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Abstract

We develop a real options model for evaluating and optimizing an R&D project. The

model can capture key features of R&D, including research duration, growth opportunity,

debt financing, and uncertainty of technological, demand market, and rival preemption.

Nevertheless, it is computationally tractable and thus helps practitioners to evaluate var-

ious cases of R&D investment. Further, by analyzing the model with a wide range of

parameter values, we unveil the interactions of key R&D features. The effect of duration

on investment depends on whether there is a possibility of rival preemption. Higher uncer-

tainty of research duration speeds up project inception in the presence of rival preemption.

Higher uncertainty of technological success, combined with a growth opportunity embed-

ded in the R&D project, accelerates investment. Debt financing can greatly decrease time

lag between the first stage project and growth project. These results are consistent with

the empirical evidence.
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1 Introduction

Research and development (R&D) investment does not only bring the progress of society

via innovation and spillover effects but also is a key determinant of a firm’s long-term

growth. It is critical for a firm’s management to accurately evaluate and execute an R&D

project. This paper contributes both theory and practice by developing a tractable model

for evaluating and optimizing R&D investment as well as unveiling interactions of several

features associated with R&D investment.

The difficulties of R&D management lie in that three types of uncertainty are in-

evitably embedded in R&D projects. The first is technological uncertainty. Technological

specifications, time schedule, and budget are planned before project initiation. However,

in many cases, the outcome does not go successfully as planned (e.g. Raz, Shenhar, and

Dvir (2002)). The risks of technological success, research duration, and investment costs

are called technological uncertainty. The second is market uncertainty. This stands for

uncertain cash flow, which a newly developed technology will generate. The dynamics of

cash flow is not deterministic but affected by product-specific and macroeconomic shocks

on demand in the product market. The third is a risk of rival preemption. For instance,

if a competitor takes out a patent for a technology first, an R&D project concerning the

technology will be aborted.

In practice, it is challenging to evaluate an R&D project and make a managerial

decision of R&D involving these risks (e.g. Raz, Shenhar, and Dvir (2002)). Although

the Net Present Value (NPV) method remains dominant for project valuation in the real

world, there is an observed growing trend that the real options method1 is adopted as

a complement (e.g. Hartmann and Hassan (2006) and Baker, Dutta, and Saadi (2011)).

Without doubt, the academic literature argues that the real options methodology adds

value to project valuation involving high uncertainty and managerial flexibility, such as

R&D projects. There have been a lot of case studies that apply the real options method to

R&D project valuation (e.g., Perlitz, Peske, and Schrank (1999), Loch and Bode-Greuel

(2001), Lee and Paxson (2001), and Cassimon, Backer, Engelenc, Wouwee, and Yordanovf

(2011)).

Instead of examining a case study for a specific company or project, this paper develops

a generic and tractable model of R&D investment so that one can analyze various cases

of R&D investment with it. We extend the framework of American compound option as

follows. Consider a firm that has the timing option to initiate an R&D project by paying

a sunk cost. The project will take time to complete, and after completion, the developed

technology will generate cash flow and a growth opportunity. When the firm exercises

the growth option by paying a sunk cost, it will increase cash flow from the technology.

1The real options method is no longer a new concept because it has already been developed for more

than thirty years. For details, we recommend a recent textbook Guthrie (2009) to both academicians and

practitioners.
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We consider this sort of compound option model, because growth opportunities, such as

expanding production, starting a license business, and applying the new technology to

other products, are frequently associated with R&D investment (e.g., Loch and Bode-

Greuel (2001), Ho, Tjahjapranata, and Yap (2006), and Cassimon, Backer, Engelenc,

Wouwee, and Yordanovf (2011)).

Furthermore, our model takes into consideration the three types of uncertainty, namely,

technological, market, and rival preemption uncertainty. The level of technological success

that influences cash flow, the lag between project inception and completion (henceforth

research duration), and total costs are not deterministic but random, and the firm knows

only their prior distributions. These technological risks are specific of R&D project valua-

tion, but the existent real options models miss any of the three points. We do not propose

any new setup with regard to market uncertainty. Instead, based on the standard litera-

ture, we assume that the dynamics of cash flow from the technology follows a stochastic

process. We assume that the project value is potentially eliminated by rival preemption

before project completion. The rival preemption occurs randomly, and the firm knows

only its distribution. In other words, the firm does not possess the full information of its

rival firms’ R&D progress. We also extend the base model to a case with debt financing

because an increasing number of papers, both theoretically and empirically, have pointed

out the significance of financing sources.2

Before elaborating on the results, we differentiate our model from the most related and

dominant models by Bar-Ilan and Strange (1998) and Weeds (2002). The model by Bar-

Ilan and Strange (1998), like our model, can capture the effects of a growth opportunity

and investment lag, but it does not include uncertainty of technological success, total costs,

duration, and rival preemption. Weeds (2002) proposed a model with uncertain research

duration and rival preemption, but the model does not include a growth opportunity and

uncertainty of technological success and total costs. In addition, her assumptions of full

information of rival firms and Poisson distributed duration are not very practical. We also

note that the above models, unlike our model, do not include a case with debt financing.

Thus, our model better helps evaluating an R&D project involving the three types of

uncertainty compared to the previous models.

