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Abstract

In this paper, we introduce production into the standard general equilibrium model with asym-

metric information, which was proposed by Dubey et al. (Cowles Foundation Discussion Paper

2000; Econometrica 2005). In such an economy, there is no rational explanation for producers’ de-

livery upper bounds while the endowments naturally limit consumers’ deliveries. However, we show

that the typical equilibrium allocation of the asymmetric information economy necessarily and sub-

stantially depends on such exogenous upper bounds (Example 1 and Theorem 1). In other words,

an equilibrium existence theorem without such upper bounds, even if such exists, will typically fail

to treat the asymmetric information problem, e.g., the adverse selection problem. Hence, to treat

the equilibrium existence problem under the informational asymmetry appropriately, we have to

extend the standard model so that the delivery upper bounds need not to be specified explicitly.

For this purpose, we propose a quite natural and realistic assumption with respect to the techno-

logical condition related to the market delivery, i.e., the existence of some small standardization,

commoditization, and/or transaction costs of market deliveries is shown to be sufficient (Theorem

3).
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1 Introduction

Informational asymmetry problems have been traditionally treated using static partial equilibrium

arguments (e.g., Akerlof 1970, Rothschild and Stiglitz 1976). The approaches of Dubey et al. (2005) are

groundbreaking general equilibrium treatments for asymmetric information problems.1 In the context

of asset markets, that work discussed how a certain system of pooled insurance may solve equilibrium-

existence problems in a default economy. In their model, as a buyer, every agent obtains an average

receipt (including defaults) in each asset market. As sellers, they can choose not to deliver their full

obligations. If we consider a rational expectations equilibrium, the default problem does not harm the

existence of a market equilibrium, i.e., the market viability problem is solved affirmatively under seller–

buyer informational asymmetry.

Several researchers have investigated this seller–buyer informational asymmetry using a general com-

petitive equilibrium model. Bisin and Gottardi (1999) considered a similar problem to Dubey et al.

(2005) in a probabilistic and dynamic setting. Bisin et al. (2011), Correia-da-Silva (2012), and Meier et

al. (2014) most recently considered a static setting.2 Bisin et al. (2011) considered a situation where

agents only have finer information (than the market) when they are sellers. Correia-da-Silva (2012) and

Meier et al. (2014) investigated a situation where agents also have finer information as buyers and the

information varies among agents, although their models do not have the standard general equilibrium

setting. In this paper, we adopt the general equilibrium approach of Dubey et al. (2000, 2005) and Bisin

et al. (2011).

Bisin et al. (2011) considered a model of an exchange economy where agents (consumers) can make

a limited amount of delivery contracts, related to their endowments.3 However, if we consider a pro-

duction economy, there is no natural counterpart for these delivery upper bounds for producers and

this fact causes some problematic situation for general equilibrium modeling of the economy. In this

paper, we show that an equilibrium may not exist if producers have no limit on delivery contracts, even

1 See also Dubey et al. (2000) and their earlier draft, Dubey et al. (1989).
2 The authors investigated a static general competitive equilibrium model independently from these recent works (Urai

and Yoshimachi 2005).
3 All of the previously mentioned works also used such upper bounds for delivery contracts.
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if consumers do (Example 1); that an equilibrium exists if each agent has an exogenously given upper

bound for delivery contracts (Theorem 2); and that, unfortunately, the equilibria typically depend on

the exogenous upper bounds if the asymmetric information does actually have an effect (Theorem 1).4

Theorem 1 implies that we cannot treat asymmetric information problems successfully without using

such delivery upper bounds. Therefore, to treat the market viability problem that determines an ac-

tive market structure under the asymmetric information, appropriately, we must consider the existence

problem without explicitly specified upper bounds for the delivery. Hence, to solve this problem, we

extended the model by introducing some technological conditions that represent realistic costs related

to delivery contracts such as standardization, commoditization, and/or transaction costs. We show that

the equilibrium existence problem under asymmetric information is solved affirmatively in this extended

model (Theorem 3) and that all the conditions for the market viability problem are endogenized.5

The paper is organized as follows. In Section 2, we establish the basic model and present some

substantial results for this basic setting. In Section 3, we extend the model and state the existence

theorem. All proofs are consigned to Appendix.

2 Basic Model and Results

2.1 Basic Model

The basic model and its setup are counterparts of Dubey et al. (2005) and Bisin et al. (2011), which

we modified for the standard Arrow–Debreu production economy. In the following, we introduce a class

of possible markets, agents’ optimization problems, and an equilibrium.6

4 Even in exchange economies, as long as consumers can resale their goods arbitrarily, the same problems arise. In

particular, we can construct equilibrium non-existence examples of such economies (see footnote 12). Note that our

solution to the non-existence problem, explicit modeling of costs that are related to delivery contracts, is relevant

also in such pure exchange cases.
5 We note that the determination problem of an active market structure is simplified here among a given partition of

the set of real commodities L = {1, . . . , ℓ}. Extension of this point to more general subclass of L, which may include

sets with non empty intersection, is straightforward and will be discussed in our another paper (Urai et al. 2016).
6 Let R denote the set of real numbers, let Rn denote n-dimensional Euclidean space, let Rn

+ be the non-negative

orthant of Rn, {x = (xk)
n
k=1 ∈ Rn|xk ≧ 0, k = 1, . . . , n}, and let Rn

++ be the strictly positive orthant of Rn,

{x = (xk)
n
k=1 ∈ Rn|xk > 0, k = 1, . . . , n}. For any vectors x, y ∈ Rn, we let x ≧ y :⇔ x − y ∈ Rn

+ and

x ≫ y :⇔ x − y ∈ Rn
++. For any vector x ∈ Rn, we use notations x+ := max{x, 0} and x− := max{−x, 0}. Note

that for all x ∈ Rn, we have x = x+ − x− and x+, x− ∈ Rn
+. For each finite set A, let ♯A denote the number of

elements in A.
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Class of possible markets: There are ℓ types of real commodities (goods and services) indexed

by k = 1, . . . , ℓ. Let L := {1, 2, . . . , ℓ} denote the set of real commodity indices and M:= {L1, . . . , Lλ}

denote a class of non-empty subset of L such that L =
∪λ

κ=1 Lκ. The class M is interpreted here as

the class of all possible markets and, by using this, we describe a situation that in market Lκ ∈ M real

commodities k, k′ ∈ L are not distinguished as long as k, k′ ∈ Lκ. In our model, a market structure will

be determined as the set of markets in M with non-zero amount of trade in an equilibrium. We also

assume that each commodity is traded in exactly one market, i.e., Lκ ∩Lκ′ = ∅ for all κ, κ′ ∈ {1, . . . , λ}

with κ ̸= κ′. Although we can treat a more general class of possible markets, here we adapt the

simplest partitioned case to concentrate our attention on the problem concerning the exogenous delivery

upper bounds. Moreover, in most standard economic settings such as adverse selection, we only need

the partitioned possible markets framework as argued in Bisin et al. (2011). We also note that this

partitioned possible markets framework contains the standard Arrow–Debreu economy as a special case

with the finest partition: {{1}, . . . , {ℓ}}.

