% - minzur >t Fin(v})
= 7 +
i=1 Zm nZk’eL zk’( t)
(16/);20') m-+n m+n . Zern sz(”f)
= Z Vik Z Zr Ty
i=1 i=1 ~kK
m+n m—+n

= szﬁki ZFlk(vz)
1=1 =1

Hence, from condition (C4), we have (37).2! Also, note that the attainability condition (37) implies that

the relaxed constraint (21’) holds with equality, i.e., for all i =1,...,m, we have
ah+ ol = wi + 2l s 2l st (38)
because consumers’ utility functions are strictly monotone and z! # (t1(t),...,t1(t)) since we took

number ¢, (t) > 1 sufficiently large so that the bounded attainable set X; C R’ to be a subset of the
interior of [—t1(t), 1 (t)]*.

Furthermore, we have p* > 0. Indeed, if we assume that there is some market x such that p. = 0

21 The case 31™ 25T = 0 is obvious since (C3) implies 7™ v!, = 0 for all k € L, and (35) implies 7™ 2L~ = 0.
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then, we have a contradiction. More precisely, we have three cases; for some consumer ¢ = 1,...,m we
have z!~ < t;(t), for some consumer i = 1,...,m we have 2" > 0, and for all consumers i = 1,...,m
we have 2/ = t1(t) and 2} = 0. For the former two cases, we can make preferable choices for consumer
¢ in similar ways to the above arguments that we used to show equality (34). For the third case, because
>oker, Fi(vi) = 2t = 0 implies v!, = 0 for all k € L,, by (C3) and we have equality (38), we also have

that for all k € L,

m m m
Dol =Y (F s +wn) = mb (s + D win
i=1 i=1 i=1
However, because s'* € A* and we can take ¢1(t) > 1 arbitrarily large, so it contradicts to the fact that,
for all i =1,...,m, x! belongs to attainable set X;, which is bounded in R.

Therefore, because condition (36) and p* > 0 imply Zmﬂt ¢ = 0, we have the market clearing
condition. Moreover, p' > 0 implies that inequality constraints (16’), (17°), and (20’) in the modified
problems actually hold with equalities since if not, a contradiction to the utility or profit maximization
clearly follows. Hence, these equalities, together with (34) and (38), mean that all of our modified

inequality constraints actually hold with equalities for sufficiently large ¢ > 1.

Thus far, we see that the state (p’, s, (xf,vf,z0)/,, (y!, v}, 28)7_)) satisfies (16), (17), (20), (21),

R RNt VR

(22), (23), and (24). We call (p', s', (zf, v, 2){" 1, (v}, v}, 28)}_,) a t-equilibrium state. Since we take

R R Rad)
t > 1 sufficiently large so that the bounded attainable sets to be subsets of the interior of [—¢,#]¢ or
[—t1(t),t1(8)]%, all 2} or y} are interior points of [—¢,t]* or [—t1(t),t1(t)]*. Therefore, the t-equilibrium

state (p', s, (@, v, z)%), (yb,vl, 25)7"_,) is not an equilibrium of the original economy & only when

i) Vi~ 7%
(v}, 2t) is a boundary point of [0,#]¢ x [—t,¢]* or [0,¢1(¢)]° x [—t1(),t1(¢)]* for some i = 1,...,m + n.?
Suppose that, for some i = 1,...,m+n, (vf, zt) is a boundary point of [0, t]¢ x [—¢,t]* for all ¢ > 1. If some

market  consists of a single real commodity k, L,, = {k}, then restriction (20) requires that v, = z{* by
(C5), and sf = 1 and restriction (21) require that !, + v, = w;, + 2. (The same argument is relevant
for producers.) Therefore, we can also suppose that (v, z%) is bounded for such singleton markets L,

without loss of generality, since we can decrease the amounts of (vfy,z/ ) = (21, 2{") without any

(2 1K 7 TR

change of utility value (and/or profit value) of ¢ or any harm in conditions we get so far. This implies

22 If the domain of F; is compact for all i = 1,...,m+n then (v;,2;) (i = 1,...,n+m) are in a fixed bounded area by
the continuity of F; (i = 1,...,n+ m). Hence, in such cases, the proof is completed here. As we mentioned before,
the proof of Theorem 2 corresponds to this case.
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that || >,c; Fir(vf)|| = oo ast — oo for some & € {1,..., A} such that §L, = 2. Note first that, for all

t=1,...,m+nandall kK, =1,..., A\, we have
Z( Z (wir, — xfk)) + Z( Z yfk) 2 Z Vi — (th;r + zf:,) (39)
i=1 k€L UL,/ j=1 k€L.,UL, k€L,UL,,

by considering conditions (16), (17), (20), (21), (23), (24), and (C4). Moreover, the right hand
side of Eq.(39) is 3>°ycp ur,, Vik — 2ker,ur,, Fir(v;), from conditions (16) and (20). However, if
1> ke, Fi(w)|| — oo as t — oo for some x € {1,...,A} such that L, = 2, then condition (C5)
requires that there exists some L, such that >0,/ . , vl — D okeL,UL,, Fip(vl) — oo as t — oo
This implies that the right-hand side and hence the left-hand side of Eq. (39) tends to oo as t — oo,
contradicting the fact that each of z! and y§ is in a bounded area in R’. Thus, we complete the proof

of our main theorem.
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