Our analysis of the model yields several empirical implications. First, we unveil interac-

tions between research duration and rival preemption. In the absence of rival preemption,

the firm tends to accelerate investment in the R&D project with longer duration because

market demand at completion time is expected to be higher. This result is known in

investment timing models with investment lags (e.g., Bar-Ilan and Strange (1996) and

Bar-Ilan and Strange (1998)). Notably, we show that a slight possibility of rival pre-

emption changes the duration effect. Longer duration increases the possibility of rival

2An incomplete list includes Mauer and Sarkar (2005), Sundaresan and Wang (2007), and Nishihara and

Shibata (2013) in the real options studies, and Ho, Tjahjapranata, and Yap (2006), Brown, Fazzari, and Petersen

(2009), and Hall and Lerner (2009) in the empirical studies of R&D.
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preemption and decreases the project value. As this negative effect is much stronger than

the positive effect, the effect of duration on investment becomes negative in the presence

of rival preemption.

Next, we show that higher uncertainty of research duration and technological suc-

cess drives the firm to launch the R&D project earlier. This leads to the lesson that

uncertainty-investment sensitivity depends on the type of uncertainty. Indeed, the effect

of market uncertainty on investment timing tends to be negative because higher market

uncertainty increases the incentive for the firm to delay investment and receive additional

information. On the other hand, technological uncertainty will be dissolved, not by wait-

ing but by finishing the project. The R&D project value is likely to be convex with respect

to research duration and levels of technological success. The former is caused primarily

by the possibility of rival preemption, whereas the latter stems mainly from the growth

option embedded in the R&D project. Because of this convexity, the higher uncertainty

of research duration and technological success increases the project value, and hence, en-

courages investment in the R&D project. Our result is novel and can potentially account

for empirical findings by Driver, Temple, and Urga (2006). They found that industries

with high R&D intensity tend to indicate a positive effect of uncertainty on investment.

As for debt financing, we have empirical implications as follows. Access to debt financ-

ing for the growth project increases the project value and accelerates investment. This

is straightforward and consistent with previous results in the literature (e.g., Hennessy

(2004), Mauer and Sarkar (2005), and Sundaresan and Wang (2007)). More interest-

ingly, the effects of debt financing on the first stage project are weaker than that on

the growth project, which implies that the firm can reap the growth opportunity from

the R&D project earlier by debt financing. A large number of empirical studies showed

that large firms have advantages over small firms in profits from R&D projects (e.g., Ho,

Tjahjapranata, and Yap (2006)). Our result may be related to the empirical finding be-

cause larger firms, due to less financing costs, are more likely to take the optimal capital

structure.

The remainder of this paper is organized as follows. Section 2 illustrates the model

setup and solutions. In Section 3, we exercise numerical analysis and provide empirical

implications. In particular, we focus on interactions between research duration and rival

preemption in Section 3.2, interactions between the growth option and uncertainty of

technological success in Section 3.3, and effects of leverage in Section 3.4. Section 4

briefly summarizes the paper.
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2 The model

2.1 Setup

We consider a firm that has an option to initiate an R&D project by paying the sunk cost

I0. The project will take T1 years until completion. We call T1 research duration. After

completion, the firm will receive an instantaneous cash flow A1X(t) at time t.3 Further-

more, we assume that the firm has a growth opportunity, such as expanding production,

starting a license business, and applying the new technology to other products (e.g., Loch

and Bode-Greuel (2001), Ho, Tjahjapranata, and Yap (2006), and Cassimon, Backer, En-

gelenc, Wouwee, and Yordanovf (2011)). After the firm exercises the growth option by

paying the sunk cost I2, it will receive an increased cash flow A1A2X(t).

Our model includes three types of uncertainty. First at all, we represent market uncer-

tainty by the cash flow X(t), which dynamically changes by project-specific and macroe-

conomic shocks on demand in the product market. Following the standard literature, we

assume that X(t) follows a geometric Brownian motion:

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x,

where B(t) denotes the standard Brownian motion defined in a probability space (Ω,F ,P)
and µ, σ(> 0) and x(> 0) are constants. For convergence, we assume that r > µ, where

a positive constant r is the discount rate. For the economic rationale behind these as-

sumptions, refer to standard textbooks such as Dixit and Pindyck (1994) and Guthrie

(2009).

Second, we represent technological uncertainty by a random vector (A1, T1, I1). Tech-

nical specifications, time schedule, and total costs, which are planned and estimated ex

ante, may not be accomplished ex post (e.g., Raz, Shenhar, and Dvir (2002)). To deal

with the technological risks, we consider the level of technological success, A1, and re-

search duration T1, as random variables. The firm will observe the realized value of A1 at

completion time. At the same time, the firm will observe an extra cost I1. For tractabil-

ity, we assume that (A1, T1, I1) are independent of X(t), which means that technological

and market risks are irrelevant. There is less technological uncertainty for the growth

project, and then, we assume that A2(> 1) and I2 for the growth investment are positive

constants.

The last uncertainty lies in rival preemption. The project value will be greatly de-

stroyed when a competitor completes the similar product first, especially in competitions

for patents and standardizations (e.g., Weeds (2002)). We assume that the firm does

not have information of the R&D progress of rival firms. Instead, the firm knows that

3Some papers distinguish the lag between project inception and completion (the gestation lag) and project

completion and commercial application (the application lag) (e.g., Pakes and Schankerman (1984)). For sim-

plicity, we assume that the total lag is equal to T1.
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rival preemption may occur following an exponential distribution (Poisson arrival) with

intensity λ, where λ is a positive constant. Technically, until project completion, the cash

flow X(t) will be potentially killed at an instantaneous rate λdt.

The model differs from the compound real options model by Bar-Ilan and Strange

(1998) in the sense that we incorporate technological uncertainty (A1, T1, I1) and rival

preemption λdt.4 Weeds (2002) also examined rival preemption and uncertainty of re-

search duration. The model, however, does not include technological uncertainty (A1, I1)

and a growth opportunity.5 The model adopts a game-theoretic framework with full infor-

mation and assumes that research duration follows an exponential distribution. Although

the setup is sufficient to provide economic implications, it seems almost impossible to

apply the model to a real-world case. Actually, no firm wishes to inform its R&D progress

to competitors, and no one plans Poisson distributed time schedule. In this paper, we

model using a Poisson arrival not research duration, which can be estimated to a degree

but a rival’s R&D success, which will be an unexpected event.