Since there are only λ types of markets indexed by κ = 1, . . . , λ and the economy evaluates λ types

of marketed contracts, or standardized commodities, the price space is a subset of the λ-dimensional

Euclidean space Rλ, instead of the ℓ-dimensional one. Let ∆ := {(p1, . . . , pλ) ∈ Rλ
+ |

∑λ
κ=1 pκ = 1}

be the price space. For each market Lκ ∈ M, all types of real commodities k ∈ Lκ are evaluated by

identical price pκ, given a price system p = (p1, . . . , pλ) ∈ ∆.

Agents: There are m types of consumers and n types of producers in this economy and they are

indexed by i = 1, . . . ,m and j = 1, . . . , n, respectively. In our model, we assume that each agent (each

consumer and each producer) can buy and sell standardized commodities in all the markets. We also

assume that, for all market Lκ ∈ M and all types of real commodities that belong to Lκ, every agents can

identify each of these commodity types as long as it is possessed by themselves, and use each of them as an

unit of delivery to the market Lκ. However, they can only obtain a mixture of such real commodities when

they buy a standardized commodity from the market Lκ. Hence, we treat their behaviors (consumptions

and productions) and their transactions (demands and supplies) as different variables. More precisely,

we describe consumption plans xi (i = 1, . . . ,m) and production plans yj (j = 1, . . . , n) as points of Rℓ

and demand plans z−i (i = 1, . . . ,m+ n) and supply plans z+i (i = 1, . . . ,m+ n) as points of Rλ
+.

4



Agents as sellers: For all agents i = 1, . . . ,m+n, we assume that the supply plan z+i = (z+i1, . . . , z
+
iλ)

must satisfy

(z+i1, . . . , z
+
iλ) =

( ∑
k∈L1

vik, . . . ,
∑
k∈Lλ

vik
)
,

where (vi1, . . . , vik, . . . , viℓ) ∈ Rℓ
+ is a bundle of real commodities that agent i plans to deliver to the

markets. This equation describes the above mentioned situation that agents can identify each of the real

commodity types in a market Lκ ∈ M and use each of them as an unit of delivery to the same market

Lκ, although the market Lκ does not distinguish them and hence recognizes the delivery from agent i as

the sum z+iκ =
∑

k∈Lκ
vik.

Agents as buyers and expectations of real receipts: As we described above, in this setting, a

marketed contract κ is actually a mixture of ♯Lκ kinds of real commodities. Therefore, we assume that

agents have a certain kind of expectation for their real receipts. So we introduce an additional exogenous

parameter, sκ, which represents the ratio of the ♯Lκ types of real commodities in the total quantity of

contracts supplied to market κ. Formally, for each κ = 1, . . . , λ, we let RLκ denote the subspace of Rℓ

constructed by elements with k-th coordinates equal to 0 if k /∈ Lκ; that is, RLκ := {x = (xk)
ℓ
k=1 ∈

Rℓ |xk = 0 if k /∈ Lκ }, and we take expectation s = (s1, . . . , sλ) as sκ ∈ ∆κ := {x = (x1, . . . , xℓ) ∈

RLκ
+ |

∑ℓ
k=1 xk = 1 } for all κ = 1, . . . , λ. This allows us to parametrize the uncertainty about real

receipts in the same way that we treat the prices of goods in general equilibrium modelings.

Next, we describe agents’ optimization problems. In this model, agents’ optimization problems have

two kinds of macro parameters: price p = (p1, . . . , pλ) and expectations of real receipts s = (s1, . . . , sλ).

Note that given these two parameters, which are determined in equilibrium, agents choosemicro variables:

consumption or production plan xi/yj , demand plan z−i , and actual delivery of real commodities vi (which

constitutes supply plan z+i ).

Consumers’ problems: Consumer i = 1, . . . ,m has initial endowment ωi ∈ Rℓ
++ of real commodi-

ties, consumption set Xi ⊂ Rℓ, and utility function ui : Xi → R. Given price p ∈ ∆ and the expectation

of their receipts for each real commodity through the market, s = (s1, . . . , sλ) ∈
∏λ

κ=1 ∆
κ, consumer i

chooses consumption plan xi with market transaction plans (vi, zi), where zi = z+i − z−i , to solve the

following maximization problem:
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max ui(xi) (1)

sub. to

(xi, vi, zi) ∈ Xi ×Rℓ
+ ×Rλ (2)

vi ≦ bi, (3)

z+i =
( ∑
k∈L1

vik, . . . ,
∑
k∈Lλ

vik
)
, (4)

xi + vi = ωi + z−i1s
1 + · · ·+ z−iλs

λ, (5)

p · z−i = p · z+i +

n∑
j=1

θijπj(p, s), (6)

where πj(p, s) is the profit of producer j under price p and expectation s (in the maximization problems

described below), θij denotes i’s share of the profit of producer j (a non-negative real number satisfying∑m
i=1 θij = 1 for each j), and bi ∈ Rℓ

++ is an arbitrary taken upper bound for the consumer’s delivery.

For example, it is natural to take bi = ωi for all i = 1, . . . ,m.

The following are the interpretations of the constraints. Formula (2) indicates the domains of the

variables; consumption plan xi must be taken from consumption set Xi. Eq. (3) expresses that none

of the consumer i can supply arbitrarily large amounts of real commodities. Eq. (4) means that supply

plan z+i consists of the delivery of real commodity vi. Eq. (5) denotes that consumption xi and actual

delivery vi must be covered by the consumer’s own endowments ωi and purchase z−i1s
1+ · · ·+z−iλs

λ. Note

that z−iκs
κ ∈ Rℓ

+ for κ = 1, . . . , λ because sκ ∈ ∆κ ⊂ Rℓ
+. Finally, Eq. (6) is the budget constraint under

p ∈ ∆.

In the above, we can chose ωi as a natural candidate of upper bound bi in the constraint (3). This

is a natural assumption when we only consider the consumers in an economy, i.e., when we consider a

pure exchange economy, and such an assumption was also used in all of the early works: Dubey et al.

(2005), Bisin et al. (2011), Correia-da-Silva (2012), and Meier et al. (2014). For a production economy,

however, since producers do not have endowments, they have no such natural upper bounds. However,

Example 1 below shows that without upper bounds for the producers, an equilibrium may fail to exist

even if consumers’ delivery amounts are bounded, as in Formula (3) with bi = ωi. For this reason, in the

basic model, we also introduce the upper bound condition (Eq. (9)) for each producer using given upper

bound parameter bj ∈ Rℓ
++ although it does not have a natural interpretation.

6



Producers’ problems: Producer j = 1, . . . , n has production technology Yj ⊂ Rℓ. Given two

exogenous parameters, price p and the expectations of their real receipts, s = (s1, . . . , sλ), producer j

chooses production plan yj with market transaction plans (vj , zj) to solve the following maximization

problem:

max p · z (7)

sub. to

(yj , vj , zj) ∈ Yj ×Rℓ
+ ×Rλ, (8)

vj ≦ bj , (9)

z+j =
( ∑
k∈L1

vjk, . . . ,
∑
k∈Lλ

vjk
)
, (10)

vj = yj + z−j1s
1 + · · ·+ z−jλs

λ. (11)

Constraints (8)–(11) can be interpreted in the same way as in the consumers’ problems. In Formula

(9), we use bj ∈ Rℓ
++ as an exogenously given upper bound, as previously discussed.

