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Abstract

The purpose of this study is to present an analytical framework for publicly optimal disaster-
preventive expenditure. We examine the optimal policy combination of tax rate, disaster-preventive
expenditure, and productive government expenditure in a neoclassical growth model, in which natu-
ral disasters occur stochastically and partially destroy existing capital. Based on this model, we can
decompose the welfardfect of raising preventive expenditure into thrékeets: the damage reduc-
tion, crowding out, and precautionarffects. By identifying these marginal benefits and costs, we
obtain the policy conditions that maximize household welfare. Furthermore, we show that optimal
prevention is increasing in disaster probability, and by using a numerical example, we show that there

is an inverse U-shaped relationship between the expected growth rate and disaster probability.
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1 Introduction

In recent years, increasing global economic damage has been caused by a growing number of natural
disasters such as earthquakes, floods, and hurricanes, as Cavallo and Noy (2011) point out. Figure
1(a) shows the worldwide trend of natural disaster occurrences and their economic damage in 1975—
2015 and Figure 1(b) shows those of the United States. In these figures, the dotted lines indicate
the regression lines of the number of natural disasters and the solid lines indicate those of economic
damage? At the total level, Figure 1(a) shows that both the number of natural disasters and economic
damage have increased over time. In Figure 1(b), we see that in the United States, natural disasters,
especially hurricanes, frequently occur, with the number of disasters and economic damage also rising
as in Figure 1(a). These figures imply that the influence of natural disasters on economic behavior has
become increasingly important, and it is necessary to consider natural disasters as an economically
crucial stochastic event. Moreover, because the requisite manner of governmental intervention is also
an economically meaningful question, we must discuss the intervention of governments to cope with
natural disasters.

Then, how can the government intervene in natural disasters? There are two measures to cope
with natural disasters: mitigation (or abatement) and adaptation. Mitigation is a method of control-
ling root generating disasters. For example, mitigation may include the reduction of CO2 emissions
and purchase of eco-friendly goods so as not to accumulate pollutants. This results in the decreased
occurrence of climate change and disasters such as abnormal meteorology and hurricanes. On the
contrary, adaptation is a method of decreasing the damage caused by disasters when they occur. Adap-
tation includes the refinement of buildings, reinforcement of disaster-resistant construction codes, and
preparation of survival food. Naturally, each method is equally important for tackling natural disas-

ters. In fact, the report of the Intergovernmental Panel on Climate Change (IPCC, 2007); “Climate

1The data for each figure are obtained from the Emergency Events Database (EM-DAT )/atntgemdat.bg Ac-
cording to the EM-DAT website, the natural disasters included in these figures satisfy at least one of the following criteria:

1. 10 or more people dead;

n

100 or more people damaged:;

w

Declaration for a state of emergency; or

»

Call for international assistance.
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Figure 1: Time trend of disaster risk

Change 2007: Synthesis Report” states as follows.

“There is high confidence that neither adaptation nor mitigation alone can avoid all
climate change impacts; however, they can complement each other and together can

significantly reduce the risks of climate change.”

Both adaptation and mitigation are required to cope with disasters; in fact, there are many repre-
sentative examples of research on mitigation and empirical studies of the damage caused by disasters.
However, there is little theoretical literature and few empirical studies of adaptation, especially from

the viewpoint of macroeconomic theory. As Figures 1(a) and 1(b) show, the occurrence of disasters



and resulting damage are increasing; therefore, it is crucial for us to focus on adaptation as well as mit-
igation. Furthermore, as IPCC s&here are many adaptation options, but there is little knowledge
about the ffects of adaptation on macroeconomic performance, such as consumption, savings, and
economic growth rates as well as other non-climate policies such as tax rates and productive govern-
ment expenditure. Thus, it is necessary to include other non-climate policies in addition to adaptation
policy and to establish thefect of adaptation expenditure on macroeconomic performance and other
policies. To treat these problems, we require a dynamic general equilibrium model with a government
and a stochastic disaster shock.