2.2 Base problem

In this subsection, we provide technical instructions for how to evaluate and optimize the

R&D project with the three types of uncertainty. We formulate the problem of finding the

project value and the optimal policy as a two stage optimal stopping problem. Similar to

Bar-Ilan and Strange (1998), we need to solve the problem backward. Suppose that the

investment time T ∗, the level of technological success, A1, research duration T1, and extra

cost I1 in the first stage project are all known. At time s, which is later than completion

time T ∗ + T1, the problem of finding the optimal investment time T ∗∗ for the growth

project is expressed as the following optimal stopping problem:

V2(X(s), A1) = sup
T ∗∗≥s

EX(s)[

∫ T ∗∗

s
e−r(t−s)(1− τ)A1X(t)︸ ︷︷ ︸

cash flow before growth investment

dt

+

∫ ∞

T ∗∗
e−r(t−s)(1− τ)A1A2X(t)︸ ︷︷ ︸
cash flow after growth investment

dt− e−r(T ∗∗−s)I2], (1)

where the investment time T ∗∗ is optimized over all stopping times later than s. The no-

tation EX(s)[·] denotes the expectation conditional on X(s), and for later use we introduce

the corporate tax rate τ , which is a positive constant. The value function V2(X(s), A1)

in the problem (3) stands for the project value at time s between completion of the first

stage and initiation of the growth project.

4As a minor difference, Bar-Ilan and Strange (1998) does not consider profits before completion of the

second stage. They consider duration of the second stage investment, but it is not essential because there is no

investment after completion of the second stage.
5Nishihara and Ohyama (2008) extended Weeds (2002) to a case involving two alternative technologies, but

the model, like Weeds (2002), does not include either technological uncertainty or a growth opportunity.
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Because the firm’s expected profits after the investment time T ∗∗ are equal to

EX(T ∗∗)[

∫ ∞

T ∗∗
e−r(t−T ∗∗)(1− τ)A1A2X(t)dt] =

(1− τ)A1A2

r − µ
X(T ∗∗), (2)

we can rewrite (3) as

V2(X(s), A1) =
(1− τ)A1

r − µ
X(s)︸ ︷︷ ︸

NPV

+ U2(X(s), A1)︸ ︷︷ ︸
growth option value

, (3)

where U2(X(s), A1) is the growth option value expressed by

U2(X(s), A1)

= sup
T ∗∗≥s

EX(s)[e−r(T ∗∗−s)

(
(1− τ)A1(A2 − 1)

r − µ
X(T ∗∗)− I2

)
]

=


(
(1− τ)A1(A2 − 1)x∗∗(A1)

r − µ
− I2

)(
X(s)

x∗∗(A1)

)β

(X(s) < x∗∗(A1))

(1− τ)A1(A2 − 1)X(s)

r − µ
− I2 (X(s) ≥ x∗∗(A1)).

(4)

The investment trigger x∗∗(A1) and the positive characteristic root β are defined by

x∗∗(A1) =
β(r − µ)I2

(β − 1)(1− τ)A1(A2 − 1)
. (5)

and

β =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
(> 1), (6)

respectively. For A1 = 0 (failure of the first stage), we define x∗∗(A1) = ∞ and U2(X(s)) =

0. The firm’s optimal policy, T ∗∗ = inf{t ≥ s | X(t) ≥ x∗∗(A1)}, is called the threshold

policy, which means that the firm invests in the growth project as soon as the cash flow

X(t) hits the threshold x∗∗(A1). Note that if X(T ∗ + T1) ≥ x∗∗(A1) is satisfied, the firm

proceeds to the second stage immediately after completion of the first stage.

Next, we turn to a problem of evaluating and optimizing the first stage investment.

At this moment, the level of technological success, A1, research duration T1, and the

cost I1 are random variables, and the prior distributions of (A1, T1, I1) are known. At

time s(≥ 0), the project value is expressed as the value function of the optimal stopping

problem as follows:

V1(X(s)) = sup
T ∗≥s

EX(s)[e−(r+λ)(T ∗−s)
{
e−(r+λ)T1V2(X(T ∗ + T1), A1)− e−rT1I1 − I0

}
],

(7)

where λ is the intensity of rival preemption and V2(X(T ∗+T1), A1) is given by (3). In (7)

the expectation is taken over all random variables (X(T ∗ + T1), A1, T1, I1). The expected

total costs are I0 + E[e−rT1I1]. As (T1, I1) are independent of X(t), we can remove I1 by

regarding the estimated total costs I0 + E[e−rT1I1] as the initial cost I0. From now on,

without loss of generality, we assume that I1 = 0.
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Because the expected profits after the investment time T ∗ are equal to

U1(X(T ∗)) = EX(T ∗)[e−(r+λ)T1V2(X(T ∗ + T1), A1)], (8)

we can reduce (7) to

V1(X(s)) = sup
T ∗≥s

EX(s)[e−(r+λ)(T ∗−s)(U1(X(T ∗))− I0)]. (9)

Although we like to solve the optimal stopping problem (9), it is computationally hard.

For, the payoff function in (9), U1(·), is not analytically derived but numerically computed.

Accordingly, it is impossible to check whether U1(·) satisfies some regularity conditions,

under which the optimal stopping time exists in a class of threshold policies.