Finally, we define the equilibrium.

Equilibrium: Let E = ((Xi, ωi, ui, bi, (θij)
n
j=1)

m
i=1, (Yj , bj)

n
j=1,M) denote the above economy. An

equilibrium for economy E is a pair ((xi, vi, zi)
m
i=1, (yj , vj , zj)

n
j=1) ∈

∏m
i=1

(
Xi × Rℓ

+ × Rλ
)
×

∏n
j=1

(
Yj ×

Rℓ
+×Rλ

)
and (p, s) ∈ ∆×

∏λ
κ=1 ∆

κ, which satisfies Eqs. (1)–(11) and the market clearing condition (12)

with expectation specification (13) for each κ ∈ {1, . . . , λ}:

m+n∑
i=1

ziκ = 0, (12)

∑m+n
i=1 prLκ

(vi)∑m+n
i=1 z+iκ

= sκ as long as

m+n∑
i=1

z+iκ > 0, (13)

where prLκ
denotes the projection onto subspace RLκ of Rℓ for each κ = 1, . . . , λ, i.e., for each x ∈ Rℓ,

the k-th coordinate of prLκ
(x) is 0 if k /∈ Lκ and xk if k ∈ Lκ. Note that we only consider Eq. (13) when∑m+n

i=1 z+iκ > 0. Hence, if
∑m+n

i=1 z+iκ = 0 we have no restrictions on the expectation specifications.
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2.2 Results for the Basic Model

As previously mentioned, the upper bound condition (9) is problematic because it is difficult to interpret

and/or to justify it from a natural economic point of view. However, as shown in the next theorem and

the non-existence example, the condition is not only necessary but also essential to analyze asymmetric

information problems. More precisely, an equilibrium allocation of the model typically depends on the

upper bound parameters, bi, as long as we want to analyze a situation where the asymmetric informational

problem actually matters. In other words, we can prove that if an equilibrium for this standard setting

does not depend on the upper bound parameters, the equilibrium allocation is typically Pareto-optimal.7

To state this fact formally, we introduce some standard definitions.

We say that an allocation ((xi)
m
i=1, (yj)

n
j=1), where xi ∈ Xi (i = 1, . . . ,m) and yj ∈ Yj (j = 1, . . . , n),

is feasible if it satisfies
∑m

i=1 xi =
∑n

j=1 yj +
∑m

i=1 ωi. Feasible allocation ((xi)
m
i=1, (yj)

n
j=1) is Pareto-

optimal if there is no other feasible allocation ((x′
i)

m
i=1, (y

′
j)

n
j=1) such that x′

i ≿i xi for all i = 1, . . . ,m

and x′
i ≻i xi for some i = 1, . . . ,m, where ≿i and ≻i are respectively agent i’s preference and strict

preference relations.

Theorem1. Suppose that, for each i = 1, . . . ,m, consumer i’s preference ≿i is monotone and convex.8

If equilibrium state ((x∗
i , v

∗
i , z

∗
i )

m
i=1, (y

∗
j , v

∗
j , z

∗
j )

n
j=1, p

∗, s∗) satisfies v∗i ≪ bi for all i = 1, · · · ,m + n and

sκ∗ ∈ RLκ
++ for all κ = 1, · · · , λ, then equilibrium allocation ((x∗

i )
m
i=1, (y

∗
j )

n
j=1) is Pareto-optimal.

Hence, in economies with asymmetric information, where Pareto-optimality typically does not hold,

there must exist some agent i that delivers real commodity k with its limit amount bik or real commodity

k′ that is vanishing from the market, i.e., sκk′ = 0. In this sense, to treat the asymmetric information

problem such as the adverse selection problem in the standard setting, we cannot avoid the arbitrariness

caused by exogenous upper bound parameters bi.
9

7 Suppose that the asymmetric information is based on the different quality of commodities in a certain standardized

market. Assuming that each agent’s expectation for a standardized commodity typically satisfies the condition that

for each delivery of the standardized commodity there is a non-zero possibility to obtain all real commodities that

belong to this market, then an equilibrium, which does not depend on the delivery upper bound constraints, is always

Pareto-optimal.
8 Preference relation ≿ is monotone if x ≫ y implies x ≻ y. Preference relation ≿ is convex if x ≻ y implies

tx+ (1− t)y ≻ y for all t ∈ (0, 1]. (For the definition of a preference relation’s convexity, see also Debreu (1959).)
9 Note that here, the situation is different from the one concerning the short selling upper bound in the incomplete
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Furthermore, as we noted above, we cannot even ensure the equilibrium existence without the upper

bound condition (9). In the following, we describe a non-existence example. The setting is the same as

for the existence theorem (Theorem 2 below), but without the upper bound condition for the producer

(Condition (9)). Hence, without the upper bounds for the producers, an equilibrium may not exist even

if the consumer’s delivery amount is bounded, as in Formula (3) with bi = ωi.

Example 1: Non-existence of equilibrium without an upper bound

Suppose we have two real goods, one consumer, and one producer in an economy. Additionally, suppose

there is only one market, and hence the two goods are traded at an identical price: p ∈ R+. These agents

expect that they will receive s ∈ [0, 1] units of good 1 and (1− s) units of good 2 when they contract to

buy one unit from the market. The producer has technology Y = {(y1,−y2) ∈ R2 : y1 ≦ 2y2, y2 ≧ 0},

and there is no upper bound on its delivery. (Hence this producer’s problem is specified by Eqs. (7), (8),

(10), and (11)). The consumer has consumption set X = R2
+, utility function u(x1, x2) = 2x1 + x2, and

endowment (1, 1), and his actual delivery amounts must be bounded by his endowments. (This problem

is specified by Eqs. (1)–(6) with bi = ωi = (1, 1). ) In this economy, the consumer prefers real good 1 to

good 2, and real good 2 is the raw material for the producer. Let (vp1, vp2, z
±
p ) and (vc1, vc2, z

±
c ) denote

the producer’s and consumer’s transaction plans.

First, note that price p = 0 never constitutes an equilibrium, because the consumer can make infinite

purchases; i.e., the consumer problem has no maximum. Next, note that for any price p > 0, the

producer’s problem is reduced to max{py2|(1 − s)z−p ≧ y2 ≧ 0 and z−p ≧ 0}, and the producer’s actual

deliveries are characterized by (vp1, vp2) = (2y2 + sz−p ,−y2 + (1− s)z−p ).10

If p > 0 and s ̸= 1, then the producer can get his raw material (real good 2) from the market and make

market model (Hart 1975). In the incomplete market model, it is just desirable from an economic modeling point

of view to remove the short selling upper bound, whereas in the model of an asymmetric information economy, the

removal of the upper bound implies the removal of the asymmetric information problem itself, as shown by Theorem

1.
10 To see that the original problem described by Eqs. (7), (8), (10), and (11) can be reduced to the stated problem with

two variables (y2 and z−p ), we eliminate other variables as follows. First, we can eliminate vp1 and vp2 by substituting

vp1 = y1+sz−p and vp2 = −y2+(1−s)z−p into all the relevant restrictions (i.e., substituting Eq. (11) into Eqs. (8) and

(10)). We can also eliminate z+p by substituting Eq. (10) into the profit function of Eq. (7). Finally, if p > 0, then y1 =

2y2 must hold in an optimum, so we can also eliminate y1 by substituting it into all the relevant restrictions and the

profit function. Then the reduced problem is actually max{py2|(1− s)z−p ≧ y2 ≧ 0 and z−p ≧ 0}, and this problem is

equivalent to the original problem. The actual deliveries are characterized by (vp1, vp2) = (2y2+sz−p ,−y2+(1−s)z−p )

by substituting the equation y1 = 2y2 to eliminate y1.