Therefore, we construct such a macroeconomic model in which disasters destroy the existing capi-
tal stock stochastically and in which the government implements adaptive expenditure and productive
expenditure. We consider productive government expenditure, following Barro (1990), as well as
adaptive expenditure in order to establish tffea of adaptation on the other non-climate policies.
Hereafter, for apposition we use the word “prevention” instead of “adaptation.” In this model, a Pois-
son stochastic disaster shock is adopted, that is, disasters occur at a certain constant probability in
each period. In the model, we assume that households cannot diversify disaster risks through disaster
insurance? and by adopting a constant relative risk aversion (CRRA) instantaneous utility function,
we can take account of household behavior toward risk. The benevolent government implements its
policy by levying taxes on households. There are two policy alternatives in this model. disaster-
preventive expenditure and productive government expenditure. Since disaster prevention has the
properties of public goods, the government finances disaster -preventive expenditure, which allows it

to reduce the damage to physical capital caused by disasters. On the contrary, productive government

2In addition, the IPCC makes the following two statements.

“A wide array of adaptation options is available, but more extensive adaptation than is currently occurring
is required to reduce vulnerability to climate change. There are barriers, limits and costs, which are not fully
understood.”

“In several sectors, climate response options can be implemented to realise synergies and avoid conflicts
with other dimensions of sustainable development. Decisions about macroeconomic and other non-climate
policies can significantlyféect emissions, adaptive capacity and vulnerability.”

3According to data provided by the Munich Reinsurance Company, only about 25 % of the economic losses of the 10
costliest natural disasters in 1980 —2015 (as an aside, eight of these disasters occurred after 2004) was insured. Indeed,
even when we choose the top 10 natural disasters ordered by insured loss, only 38 % of economic losses was insured.
These figures imply that disaster insurance market is still developing and that the assumption of no disaster insurance
market is justified. These data are available at hftpa/w.munichre.contouchnaturalhazarderynatcatservigannual-
statisticgindex.html.



expenditure increases the productivity of final goods.

Based on this model, we can decompose the welfieeteof raising preventive expenditure into
the following three fects: the damage reduction, crowding out, and precautiorfbgygte. First,
the damage reductionffect is the positive welfarefiect in which higher preventive expenditure
increases a household’s expected disposable total income by reducing the damage caused by disasters,
thereby raising the household’s consumption and savings. Second, the crowdifigclisecaused
because higher preventive expenditure requires productive government expenditure to decrease and
the tax rate to increase to finance it. This decreases the household’s consumption and savings and
has a negative impact on its welfare. Finally, the precautionfiecteis related to the household’s
risk averse behavior. If the household is relatively risk averse and there is no disaster insurance
market, it saves more in the case of natural disasters. Such savings are called precautionary savings.
Aside from the decrease in savings because of the reduction in income from the damage caused by
disasters, the saving level under disaster risk is higher than that under no disaster risk. On the contrary,
higher preventive expenditure can reduce the household’s precautionary savings through a decrease in
disaster risk. Since welfare under no disaster risk is higher than that under disaster risk, a decrease in
precautionary savings through higher preventive expenditure improves the household’s welfare. This
effect is generated since we adopt CRRA utility rather than logarithmic utility and there is no disaster
insurance, and is one of the interesting implications obtained from this model. The government must
choose the optimal policy by equalizing thegkeets, and we can obtain the optimal policy conditions
in that they maximize the household’s intertemporal utility. Furthermore, we can show the existence
of the optimal policy under some assumptions.

From the comparative statics of optimal prevention with respect to disaster probability, we can ob-
tain two interesting results. One is that in addition to the diréeiot, the precautionanyfiect causes
the optimal preventive expenditure to rise as disaster probability increases. This is because higher
disaster probability shifts household consumption to savings in case disaster occurs, and it is optimal
for the government to invest in disaster-preventive expenditure in order to encourage households to
reallocate their savings to consumption. Thifeet results from the precautionary savings motive,

which cannot be captured by a static model or a dynamic model with an instantaneous log-utility



function. The other interesting result is that although the crowding Bettehas a negative impact

on the increase in preventive expenditure in response to disaster risk since higher disaster probability
reduces household expected intertemporal income and makes the crowdiffpoubkepreventive
expenditure severe, this negatiféeet never dominates the other two positivieets.