We propose the following tractable method for computing the project value and opti-

mal policy. In the first place, we restrict our attention within a class of threshold policies,

which are of the form, T ∗
x∗ = inf{t ≥ 0 | X(t) ≥ x∗}. This restriction is not very strong

because U1(·) is an increasing function. We now maximize the right-hand side of (9) by

moving threshold x∗ rather than by moving stopping time T ∗. At the initial time s = 0,

the problem of finding the project value and the optimal policy is equal to6

V1(x) = sup
x∗

Ex[e−(r+λ)T ∗
x∗ (U1(X(T ∗

x∗))− I0)]

= sup
x∗≥x

( x

x∗

)β̃
(U1(x

∗)− I0), (10)

because we have Ex[e−(r+λ)T ∗
x∗ ] = (x/x∗)β̃ and X(T ∗

x∗) = x∗ for x∗ ≥ x. The characteristic

root β̃ is defined by (6) replaced r with r + λ.

Problem (10) is more tractable than problem (9) because it is an optimization problem

of one-dimensional function. Nevertheless, in general, computing U1(·) in (10) requires

multiple integration, defined by (8), which makes problem (10) difficult to compute. When

random variables (A1, T1) have discrete distributions, (8) can be reduced to a single in-

tegral with respect to X(t), which makes problem (10) computationally tractable. We

suppose N scenarios, in which (A1, T1) take (Ai
1, T

i
1) with probability pi for i = 1, . . . , N .

Then, problem (10) is reduced to

V1(x) = sup
x∗≥x

( x

x∗

)β̃ ( N∑
i=1

piEx∗
[e−(r+λ)T i

1V2(X(T i
1), A

i
1)]− I0

)
, (11)

because (A1, T1) are independent of X(t). Problem (11) is computable so that it can help

practitioners to evaluate and optimize various cases of R&D investment. In section 3, we

will conduct numerical analysis by solving problem (11).

6To avoid unnecessary disorder, we use the same notation V1(x) in (10) as that of (9). Strictly, the project

value in (10) can be smaller than that of (9) because we restrict the firm’s policies within the threshold policies.
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2.3 Levered case

In this subsection, as a supplement, we extend the base model in Section 2.2 by allowing

a firm to take the optimal capital structure in the growth project. In practice, an initial

stage of an R&D project, involving quite high risks, is difficult to be financed by debt

issuance (e.g., Brown, Fazzari, and Petersen (2009) and Hall and Lerner (2009)). After the

success in the first stage, a firm is more likely to use debt financing for a growth project

with less risks. For instance, Ho, Tjahjapranata, and Yap (2006) empirically showed

that the firm size and financial leverage interactions influence growth opportunities from

R&D investments. We explore the effects of the capital structure on R&D investment by

supposing that the firm can optimally use debt financing for the growth project.

We build the levered setup on the dominant models by Fan and Sundaresan (2000),

Goldstein, Ju, and Leland (2001), and Sundaresan and Wang (2007). Following Fan and

Sundaresan (2000) and Sundaresan and Wang (2007), we assume that the firm will be able

to avoid costly liquidation. Indeed, equity and debt holders negotiate and reduce coupon

payments when the cash flow X(t) is lower than a critical level. The firm’s operation will

return to normal when X(t) restores beyond the critical level.

As in Section 2.2, we first consider the growth investment problem by supposing that

the investment time T ∗
L, the level of technological success, A1, and research duration T1

are all known. We denote the levered case by subscript L. The expected profits after the

second investment time T ∗∗
L becomes

(1− τ)A1A2ϕ

r − µ
X(T ∗∗

L ) (12)

in the levered case with the optimal capital structure. Note that (12) = ϕ× (2). The

multiplier ϕ, which results from debt financing, is a positive constant defined by

ϕ = 1 +
τ(1− ηα)

(1− τ(1− η))h
(> 1), (13)

where

h =

[
β(1− γ)

β − γ

]− 1
γ

(> 1) (14)

γ =
1

2
− µ

σ2
−

√(
µ

σ2
− 1

2

)2

+
2r

σ2
(< 0). (15)

Constants α ∈ (0, 1) and η ∈ [0, 1] denote the proportion of the firm value which is lost

by liquidation and the bargaining power of equity holders in the renegotiation between

equity and debt holders, respectively. For details in derivation of (12)–(15), refer to Fan

and Sundaresan (2000) and Sundaresan and Wang (2007).
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The growth option value, which corresponds to (4) in the unlevered case, becomes

U2L(X(s), A1)

= sup
T ∗∗
L ≥s

EX(s)[e−r(T ∗∗
L −s)

(
(1− τ)A1(A2ϕ− 1)

r − µ
X(T ∗∗

L )− I2

)
]

=


(
(1− τ)A1(A2ϕ− 1)x∗∗L (A1)

r − µ
− I2

)(
X(s)

x∗∗L (A1)

)β

(X(s) < x∗∗L (A1))

(1− τ)A1(A2ϕ− 1)X(s)

r − µ
− I2 (X(s) ≥ x∗∗L (A1)),

(16)

where the investment threshold x∗∗L (A1) is defined by

x∗∗L (A1) =
β(r − µ)I2

(β − 1)(1− τ)A1(A2ϕ− 1)
. (17)

Note that (17) = (A2 − 1)/(A2ϕ − 1)× (5). Because of the optimal capital structure,

the growth option becomes more valuable, and then, the growth investment takes place

earlier. Because the first stage project is executed by all-equity financing, we can perform

the same discussion as that of Section 2.2 for the first stage project by replacing U2(·)
with U2L(·). In a similar fashion to (7)–(11), we can compute the project value and the

optimal policy, and hence, we omit the description.