9



twice as much product (real good 1) as raw material. Moreover, the prices of these two goods are the

same, p > 0, and there is no upper bound for his delivery, so the producer can make an infinite amount of

profit. Indeed, if s ̸= 1, then the reduced problem has no maximum because y2 can be made arbitrarily

large by taking z−p such that z−p ≧ y2

1−s . Hence, an equilibrium only exists when p > 0 and s = 1.

If p > 0 and s = 1, then the producer expects that he cannot get raw material for production.

Hence, no-production is his optimal production plan. The reduced problem has maximum solutions

(y2 = 0, z−p = arbitrary) with maximum profit π = 0, and the actual deliveries are (vp1, vp2) = (z−p , 0).11

However, the consumer wants to exchange endowed good 2 with more preferable good 1 through the

market, because he only expects to get good 1 when he purchases it from the market, s = 1. So in the

optimum, vc2 > 0 must hold. Hence, there is a positive delivery of commodity 2, while the agents expect

no delivery for good 2, (1− s) = 0. Therefore, Eq. (13) never holds. This means that if p > 0 and s = 1,

there is never an equilibrium. Consequently, no equilibrium exists in this economy.12 □

Now we state a general equilibrium existence theorem for production economies with asymmetric

information. We can ensure that an equilibrium exists as long as all agents have upper bounds for their

deliveries.

Theorem2. Economy E = ((Xi, ωi, ui, bi, (θij)
n
j=1)

m
i=1, (Yj , bj)

n
j=1,M) has an equilibrium, ((x∗

i , v
∗
i , z

∗
i )

m
i=1,

(y∗j , v
∗
j , z

∗
j )

n
j=1, p

∗, s∗), if the following conditions are satisfied:

(Consumers) Each consumer i = 1, . . . ,m has (i) a closed convex consumption set, Xi ⊃ Rℓ
+,

bounded from below; (ii) a convex preference induced by a strictly monotone and continuous utility

function ui : Xi → R; and (iii) endowment ωi ∈ intXi.
13

(Producers) For each j = 1, . . . , n, Yj ⊂ Rℓ is a closed convex set that contains 0.

(Attainable Set) The attainable sets for each agents are bounded.14

11 Here we observe that the producer’s constraint correspondence does not satisfy upper semicontinuity at s = 1.
12 Note that even in exchange economies, the same problem arises if consumers can resale their goods arbitrarily.

Suppose two goods, one market, two consumers, and no producer in an economy. The two goods are traded at

identical price p ∈ R+. Suppose that consumers can resale their goods arbitrarily, i.e., consumers’ problems are

specified by Eqs. (1), (2), (4), (5) and (6). Assume that consumer 1’s attributes are X1 = R2
+, u1(x1, x2) = 2x1+x2,

and ω1 = (1, 2), and that consumer 2’s attributes are X2 = R2
+, u2(x1, x2) = x1 + 2x2 and ω2 = (1, 1). It is

straightforward to see that no equilibrium exists in this economy because they always can get a more preferable

consumption bundle through the unbounded transactions.
13 Preference relation ≿ is strictly monotone if x′ ≧ x, x′ ̸= x implies x′ ≻ x.
14 Allocation ((xi)

m
i=1, (yj)

n
j=1) is attainable if

∑m
i=1 xi ≦

∑n
j=1 yj +

∑m
i=1 ωi. The attainable sets for agents, i =

10



Although this theorem ensures the equilibrium existence, as shown in Theorem 1, the equilibrium

typically depends on exogenous upper bounds bi, and their removal induces the removal of the asymmetric

information problem itself. Moreover, as shown in Example 1, we cannot even technically remove the

upper bound condition because an equilibrium may not exist. In the next section, we endogenize this

upper bound condition by introducing natural cost for the market deliveries and solve this problem.

3 Model without Exogenous Upper Bounds and Equilibrium Existence

Given the class of possible markets M= {L1, . . . , Lλ}, each agent must sell his real goods as λ types

of market contracts. Therefore, he should standardize or commoditize his real goods to sell them in the

market depending on the class of possible markets M. It is quite natural to assume that this procedure

will cost each agent some loss of goods or services that may be delivered to the market, because it will

cost each agent at least some labor to standardize, package, and/or deliver real commodities to the

market, which has the class of possible markets. We describe such standardization, commoditization,

and/or transaction costs by assuming that each agent has a certain kind of technology for standardizing

his real goods.

Assume that each agent i = 1, . . . , n+m (each of consumers and producers) has function Fi : R
ℓ
+ → Rℓ

+

that satisfies the following conditions:

(C1) Fi is a continuous function;

(C2) for all k = 1, . . . , ℓ, Fik is a concave function, where Fik is a k-th coordinate of Fi;

(C3) for each κ = 1, . . . , λ and v ∈ Rℓ
+,

∑
k∈Lκ

Fik(v) = 0 is equivalent to vLκ := (vk)k∈Lκ = 0;

for each κ = 1, . . . , λ and v, v′ ∈ Rℓ
+, vLκ ≦ v′Lκ

and vLκ ̸= v′Lκ
implies

∑
k∈Lκ

Fik(v) <∑
k∈Lκ

Fik(v
′);

(C4) Fi(v) ≦ v for all v ∈ Rℓ
+; and

(C5) for each κ such that Lκ = {k} for some k, Fik(v) = vk;

for each κ such that ♯Lκ ≧ 2, and for each sequence {vν}∞ν=1 ⊂ Rℓ
+, if

∑
k∈Lκ

Fik(v
ν) → ∞

1, . . . , n + m, are defined as X̃i := {xi ∈ Xi|xi constitutes an attainable allocation with some xi′ ∈ Xi′ (∀i′ ̸=
i), yj ∈ Yj (∀j = 1, . . . ,m)}, and Ỹj := {yj ∈ Yj |yj constitutes an attainable allocation with some xi ∈ Xi (∀i =

1, . . . , n), yj′ ∈ Yj′ (∀j′ ̸= j)}.

11



(ν → ∞), then there exists some Lκ′ such that
∑

k∈Lκ∪Lκ′ (v
ν
k − Fik(v

ν)) → ∞ (ν → ∞).

As we will formalize later, each agent supplies his real goods and services to the market with the class of

possible markets M= {L1, . . . , Lλ} as a λ-tuple (
∑

k∈L1
Fik(v), . . . ,

∑
k∈Lλ

Fik(v)) ∈ Rλ
+ (see Eqs. (16)

and (20) below). We call Fi agent i’s standardizing technology. Condition (C5) means that no agent can

sell his real goods in the market with the class of possible markets M ={L1, . . . , Lλ} at no cost, and this

is the crucial assumption as we see in the following example.