Further, we can decompose tHEeet of an increase in disaster probability on the expected growth
rate into five channels: two positivefiects and three negativefects. As disaster probability rises, (i)
the expected disaster loss decreases since prevention increases and (ii) a household’s saving increases
owing to the precautionary savings motive; hence, the economic growth rate increases. By contrast,
() the expected disaster loss increases since disaster probability rises, (ii) the crowdifigctut e
increases to finance preventive expenditure, and (iii) precautionary savings decrease since prevention
increases, which results in a decrease in the economic growth rate. Thus, the dierhikeam-
biguous. In a numerical example, we obtain an inverse U-shaped relationship between the expected
growth rate and disaster probability.

The remainder of this paper is organized as follows. In Section 2, the related literature is in-
troduced. In Section 3, we describe the behavior of each component of this economy: a household
that consists of a worker and investor, a firm, a government, and a disaster shock. In Section 4, we
solve the investor’s and the government'’s intertemporal utility maximization problems and describe
the model’s equilibrium. In Section 5, we show the existence of the optimal policy and interpret its
conditions. In addition, we conduct comparative statics of the optimal preventive expenditure with
respect to disaster probability. Furthermore, we obtain the expected economic growth rate and calcu-
late its value using a numerical example, by changing disaster probability. Section 6 summarizes the

study.

2 Related literature

As mentioned in the Introduction, theoretical studies on adaptation are scarce, especially optimal
disaster prevention, but some do exist. An early study of reaction to natural disasters is Lewis and
Nickerson (1989), which considers private protection under deterministic disaster damage. With re-

gard to studies of adaptation in a stochastic environment in which the damage caused by disasters is



uncertain, Kane and Shogren (2000), Anbarci et al. (2005), and Cohen and Werker (2008) construct
static models. The first study analyzes adaptation and mitigation simultaneously given a disaster oc-
currence probability distribution and the last two studies focus on optimal disaster prevention given a
certain disaster probability. In Anbarci et al. (2005), when an earthquake occurs, the agent may die
and disaster -preventive expenditure can decrease mortality. Cohen and Werker (2008) study the dif-
ference between prevention and reconstruction and show that moral hazard exists from reconstruction.
With regard to a dynamic model with adaptation policy, to the best of my knowledge, Bretschger and
Valente (2011), De Zeeuw and Zemel (2012), Brechet et al. (2013), and Tsur and Withagen (2013)
construct such a model. De Zeeuw and Zemel (2012) and Tsur and Withagen (2013) study the dy-
namics of adaptation (the former authors also study mitigation) under a stochastic once-and-for-all
disaster (or catastrophe). In such a setting, unlike our setting in which natural disasters may occur
in each period, a maximum principle can be used and the calculation becomes easier. Brechet et al.
(2013) study the dynamics of adaptation and mitigation with a stock of pollutants rather than stochas-
tic climate change and so do Bretschger and Valente (2011). In contrast, Rietz (1988), Barro (2009),
Gourio (2012), and Ikefuji and Horii (2012) construct a dynamic model that includes natural disas-
ters as a stochastic event. The first three studies concentrate on asset pricing, especially on solving
a risk-premium puzzle, and the last study obtains an optimal carbon tax, such that it maximizes the
economic growth rate under a full-coverable disaster shock. However, their motives are not to obtain
optimal prevention, and hence, these terms do not appear in their model. If we regard preventive ex-
penditure as a maintenance cost, which is a similar idea in that both can decrease the depreciation rate
of the capital stock, then some studies exist on optimal levels of maintenance, such as Rioja (2003)
and Kalaitzidakis and Kalyvitis (2004). Two importantférences between our study and theirs are

as follows. First, we take account of the Poisson process of disaster occurrence, and hence, our model
can consider household behavior toward uncertainty. Second, we consider affraetveen pre-

ventive and productive government expenditure, unlike these studies. Neither of these studies treat
such problems. A recent study that is close to ours is Barro (2015). In his model, which is similar
to Barro (2009), the damage caused by disasters occurs stochastically, and he considers an optimal

consumptioysavings problem with utility maximizing environmental protection, which decreases the



probability of a natural disaster occurring. Th&eience between Barro’s study and ours is that his
model adopts a Lucas-tree asset pricing model with an Epstein-Zin-Weil utility function, and hence,
the (intrinsic) economic growth rate is exogenous. In our model, on the contrary, the economic growth

rate is also endogenous.