3 Numerical analysis and implications

3.1 Basic analysis

Our focus in this paper is not a case study of a specific R&D project. Instead, we show

numerical results for a wide range of parameter values, demonstrating several properties

of the project value and the optimal policy in a generic R&D project. We set the base

parameter values as

r = 0.08, µ = 0.06, σ = 0.2, τ = 0.15, α = 0.3, (18)

following Leland (2004) and Sarkar (2008) based on the market data. There are several

methods for estimating the market parameters and discount rate in a real options model

(e.g., using the capital asset pricing model). For instance, Chapter 3 of Guthrie (2009)

explains the details of standard calibration methods.

On the other hand, technological parameter values, such as levels of technological

success, research duration, and investment costs, can be estimated by a project team.

These values greatly differ over the project types and the industries. For example, in

a project of developing a new drug, research duration is quite long, and the probability

of technological success is quite low (Kellogg and Charnes (2000),Loch and Bode-Greuel

(2001), Hartmann and Hassan (2006)). Considering the fact that the average duration

is around 2 to 4 years in a majority of the literature (e.g., Pakes and Schankerman
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(1984)), in the base case, we assume that T1 takes a value in {2, 3, 4} with probability

1/3. We consider three levels of technological success; A1 = 0 (failure), A1 = 1 (success

as expected), and A1 = 2 (success more than expected), and we assume that A1 takes a

value in {0, 1, 2} with probability 1/3.

Following the standard literature of economics, we assume the convexity of the invest-

ment costs, i.e., 1/I0 > (A2 − 1)/I2. Note that if 1/I0 ≤ (A2 − 1)/I2, the growth option

is likely to be exercised immediately after the success of the first stage, which makes the

analysis uninteresting. For expositional purposes, we set I0 = 10, A2 = 2, and I2 = 20 in

the base case. Then, A1(A2 − 1)/I2 equals 1/20(< 1/I0) and 1/10(= 1/I0) for A1 = 1

and A1 = 2, respectively. This implies that the firm tends to postpone the growth project

when the first stage results in the average success.

[Insert Table 1 and Figure 1 here.]

Table 1 presents the project values and investment triggers in the base case; the case

with no growth option (we set A2 = 1); the case in the presence of rival preemption (we

set λ = 0.2); and the levered case (we set η = 0.5). We show the project value, V1(x),

for x = 0.2.7 Figure 1 shows the value functions V1(X(s)) (see (11)) in the cases that

correspond to Table 1.

First, we elaborate the result in the base case. The firm invests in the first stage

project as soon as the cash flow X(t) hits the investment threshold x∗ = 1.17, and the

R&D project will take T1 ∈ {2, 3, 4} years until completion. At completion time T ∗ + T1,

the firm will know the level of technological success A1 ∈ {0, 1, 2}. If the R&D project

fails (A1 = 0), the firm will not receive any cash flow and will be finished with the

project. Consider the case in which the first stage turns out to be successful. The firm

will receive cash flow A1X(t), and at the same time, it attains the growth opportunity. If

X(T ∗ + T1) is larger than x∗∗(1) = 2.46, the firm will immediately invest in the growth

project and receive increased cash flow 2A1X(t). According to our computation, due to

X(T ∗) = 1.16 < 2.46, the probability of this scenario is very low (it is approximately 0.03).

If X(T ∗+T1) takes a value in [1.23, 2.46), the growth option will be immediately exercised

only in the case of great success (A1 = 2). In the case of average success (A1 = 1), the firm

postpones the growth project until X(t) hits the investment trigger x∗∗(1) = 2.46. The

probability that X(T ∗ + T1) ∈ [1.23, 2.46) is 0.53. The last scenario is that X(T ∗ + T1)

is less than x∗∗(2) = 1.23. In this scenario, the firm delays the second stage investment

until X(t) hits either 1.23 or 2.46, depending on A1. The probability of this scenario is

0.44.

7If one considers the expected waiting time until the project initiation, in the cases with no rival preemption

it is more practical to set x sufficiently close to the investment trigger x∗. However, for the purpose of comparing

all cases with the same parameter values, we used x = 0.2. The results are qualitatively robust as long as x is

smaller than x∗ (see Figure 1).
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We now briefly explain the other cases and compare the results with those of the base

case. We can see from Figure 1 that a higher X(s) increases the gap between the base

case and the case with no growth option. This is because the value of the growth option

increases with a higher X(s). Because the project value becomes lower in the absence of

growth opportunity, the investment trigger x∗ = 1.31 is higher than that of the base case.

The result is consistent with the stylized fact that growth opportunities increase a project

value and encourages investment.

The third row in Table 1 shows the case with preemption. Table 1 and Figure 1 present

the case of λ = 0.2, which means that the expected time up to rival preemption is 5 years,

although we will show the results with varying levels of λ later in this section. Figure 1

shows that the possibility of rival preemption greatly decreases the project value, especially

for a low X(s). Despite the decreased value, the firm tries to speed up investment because

rival preemption can occur before completion of the first stage. Indeed, with λ = 0.2,

the investment trigger x∗ decreases to 0.44 from 1.16. There is no possibility of rival

preemption after completion of the first stage, and then we have the same investment

triggers as those of the base case. Accordingly, the time lag between project completion

of the first stage and the second investment is expected to be long.

We see from the last row in Table 1 that access to debt financing increases the project

value and decreases the investment triggers. These leverage effects are consistent with

previous results by Hennessy (2004), Mauer and Sarkar (2005), and Sundaresan and Wang

(2007). In the levered case, we assume that the bargaining powers of equity and debt

holders are equal, i.e., η = 0.5. The multiplier , caused by debt financing, is equal to 1.14.

We will closely explore the effects of leverage in Section 3.4.

[Insert Figure 2 here.]