Example 1 revisited: Non-existence of equilibrium without the cost condition (C5)

Recall that there are two goods, one market, one consumer, and one producer in Example 1. Note that

in Example 1, only the consumer has an upper bound for delivery contract. Consider a model without

the upper bound condition for each agents by removing consumer’s upper bound in Example 1. In such a

model, each agent’s “standardizing technology” can be formalized as (Fi1(v1, v2), Fi2(v1, v2)) := (v1, v2)

and this formalization means that agents can standardize their goods at no cost.15 Formally, these

functions Fi : R
2
+ → R2

+ satisfy all the conditions but (C5). Indeed, for each sequence {vν}∞ν=1 ⊂ R2
+,

we have
∑

k∈{1,2}(v
ν
k − Fik(v

ν)) =
∑

k∈{1,2}(v
ν
k − vνk) = 0 for all ν = 1, 2, . . ., and hence condition (C5)

must be violated. (Note that there is only one market L1 := {1, 2} in this economy.) Moreover, by a

similar argument in Example 1, it is straightforward to see that there is no equilibrium in this model,

i.e., we cannot ensure the existence of an equilibrium without condition (C5). □

Note that the cost imposed by condition (C5) of standardizing technologies Fi (or, the transaction cost)

for consumers and producers (i = 1, . . . ,m+ n) and the transformation cost represented by production

technologies Yj for producers (j = 1, . . . , n) are two independent concepts, and in general we specify

these two independently. In particular, in Example 1, while the transformation cost represented by

production set Y = {(y1,−y2) ∈ R2 : y1 ≦ 2y2, y2 ≧ 0} is positive, the transaction cost represented by

Fi is zero since
∑

k∈{1,2}(v
ν
k − Fik(v

ν)) =
∑

k∈{1,2}(v
ν
k − vνk) = 0 and because of the latter fact we have

no equilibrium. In the following, we show that by introducing the transaction costs expressed by (C5),

we can ensure the equilibrium existence.16

15 Note that with this notation and the agents’ attributes given in Example 1, the model specified here is identical with

a model specified by Eqs. (14)–(22) that define our extended model below.
16 Also, note that (C5) requires such standardizing costs only if Lκ is not a singleton set because if some Lκ is a singleton,
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Now we propose the following modifications to the model. The formalization is almost the same as the

basic model in Eqs. (1)–(11), except that we remove the upper bound conditions (3) and (9) and replace

(4) and (10) by “z+i = (
∑

k∈L1
Fik(vi), . . . ,

∑
k∈Lλ

Fik(vi))”.

Agents’ Problems: The producers’ problems are defined as:

max p · z+j − p · z−j (14)

sub. to

(yj , vj , zj) ∈ Yj ×Rℓ
+ ×Rλ, (15)

z+j =
( ∑
k∈L1

Fjk(vj), . . . ,
∑
k∈Lλ

Fjk(vj)
)
, (16)

vj = yj + z−j1s
1 + · · ·+ z−jλs

λ. (17)

Similarly, the consumers’ problems are defined as:

max ui(xi) (18)

sub. to

(xi, vi, zi) ∈ Xi ×Rℓ
+ ×Rλ, (19)

z+i =
( ∑
k∈L1

Fik(vi), . . . ,
∑
k∈Lλ

Fik(vi)
)
, (20)

xi + vi = ωi + z−i1s
1 + · · ·+ z−iλs

λ, (21)

p · z−i = p · z+i +

n∑
j=1

θijπj(p, s). (22)

Equilibrium: Let E = ((Xi, ωi, ui, Fi, (θij)
n
j=1)

m
i=1, (Yj , Fj)

n
j=1,M) denote the above economy. An

equilibrium for economy E is a pair ((xi, vi, zi)
m
i=1, (yj , vj , zj)

n
j=1) and (p, s), satisfying (14)–(22) and the

market clearing condition (23) with an expectation specification (24) for each κ ∈ {1, . . . , λ} and k ∈ Lκ:

m+n∑
i=1

ziκ = 0, (23)

∑m+n
i=1 Fik(vi)∑m+n

i=1 z+iκ
= sκk as long as

m+n∑
i=1

z+iκ > 0. (24)

We state the existence theorem for this modified economy.

then there is no difference between a real good and a standardized commodity in the corresponding market, and hence,

in such cases, the argument about standardizing costs can be negligible. Condition (C5) expresses this point using

the case ♯Lκ = 1, i.e., Lκ = {k} for some k.

13



Theorem3. Economy E = ((Xi, ωi, ui, Fi, (θij)
n
j=1)

m
i=1, (Yj , Fj)

n
j=1,M) has an equilibrium, ((x∗

i , z
∗
i ,

v∗i )
m
i=1, (y

∗
j , z

∗
j , v

∗
j )

n
j=1, p

∗, s∗), if the following conditions are satisfied.

(Consumers) Each consumer i = 1, . . . ,m has a non-empty closed convex consumption set

Xi ⊃ Rℓ
+ that is bounded from below with a convex preference induced by a strictly monotone

and continuous utility function ui : Xi → R+, and initial endowment ωi ∈ intXi.

(Producers) For each j = 1, . . . , n, Yj ⊂ Rℓ is a closed convex set containing 0.

(Attainable Set) The attainable sets for all agents (X̃i (i = 1, . . . ,m) or Ỹj (j = 1, . . . , n) ) are

bounded.17

(Standardizing Technologies) For each agent i = 1, . . . ,m + n Fi : R
ℓ
+ → Rℓ

+ satisfies condi-

tions (C1) – (C5).

As shown by Theorem 3, with standardizing technologies Fi : Rℓ
+ → Rℓ

+ (i = 1, . . . , n + m), we

can remove the exogenous upper bound conditions (3) and (9). Agents choose to deliver vi so that

the standardizing cost represented by Fi : Rℓ
+ → Rℓ

+ never harms their own total payoff. Note that

the assumptions on production structure are quite standard as a general equilibrium economy of the

Arrow–Debreu type. Therefore, it would be possible to interpret our existence result as follows: we can

dispense with concerns over the production structure or the delivery upper bounds as long as we impose

restrictions on the structure of standardization, commoditization, and/or transaction costs.

Appendix

Proof of Theorem 1

Suppose, on the contrary, that there is an allocation ((xi)
m
i=1, (yj)

n
j=1) which Pareto-dominates

((x∗
i )

m
i=1, (y

∗
j )

n
j=1). Take (vi, zi) ∈ Rℓ

+ × Rλ (i = 1, · · · ,m + n) to satisfy conditions (4), (5), (10), and

(11) with allocation xi or yi.
18 Note, here, that (3) and/or (9) are not necessarily satisfied. Since we

assume that v∗i ≪ bi for all i = 1, · · · ,m+ n, we can construct state ((x̄i, v̄i, z̄i)
m
i=1, (ȳj , v̄j , z̄j)

n
j=1) such

17 For the definitions of X̃i and Ỹj , see footnote 14 of Theorem 2.
18 Since we assume sκ∗ ∈ RLκ

++ for all κ = 1, · · · , λ, we can take z−i and vi to satisfy condition (5) (or (11)) for each

i = 1, · · · ,m+ n. Then, take z+i to satisfy (4) (or (10)).
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that ((x̄i)
m
i=1, (ȳj)

n
j=1) is feasible and Pareto-dominates the equilibrium allocation and satisfies conditions

(3), (4), (5), (9), (10), and (11). (For example, if we denote (x̄i, v̄i, z̄i) = (1− t)(x∗
i , v

∗
i , z

∗
i ) + t(xi, vi, zi)

and let t → 0, then v̄i ≪ bi, in particular condition (3) (or (9)), holds for sufficiently small t. By taking

a sufficiently small and identical t for all agents i = 1, · · · ,m + n we can construct a feasible state

((x̄i)
m
i=1, (ȳj)

n
j=1) that satisfies these conditions. Pareto-dominance is particularly preserved since each

consumer’s preference is convex.)

Note that the following two conditions hold:

x̄i ≻i x
∗
i =⇒ p∗ · z̄−i > p∗ · z̄+i +

n∑
j=1

θijπj(p
∗, s∗) (25)

x̄i ≿i x
∗
i =⇒ p∗ · z̄−i ≧ p∗ · z̄+i +

n∑
j=1

θijπj(p
∗, s∗) (26)

(where πj(p
∗, s∗) is the maximized profit of producer j = 1, · · · , n under (p∗, s∗)) since, if not, we have a

contradiction to the fact that x∗
i is an utility maximizing consumption plan under (p∗, s∗), sκ∗ ∈ RLκ

++ for

all κ, and each consumer’s preference is monotone. Hence, the Pareto-dominance of ((x̄i)
m
i=1, (ȳj)

n
j=1) with

(25), (26), and the profit maximization assumption of the equilibrium state implies that
∑m

i=1 p
∗ · z̄i >∑n

j=1 p
∗ · z̄j holds. We can rewrite this inequality as follows:19

m∑
i=1

{∑
k∈L1

p∗1(ωik − x̄ik) + · · ·+
∑
k∈Lλ

p∗λ(ωik − x̄ik)
}
>

n∑
j=1

{∑
k∈L1

p∗1ȳjk + · · ·+
∑
k∈Lλ

p∗λȳjk

}
. (27)

However, (27) contradicts the fact that ((x̄i)
m
i=1, (ȳj)

n
j=1) is feasible. Indeed, if we define “extended price”

p̄ = (p̄1, . . . , p̄ℓ) ∈ Rℓ as p̄k = p∗κ if k ∈ Lκ (k = 1, . . . , ℓ, κ = 1, . . . , λ) and evaluate feasibility condition∑m
i=1(x̄i − ωi) =

∑n
j=1 ȳj by extended price p̄, then (27) must hold with equality.

Proof of Existence Theorems

Here, we make some notes regarding the proof of Theorem 2. Theorem 2 corresponds to the case

Fi(vi) = vi for all vi ∈ {v ∈ Rℓ
+|v ≦ bi} in the extended standardizing technology setting of Section 3.

This Fi satisfies (C1)–(C4) on the compact domain {v ∈ Rℓ
+|v ≦ bi}. Although it does not satisfy (C5),

this assumption is not needed if the domain of Fi is compact on Rℓ. (Footnote 22 clarifies this point.)

19 From conditions (4), (5), (10), and (11).
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Now, we proceed to the proof of Theorem 3. There are some difficulties related to the agents’ problems

(14)–(22). In particular, we cannot ensure that the constraint correspondences satisfy upper and lower

semicontinuity and have convex values. More specifically, first, the difficulty related to the upper semi-

continuity is due to non-bounded deliveries, and was observed in Example 1. Next, equality constrains

(17), (21), and (22) cause some difficulties in showing the lower semi-continuity with respect to the vector

valued parameters s = (s1, . . . , sλ). Finally, equality constraints (16) and (20) create problems when

ensuring the convexity of the values of the constraint correspondences, because Fi (i = 1, . . . , n+m) are

generally not linear.

To avoid these difficulties, we first modify the original problems in two ways; we truncate the variables

and relax the equality constraints (in Producers’ Problems and Consumers’ Problems). Then,

we obtain a kind of an “equilibrium” for the modified problem as a fixed point of a correspondence

(in Fixed Point Argument). Finally, we show that the fixed point is actually an equilibrium of our

original model in the limit of truncation argument (in Relationship to the Original Problem and

Limit Argument).

Producers’ Problems: For any t > 1, define subset Ωt ⊂ Rℓ ×Rℓ
+ ×Rλ as

Ωt := [−t, t]ℓ × [0, t]ℓ × [−t, t]λ. (28)

Now, take an arbitrarily large number t > 1. We consider a modified version of the original problem

(14)–(17). Specifically, we replace the variable constraint (15) by the following truncated version:

(yj , vj , zj) ∈ (Yj ×Rℓ
+ ×Rλ) ∩ Ωt.

Moreover, we relax the constraints (16) and (17) by replacing equalities “= ” with inequalities “≦ ”. We

refer those modified constraints as (15’), (16’), and (17’), respectively. Recall that Yj ⊂ Rℓ is closed and

convex, and contains 0, and Fj satisfies (C1) – (C5) for each j = 1, . . . , n.

We denote by ηtj(p, s) the set of solutions to the modified maximization problem; (14) subject to (15’),

(16’), and (17’) under (p, s). It is clear that ηtj(p, s) is non-empty, closed, and convex. (In particular,

convexity is assured since we relaxed equality constraint (16) by inequality constraint (16’) and Fik is a

concave function for each k = 1, . . . , ℓ from condition (C2).) Also, we can prove that the correspondence
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ηtj : ∆×
∏λ

κ=1 ∆
κ → Ωt has a closed graph. Indeed, we can see that the constraint correspondence

(p, s) 7→ { (yj , vj , zj) ∈ Ωt | (yj , vj , zj) satisfies (15’), (16’), and (17’) under (p, s) }

has a closed graph and that its value and range are compact. (The compactness of the value is assured

since we truncated the variables and hence the difficulty on upper semi-continuity which we pointed out

in Example 1 can be avoided. Note that the continuity of Fj , condition (C1), is used here.) Therefore,

the constraint correspondence is upper semi-continuous. Moreover, it is clear that the constraint corre-

spondence is lower semi-continuous because Fj satisfies (C3) and constraints are inequality, and hence

the standard argument is applicable. Thus, the constraint correspondence is continuous. Therefore,

Berge’s maximum theorem is applicable (cf. Debreu (1959, p. 19)). In this case, it is simultaneously

assured that the profit function of this truncated problem, πt
j(p, s), is continuous.

Consumers’ Problems: As in the producer case, we consider the modified version of the original

problem (18)–(22). First, for each t > 1, define number t1(t) > 1 as

t1(t) := t ·max{1 +
n∑

j=1

πt
j(p, s)|(p, s) ∈ ∆×

λ∏
κ=1

∆κ}. (29)

Note that such number t1(t) exists since ∆×
∏λ

κ=1 ∆
κ is compact and each πt

j(p, s) is continuous. Also,

note that, since 0 ∈ Yj ∩ [−t, t]ℓ implies πt
j(p, s) ≧ 0 for all j = 1, . . . , n, we have

t1(t) = t ·max{1 +
n∑

j=1

πt
j(p, s)|(p, s) ∈ ∆×

λ∏
κ=1

∆κ} ≧ t · 1 = t

for all t > 1. Hence, we can take an arbitrarily large t1(t) > 1 by taking sufficiently large t > 1.