Figure 2 represents the project values V1(0.2) and investment triggers x∗, x∗∗(1), and

x∗∗(2) with varying levels of λ. The other parameter values are the same as the base

case. Note that second investment triggers x∗∗(1) and x∗∗(2) do not depend on λ. We

see that V1(0.2) greatly decreases with λ. As expected from the expression (9), the graph

of V1(0.2) shows convexity. In other words, for a lower λ, the sensitivity is greater. For

instance, V1(0.2) decreases from 8.35 to 3.79 with a very small λ = 0.05. In contrast to

the monotonic decrease in V1(0.2), the investment trigger x∗ decreases until λ = 0.12,

and after this point, it increases. The possibility of rival preemption decreases the project

value, but at the same time, it increases the firm’s incentive to invest early and complete

the technology before its rivals. The non-monotonicity in x∗ results from the trade-off. For

a lower λ, the sensitivity of x∗ with respect to λ is negative because the latter dominates

the former. On the other hand, for a higher λ, the sensitivity is positive because the

former dominates the latter.

[Insert Figure 3 here.]
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Figure 3 plots the project values V1(0.2) and investment triggers x∗, x∗∗(1), and x∗∗(2)

with varying levels of the cash flow volatility σ.8 The other parameter values are set at the

base case. Similar to Chapter 5.2.A of Dixit and Pindyck (1994), we can easily prove that

U2(X(s), A1) and x∗∗(A1) (see (4) and (5)) monotonically increase with σ. We can see

from Figure 3 that V1(0.2) and x∗ also increase with σ. This result shows the robustness

of the standard theory that higher market uncertainty increases an option value and

delays the exercise of the option (e.g., Dixit and Pindyck (1994)) even if we incorporate

several characteristics of R&D investment. We also examined the comparative statics

for a wide range of parameter values, including positive λ. We found that the standard

result is robust. Relatedly, Bar-Ilan and Strange (1996) and Bar-Ilan and Strange (1998)

showed the similar effects, although their models do not include technological and rival

uncertainty.9

So far, we have explained the results that were more or less known in the prior liter-

ature. We also found several findings that have not been addressed by previous studies.

In the following subsections, we will elaborate key findings, logic behind the findings, and

empirical implications.

3.2 Interactions between research duration and rival pre-

emption

In this subsection, we reveal the effects of research duration combined with rival preemp-

tion. In the presence of rival preemption, longer duration increases the probability that

other firms will complete the same technology first. Then, we can expect some interac-

tions between research duration and rival preemption. Although Bar-Ilan and Strange

(1996) and Bar-Ilan and Strange (1998) examined the effects of duration in the absence

of rival preemption, to our knowledge, there are no papers that examine the mixed effects

of duration and rival preemption. We summarize new findings below.

[Insert Figure 4 here.]

The upper and lower panels of Figure 4 show the project values V1(0.2) and investment

triggers x∗, respectively, with varying levels of research duration T1. In order to clarify the

effects of T1, we change levels of T1 from 1 to 5, instead of taking T1 as random variables.10

In addition to the case with no rival preemption (λ = 0), the panels plot V1(0.2) and x∗ in

8For simplicity, we change σ, taking all other parameters, r and µ as constants. This means that changes in σ

have only an idiosyncratic risk component. Most of the literature, including Dixit and Pindyck (1994), presents

the comparative statics under this assumption, although some papers, including Wong (2007), examines the

comparative statics assuming the relation between µ and σ.
9Bar-Ilan and Strange (1996) highlight that the standard volatility effect does not always hold for investment

with an abandonment option in addition to investment lag.
10We have similar results for varying levels of E[T1] even if we consider T1 as a random variable.
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the cases with rival preemption (λ = 0.1, 0.2, and 0.3) so that we can see the interactions

of research duration and rival preemption. The other parameter values are set at the base

case. The investment triggers x∗∗(A1) are independent of T1 and λ and remain unchanged

from those of the base case in Table 1, and hence we omit plots of x∗∗(A1).

The upper panel of Figure 4 indicates the straightforward results that V1(0.2) mono-

tonically decreases with T1 and that the decrease is intensified with λ. That is, research

duration is more crucial to the firm as rival preemption is expected to occur earlier. As

expected from the expression (8), we find stronger convexity of a graph for a higher λ. No-

tably, the lower panel shows that the sensitivity of x∗ with respect to T1 depends greatly

on λ. In the absence of preemption x∗ monotonically decreases with T1. The firm speeds

up investment considering that X(T ∗) is expected to go up to eµT1X(T ∗) at completion

time.11 This result is well known in the previous researches such as Bar-Ilan and Strange

(1998) and Bar-Ilan and Strange (1998).

However, as seen from (8), a longer T1 decreases the project value especially when λ

is high. This decrease in the project value leads to that x∗ monotonically increases with

T1 for λ = 0.1, 0.2, and 0.3 in the lower panel of Figure 4. According to our numerical

analysis, with the slightest threat of rival preemption (λ = 0.01), the sensitivity of x∗ with

respect to T1 remains positive, while in the case with no rival preemption the sensitivity

is negative. Thus, we conclude that in the presence of rival preemption, longer duration

delays the firm’s project initiation due to the decreased project value. This result is in

sharp contrast with that of the case with no preemption.

Next, we explore the effects of uncertainty of research duration T1. Actually, research

duration can be extended from that of the initial schedule (e.g., Raz, Shenhar, and Dvir

(2002)), although previous studies do not examine the effects. In order to clarify the effects

of uncertainty of T1, we consider random variables T1 taking 1, 3, and 5 with probability

wT /2, 1−wT , and wT /2, respectively, and vary levels of weight wT .
12 The variance of T1

monotonically increases with wT , while we maintain that E[T1] = 3.