Now, consider the modified version of the original problem. Namely, variables are truncated as

(xi, vi, zi) ∈ (Xi × Rℓ
+ × Rλ) ∩ Ωt1(t) where Ωt1(t) is defined as in (28), and all the equalities “= ”

in constrains (20)–(22) are replaced with inequalities “≦ ”. Moreover, we replace each profit πj(p, s) in

constraint (22) by πt
j(p, s), which is the maximized profit of each producer in the modified maximization

problem we argued above. We refer those modified constraints as (19’), (20’), (21’), and (22’), respec-

tively. Denote by ξti(p, s) the set of all solutions to the modified maximization problem; (18) subject to
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(19’)–(22’) under (p, s).20 The correspondence ξti : ∆ ×
∏λ

κ=1 ∆
κ → Ωt1(t) is non-empty closed convex

valued and has a closed graph. The argument is almost the same as the producer case and hence we

omit.

Fixed Point Argument: We have defined solution correspondences ηtj : ∆ ×
∏λ

κ=1 ∆
κ → Ωt and

ξti : ∆×
∏λ

κ=1 ∆
κ → Ωt1(t) for agents’ modified problems for any t > 1. Now, consider the product map

Φ of these correspondences:

Φ : ∆×
λ∏

κ=1

∆κ ∋ (p, s) 7→
m∏
i=1

ξti(p, s) ×
n∏

j=1

ηtj(p, s) ⊂ (Ωt1(t))m × (Ωt)n. (30)

The mapping Φ has a closed graph. Then, define a price-expectation manipulation correspondence Ψ as

follows:

Ψ : ([0, t1(t)]
ℓ×[−t1(t), t1(t)]

λ)m×([0, t]ℓ×[−t, t]λ)n ∋ (vi, zi)
m+n
i=1 7→ Θ((zi)

m+n
i=1 )×Ξ((vi)

m+n
i=1 ) ⊂ ∆×

λ∏
κ=1

∆κ,

(31)

where Θ is the price manipulation mapping and Ξ is the correspondence that assigns the real mixture

ratio of the goods for each market. More precisely, we define

Θ((zi)
m+n
i=1 ) := {p ∈ ∆ | ∀q ∈ ∆, q ·

m+n∑
i=1

zi ≧ p ·
m+n∑
i=1

zi}

for each (zi)
n+m
i=1 , and the κ-th coordinate of Ξ by

Ξκ((vi)
m+n
i=1 ) :=

∑m+n
i=1 prLκ

(Fi(vi))∑m+n
i=1 (

∑
k∈Lκ

Fik(vi) )
, (32)

as long as
∑m+n

i=1 (
∑

k∈Lκ
Fik(vi) ) ̸= 0, and otherwise by Ξκ((vi)

m+n
i=1 ) := ∆κ for each (vi)

m+n
i=1 . (We use

the notation prLκ
for the projection onto subspace RLκ of Rℓ for each κ = 1, . . . , λ.) Note that the right

hand side of Eq. (32) is always an element of ∆κ when
∑m+n

i=1

(∑
k∈Lκ

Fik(vi)
)
̸= 0. It is routine to check

that Θ and Ξ are non-empty closed convex valued correspondence with a closed graph. In particular, Ξ

has a closed graph since the right hand side of Eq. (32) is continuous when
∑m+n

i=1

(∑
k∈Lκ

Fik(vi)
)
̸= 0.

20 We denote the solution set by ξti (p, s) instead of ξ
t1(t)
i (p, s) for notational simplicity.
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Now, the product of the mappings Φ and Ψ,

Φ×Ψ : ∆×
( λ∏
κ=1

∆κ
)
× (Ωt1(t))m × (Ωt)n → ∆×

( λ∏
κ=1

∆κ
)
× (Ωt1(t))m × (Ωt)n, (33)

is a non-empty closed convex valued correspondence with a closed graph. By Kakutani’s fixed point

theorem, Φ×Ψ has a fixed point ( pt, st, (xt
i, v

t
i , z

t
i)

m
i=1, (y

t
j , v

t
j , z

t
j)

n
j=1 ) for any t > 1.

Relationship to the Original Problem and Limit Argument: In this part, we show that

the fixed point we obtained above is an equilibrium point of our original model for some number

t > 1. Take number t > 1 sufficiently large so that the bounded attainable sets, X̃i ⊂ Rℓ and

Ỹj ⊂ Rℓ, to be subsets of the interiors of [−t1(t), t1(t)]
ℓ and [−t, t]ℓ, respectively. Take a fixed point

( pt, st, (xt
i, v

t
i , z

t
i)

m
i=1, (y

t
j , v

t
j , z

t
j)

n
j=1 ) we obtained above.

First, we show that (22’) holds with equality, i.e., for all i = 1, . . . ,m, we have

pt · zt−i = pt · zt+i +

n∑
j=1

θijπ
t
j(p

t, st). (34)

Indeed, if we assume pt ·zt−i < pt ·zt+i +
∑n

j=1 θijπ
t
j(p

t, st) for some i = 1, . . . ,m, we have a contradiction

to the consumer’s utility maximization. More precisely, we have three cases; zt−i ̸= (t1(t), . . . , t1(t)),

zt−i = (t1(t), . . . , t1(t)) and zt+i ̸= (0, . . . , 0), and, zt−i = (t1(t), . . . , t1(t)) and zt+i = (0, . . . , 0). For

the first case, since consumer’s utility function is strictly monotone, we can make a preferable choice

(x̂i, v
t
i , ẑi) by purchasing more in some market κ and consumes more. For the second case, also, we

can make a preferable choice (x̂i, v̂i, ẑi) by selling less in some market κ by using condition (C3) of the

standardizing technology Fi and consumes more. For the third case, we have

pt · (t1(t), . . . , t1(t)) = pt · zt−i < pt · zt+i +

n∑
j=1

θijπ
t
j(p

t, st) =

n∑
j=1

θijπ
t
j(p

t, st)

and this implies t1(t) <
∑n

j=1 π
t
j(p

t, st) since pt1 + · · ·+ ptλ = 1 and θij ≦ 1 for all j = 1, . . . , n. However,

this inequality contradicts to the definition (29) of t1(t) and the assumption that t > 1.