[Insert Figure 5 here.]

The upper and lower panels of Figure 5 show the project values V1(0.2) and investment

triggers x∗, respectively, with varying levels of weight wT . We exclude the graphs for λ = 0,

which require very different scales, and we show the cases of λ = 0.1, 0.2, and 0.3 in the

panels. The other parameter values are set at the base case. We can recognize from the

panels that a higher wT enhances V1(0.2) and decreases x∗. The effects become stronger

11We do not consider the case of a negative µ because a negative growth rate is not practical for an R&D

project.
12We have the same results for the base parameter value T1 ∈ {2, 3, 4}, but in order to highlight the results,

we presented the results for T1 ∈ {1, 3, 5} (of course, as the range of T1 is wider, the effects are clearer.) For

robustness, we also examined the comparative statics with respect to variance by changing the range of T1

rather than wT . The results are unchanged.
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as λ is higher. The reasoning is as follows. As explained with regard to the upper panel

of Figure 4, U1(·) is convex with respect to T1 and the convexity is stronger with a higher

λ. By Jensen’s inequality and the convexity, U1(·) increases with a higher wT , leading to

that a higher wT increases V1(0.2) and decreases x∗. The impact of wT is magnified by a

higher λ.

In consequence, we have a key result that, combined with rival preemption, uncer-

tainty of research duration plays a role in improving the project value and speeding up

investment. Our result contrasts with the standard result that greater uncertainty tends

to enhance the value of waiting and delaying investment (cf. Figure 3). Our result

regards technological uncertainty that will not be dissolved by waiting, whereas the stan-

dard volatility effect is based on market uncertainty that will be dissolved by waiting.

This difference causes the opposite effects of uncertainty. In an R&D project with high

technological uncertainty, unlike in a case with only market uncertainty, a firm possesses

incentive to dissolve technological uncertainty by accelerating investment. Our result is

consistent with the empirical evidence in Driver, Temple, and Urga (2006). They observed

positive effects of uncertainty on investment in industries with high R&D intensity.

3.3 Interactions between the growth option and uncertainty

of technological success

In this subsection, we examine the effects of uncertainty of technological success A1.

Although the real options literature have stressed the effects of market uncertainty on

investment, few papers have examined the effects of technological uncertainty on invest-

ment. Below, we reveal the effects of the variance of A1 on project value and investment

timing. We consider random variables A1 taking 0, 1, and 2 with probability wA/2, 1−wA,

and wA/2, respectively, and vary levels of weight wA. Note that the variance of A1 mono-

tonically increases with wA and E[A1] = 1 is always satisfied.

[Insert Figure 6 here.]

The upper and lower panels of Figure 6 show the project values V1(0.2) and investment

triggers x∗, respectively, with varying levels of wA. In order to examine interactions

between technological uncertainty and a growth opportunity, we plots the graphs for

different sizes of growth opportunity, i.e., A2 = 1.5, 2, 2.5, and 3. The other parameter

values are set at the base case. Note that in the case with no growth option (A2 = 1),

V1(0.2) and x∗ are 4.16 and 1.31, respectively, for all wA. The second investment triggers

x∗∗(1) and x∗∗(2) do not depend on wA; indeed, we have x∗∗(2) = 2.46, 1.23, 0.82, and

0.62 for A2 = 1.5, 2, 2.5, and 3, respectively. The investment triggers x∗∗(1) are twice as

large as x∗∗(2).

In Figure 6, we recognize that V1(0.2) monotonically increases with wA, while x∗

monotonically decreases with wA. These effects of wA become greater as A2 increases.
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The intuition behind the results is as follows. The growth option value U2(X(s), A1)

is not negative but zero even if the first stage fails. On the other hand, U2(X(s), A1)

monotonically increases with A1(> 0). Because of this convexity of the growth option

and Jensen’s inequality, a higher wA increases U2(X(s), A1). Considering the increased

value of the growth option, the firm decreases the investment trigger x∗ for a higher wA.

Accordingly, the effects of uncertainty of A1 become stronger as the size of the growth

option, A2, is larger.

We conclude that higher uncertainty of technological success improves the project value

and encourages R&D investment by enhancing the growth option value. This argument

aligns with that of compound option cases, in which greater uncertainty may speed up the

exercise by increasing the embedded option value, although it contrasts with the standard

effect of uncertainty in the real options literature. Furthermore, we highlight that the

types of uncertainty determine the sensitivity of uncertainty on investment. Similar to

uncertainty of research duration in Section 3.2, uncertainty of technological success will

never be dissolved by waiting, and hence, the firm has no incentive to delay investment

and obtain extra information. Our result is also consistent with Driver, Temple, and

Urga (2006) who empirically showed that industries with high R&D intensity tend to

have positive effects of uncertainty on investment.

On the other hand, because x∗∗(1) and x∗∗(2) are constants, a higher wA increases

the lag between completion of the first stage and initiation of the second stage project

for a fixed A1. For instance, we take a look at the probability that the firm proceeds to

the second stage immediately after completion of the first stage project. As explained

in Section 3.1, in the base case (wA = 2/3), the firm proceeds to the growth project

immediately after the success of the first stage with probability 0.03, and it proceeds

immediately to the growth project only in the case of great success with probability

0.53. For wA = 0.1, due to the increased trigger x∗ = 1.26, the probabilities go up to

0.06 and 0.6, respectively. Although one considers from this that a higher wA lengthens

the waiting time, the interpretation is not correct in terms of the prior probabilities.

Indeed, the prior probabilities that the firm invests in the second stage project right after

completion of the first stage project are 0.03 × 2/3 + 0.53 ∗ 1/3 = 0.2 for wA = 2/3

and 0.06 × 19/20 + 0.6 × 1/20 = 0.09 for wA = 0.1. The ex ante expected waiting time

also decreases with wA. Therefore, we can state that greater uncertainty of technological

success accelerates R&D investment.

3.4 Effects of leverage

Lastly, we explore the effects of the use of debt financing. Note that debt financing is

available only for the second stage project with no risks of technological failure. We

readily see from (16) and (17) that leverage increases the growth option value U2L(X(s))

and decreases the second investment trigger x∗∗L (A1). These correspond to the results
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in Sundaresan and Wang (2007). We now turn to the initial project value V1(0.2) and

investment trigger x∗.

[Insert Figure 7 here.]

The upper and lower panels of Figure 7 show the project values V1(0.2) and investment

triggers x∗, respectively, in both unlevered and levered cases with varying sizes of growth

opportunity A2. We take the size of growth opportunity A2 as the horizontal axis because

leverage influences the firm through the growth project. Naturally, the leverage effects

increase with A2. For comparison, in the lower panel, we present the second investment

triggers x∗∗(2) in addition to x∗, but we omit x∗∗(1), which is twice as high as x∗∗(2).

We can see from the upper panel of Figure 7 that V1(0.2) in the levered case is 1.16 to

1.17 times higher than that of the base case. The lower panel shows that x∗ and x∗∗(2)

in the levered case are lower than those of the base case. Thus, access of debt financing

increases the project value and accelerates investment in the R&D project. This leverage

effect is consistent with the prior literature (e.g., Hennessy (2004), Mauer and Sarkar

(2005), and Sundaresan and Wang (2007)).

We now look at the lower panel of Figure 7 more closely. We find that the impact

of leverage on x∗ is weaker than that on x∗∗(2). This is probably because debt financing

influences the growth investment directly, while it influences the first stage investment at

second hand. As a result, leverage tends to decrease the waiting period between success

of the first project and initiation of the growth project. Indeed, for A2 = 2, we have

x∗ = 1.05 > x∗∗(2) = 0.96 in the levered case, while we have x∗ = 1.16 < x∗∗(2) = 1.23

in the base case. Most of empirical studies stated that large firms have advantages over

small firms in growth opportunities from R&D investment (e.g., Ho, Tjahjapranata, and

Yap (2006)). Our result could be related to the evidence because larger firms that suffer

less financing costs are more likely to approximate the optimal capital structure.

4 Conclusion

In this paper, we developed a real options model for evaluating and optimizing an R&D

project. The model can capture the effects of various features of R&D investment such

as research duration, growth opportunity, and technological, demand market, and rival

preemption uncertainty; nevertheless, the model is computationally tractable so that it

can help real-world decision-making process of R&D investment. Further, we presented

numerical results for a wide range of parameter values and unveiled several interactions

of the key features of R&D. Below, we summarize notable results.

In the absence of rival preemption, the firm speeds up investment in a project with

longer research duration, but a slight possibility of rival preemption reverses this effect of

duration. Indeed, longer duration drives the firm to delay investment because it increases
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the possibility of rival preemption and decreases the project value. As uncertainty of

research duration and technological success of the R&D project is higher, the project

value increases and the optimal investment time is earlier. A higher possibility of rival

preemption intensifies the effects of uncertainty of duration because it strengthens the

convexity of the project value with respect to duration. On the other hand, the effects

of uncertainty of technological success are amplified by an increase in the growth option.

Access to debt financing in the growth project increases the project value and accelerates

investment, but the impact on the first stage is relatively weak. Our results can potentially

account for several empirical findings.
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Table 1: Project values and investment triggers.

V1(0.2) x∗ x∗∗(1) x∗∗(2)

Base 8.35 1.16 2.46 1.23

No growth 4.16 1.31 N/A N/A

Preemption 0.63 0.44 2.46 1.23

Leverage 9.77 1.05 1.93 0.96
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Figure 1: Value functions. The figure plots the project value functions V1(X(s)) in the base

case, the case with no growth option (A2 = 1), the case with rival preemption (λ = 0.2), and

the levered case (η = 0.5).
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Figure 2: Effects of rival preemption. This figure plots the project values V1(0.2) and investment

triggers x∗, x∗∗(1), and x∗∗(2) with varying levels of λ. The other parameter values are set at

the base case.
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Figure 3: Effects of market uncertainty. This figure plots the project values V1(0.2) and in-

vestment triggers x∗, x∗∗(1), and x∗∗(2) with varying levels of market uncertainty σ. The other

parameter values are set at the base case.
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Figure 4: Effects of research duration. The upper and lower panels plot the project values

V1(0.2) and investment triggers x∗ with varying levels of research duration T1, respectively.

The figure shows the cases of λ = 0, 0.1, 0.2, and 0.3. The other parameter values are are set

at the base case.
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Figure 5: Effects of uncertainty of research duration. The upper and lower panels plot the

project values V1(0.2) and investment triggers x∗ with varying levels of wT , respectively. The

figure shows the cases of λ = 0, 0.1, 0.2, and 0.3. The other parameter values are set at the

base case.
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Figure 6: Effects of uncertainty of technological success. The upper and lower panels plot the

project values V1(0.2) and investment triggers x∗ with varying levels of wA, respectively. The

figure shows the cases of A2 = 1.5, 2, 2.5, and 3. The other parameter values are set at the base

case.
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Figure 7: Effects of leverage. The upper and lower panels plot the project values V1(0.2) and

investment triggers x∗ and x∗∗(2), respectively, in both base and levered cases with varying

sizes of growth opportunity A2. The other parameter values are set at the base case.
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