Therefore, from condition (34) and equalities πt
j(p

t, st) = pt · ztj for all j = 1, . . . , n, it is clear that we

have Walras’ Law; pt · (
∑n+m

i=1 zti) = 0. Then, by the definition of Θ, we also have

q · (
m+n∑
i=1

zti) ≧ pt · (
m+n∑
i=1

zti) = 0 for all q ∈ ∆.
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Hnece, for each κ = 1, . . . , λ, the κ-th coordinates of (
∑m+n

i=1 zti) must satisfy that

m+n∑
i=1

ztiκ ≧ 0 (35)

and
m+n∑
i=1

ztiκ > 0 if and only if ptκ = 0. (36)

Here, we note that the real state ((xt
i)

m
i=1, (y

t
j)

n
j=1) of the fixed point satisfies

m∑
i=1

xt
i ≦

n∑
j=1

ytj +

m∑
i=1

ωi, (37)

i.e., xt
i and ytj are in the bounded attainable sets X̃i and Ỹj , respectively. Indeed, for each κ = 1, . . . , λ

such that
∑m+n

i=1 zt+κ > 0 and each k ∈ Lκ, we have the following inequalities:

m∑
i=1

(ωik − xt
ik) +

n∑
j=1

ytjk

(17′),(21′)

≧
m+n∑
i=1

vtik −
m+n∑
i=1

zt−κ stκk

(32)
=

m+n∑
i=1

vtik −
m+n∑
i=1

zt−κ

∑m+n
i=1 Fik(v

t
i)∑m+n

i=1

∑
k′∈Lκ

Fik′(vti)

(35)

≧
m+n∑
i=1

vtik −
m+n∑
i=1

zt+κ

∑m+n
i=1 Fik(v

t
i)∑m+n

i=1

∑
k′∈Lκ

Fik′(vti)

(16′),(20′)

≧
m+n∑
i=1

vtik −
m+n∑
i=1

zt+κ

∑m+n
i=1 Fik(v

t
i)∑m+n

i=1 zt+κ

=
m+n∑
i=1

vtik −
m+n∑
i=1

Fik(v
t
i).

Hence, from condition (C4), we have (37).21 Also, note that the attainability condition (37) implies that

the relaxed constraint (21’) holds with equality, i.e., for all i = 1, . . . ,m, we have

xt
i + vti = ωi + zt−i1 st1 + · · ·+ zt−iλ stλ (38)

because consumers’ utility functions are strictly monotone and xt
i ̸= (t1(t), . . . , t1(t)) since we took

number t1(t) > 1 sufficiently large so that the bounded attainable set X̃i ⊂ Rℓ to be a subset of the

interior of [−t1(t), t1(t)]
ℓ.

Furthermore, we have pt ≫ 0. Indeed, if we assume that there is some market κ such that ptκ = 0

21 The case
∑m+n

i=1 zt+κ = 0 is obvious since (C3) implies
∑m+n

i=1 vtik = 0 for all k ∈ Lκ and (35) implies
∑m+n

i=1 zt−κ = 0.
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then, we have a contradiction. More precisely, we have three cases; for some consumer i = 1, . . . ,m we

have zt−iκ < t1(t), for some consumer i = 1, . . . ,m we have zt+iκ > 0, and for all consumers i = 1, . . . ,m

we have zt−iκ = t1(t) and zt+iκ = 0. For the former two cases, we can make preferable choices for consumer

i in similar ways to the above arguments that we used to show equality (34). For the third case, because∑
k∈Lκ

Fi(v
t
i) = zt+iκ = 0 implies vtik = 0 for all k ∈ Lκ by (C3) and we have equality (38), we also have

that for all k ∈ Lκ,
m∑
i=1

xt
ik =

m∑
i=1

(zt−iκ stκk + ωik) = mt1(t)s
tκ
k +

m∑
i=1

ωik.

However, because stκ ∈ ∆κ and we can take t1(t) > 1 arbitrarily large, so it contradicts to the fact that,

for all i = 1, . . . ,m, xt
i belongs to attainable set X̃i, which is bounded in Rℓ.

Therefore, because condition (36) and pt ≫ 0 imply
∑m+n

i=1 zti = 0, we have the market clearing

condition. Moreover, pt ≫ 0 implies that inequality constraints (16’), (17’), and (20’) in the modified

problems actually hold with equalities since if not, a contradiction to the utility or profit maximization

clearly follows. Hence, these equalities, together with (34) and (38), mean that all of our modified

inequality constraints actually hold with equalities for sufficiently large t > 1.

Thus far, we see that the state
(
pt, st, (xt

i, v
t
i , z

t
i)

m
i=1, (y

t
j , v

t
j , z

t
j)

n
j=1

)
satisfies (16), (17), (20), (21),

(22), (23), and (24). We call
(
pt, st, (xt

i, v
t
i , z

t
i)

m
i=1, (y

t
j , v

t
j , z

t
j)

n
j=1

)
a t-equilibrium state. Since we take

t > 1 sufficiently large so that the bounded attainable sets to be subsets of the interior of [−t, t]ℓ or

[−t1(t), t1(t)]
ℓ, all xt

i or ytj are interior points of [−t, t]ℓ or [−t1(t), t1(t)]
ℓ. Therefore, the t-equilibrium

state
(
pt, st, (xt

i, v
t
i , z

t
i)

m
i=1, (y

t
j , v

t
j , z

t
j)

n
j=1

)
is not an equilibrium of the original economy E only when

(vti , z
t
i) is a boundary point of [0, t]ℓ × [−t, t]λ or [0, t1(t)]

ℓ × [−t1(t), t1(t)]
λ for some i = 1, . . . ,m+ n.22

Suppose that, for some i = 1, . . . ,m+n, (vti , z
t
i) is a boundary point of [0, t]ℓ×[−t, t]λ for all t > 1. If some

market κ consists of a single real commodity k, Lκ = {k}, then restriction (20) requires that vtik = zt+iκ by

(C5), and sκk = 1 and restriction (21) require that xt
ik + vtik = ωik + zt−iκ . (The same argument is relevant

for producers.) Therefore, we can also suppose that (vtik, z
t
κ) is bounded for such singleton markets Lκ

without loss of generality, since we can decrease the amounts of (vtik, z
t−
iκ ) = (zt+iκ , zt−iκ ) without any

change of utility value (and/or profit value) of i or any harm in conditions we get so far. This implies

22 If the domain of Fi is compact for all i = 1, . . . ,m+n then (vi, zi) (i = 1, . . . , n+m) are in a fixed bounded area by

the continuity of Fi (i = 1, . . . , n+m). Hence, in such cases, the proof is completed here. As we mentioned before,

the proof of Theorem 2 corresponds to this case.
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that ∥
∑

k∈Lκ
Fik(v

t
i)∥ → ∞ as t → ∞ for some κ ∈ {1, . . . , λ} such that ♯Lκ ≧ 2. Note first that, for all

i = 1, . . . ,m+ n and all κ, κ′ = 1, . . . , λ, we have

m∑
i=1

( ∑
k∈Lκ∪Lκ′

(ωik − xt
ik)

)
+

n∑
j=1

( ∑
k∈Lκ∪Lκ′

ytik
)
≧

∑
k∈Lκ∪Lκ′

vtik − (zt+iκ + zt+iκ′) (39)

by considering conditions (16), (17), (20), (21), (23), (24), and (C4). Moreover, the right hand

side of Eq. (39) is
∑

k∈Lκ∪Lκ′ v
t
ik −

∑
k∈Lκ∪Lκ′ Fik(v

t
i), from conditions (16) and (20). However, if

∥
∑

k∈Lκ
Fik(v

t
i)∥ → ∞ as t → ∞ for some κ ∈ {1, . . . , λ} such that ♯Lκ ≧ 2, then condition (C5)

requires that there exists some Lκ′ such that
∑

k∈Lκ∪Lκ′ v
t
ik −

∑
k∈Lκ∪Lκ′ Fik(v

t
i) → ∞ as t → ∞.

This implies that the right-hand side and hence the left-hand side of Eq. (39) tends to ∞ as t → ∞,

contradicting the fact that each of xt
i and ytj is in a bounded area in Rℓ. Thus, we complete the proof

of our main theorem.
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