3 The environment

3.1 A household

This model is characterized by discrete time and a closed economy. In this economy, there are two
types of infinitely-lived households, which each comprise a worker or an investor. The number of
workers is normalized to one and that of investors is also one. They have the same utility functions
and discount factors. However, their behavior and income #iereint. A worker supplies one unit of

labor inelastically and earns wagefrom a firm. We assume that the worker consumes all ghkis
income after paying tax (i.e., the worker does not sat&)n the contrary, an investor earns income

by selling higher capital remaining from the previous period. The price of capital is denoted by
which is equivalent to the net interest rate. Here, we assume that the investor’s capital is held in the
form of machinery, and hence, there is a risk that some ghéiscapital is damaged by a natural
disaster.®> In addition, we assume that there is no disaster insurance market to compensate for the
investor’'s damaged machinery, that is, disaster risk cannot be pooled and divetshiedefore, the
investor must respond to disaster risk by self-insurance or an adjustment of savings. In this setting,

the consumption of workeg, is derived as
Cwt = (1 — o)W, (1)

wherer is the tax rate for both the worker and the investor in petidd

4This setting enables us to obtain closed-form consumption and savings functions under a general equilibrium model
with a CRRA utility function. Such a setting is assumed in some studies on optimal tax. The best-known study that adopts
this setting is Judd (1985).

5In reality, an investor’s savings are held in monetary assets, which are not damaged by disasters, and a firm purchases
machinery by borrowing savings from the investor before disaster risk is realized. Hence, the agent who faces uncertainty
is not the investor but the firm. However, with regard to our calculation, this setting is essentially equivalent to the setting
we use in this model. Therefore, we adopt the model described in the text.

6This assumption results from the statement presented in footnote 3. However, we consider how the existence of a
competitive disaster insurance mark&eats an investor’s behavior in Subsection 5.4.

"It may be assumed that the tax rate for the worker and investor should be separated. However, since one of the tax
rates is represented by the linear combination of the other tax rate at the optimal policy, (i.e., the tax rate for the worker is a



The investor’s problem is somewhat cumbersome./hHdispurpose is to maximize Hier ex-

pected utility under a budget constraint. The expected utility for the investor in period O is given

by

1-y
Cit

U(cn) = Bo ) B 2)
t=0

1-y°
wherecy; is the investor's consumption in perigdgs € (0,1) indicates a discount factor, afii
represents an expectation operator in period 0. The reason why an expectation operator exists in (2)
is that we take account of natural disasters that occur stochastically. An instantaneous utility function
is characterized by a CRRA utility function, wheréndicates the parameter of relative risk aversion.
Hereafter, we assume > 1, that is, the investor is relatively risk averse, which is plausible based

on both intuition and the findings of empirical studies. The budget constraint faced by the investor is
given by

a1 = [1+ (1 - 1)re — 6]s — it 3

In (3), ai;1 is the capital carried over to the next period, which has not yet bffeatad by disaster
risk, ands € (0, 1) is the depreciation rate of capital. In additi@nis the resultant capital defined as

(6) later.
3.2 Afirm

Arepresentative firm exists in this economy. It produces final goods, whose price is set as a numeraire,
by using machinery from investors and labor from workers. In addition, productive government

expenditure positivelyféects the firm’'s production. Its production technology is given by
Yi = AKP(LG)' ™, A>0, ae(0,1), (4)

whereY; is final good production in periog K; represents the capital stock in peripd; is the labor
force in periodt, andG; represents productive government spending in pdtiddhe purpose of this
firm is to maximize profit. Since the firm can emplyandL; givenG; and use them before disaster

risk occurs, it faces no uncertainties.

positive linear function of the tax rate for the investor), there is litffeet on the result by assuming the same tax rate for
the worker and investor.



3.3 A government

Next, we turn to the government’s behavior. The government is benevolent and its purpose is to
maximize total household welfare. The government can control household utility by levying taxes
and using the tax revenue to implement its policy. The government faces two policy alternatives
in periodt: disaster-preventive expenditukg and productive government expenditi®e In this

model, following Barro (1990), we assume tl@tis a certain ratio of output, that i§; = g;Y;

for g € (0,1). The government knows this rule and contrglsvhen choosing the optimal policy,

while the household and firm do not know this rule and t&keas given. Preventive expenditure

can reduce the damage to physical capital caused by disasters. Here, we assume that damage has a
decreasing relationship with respect notHpbut to the preventive expenditure—production réwio
whereH; = hY;. This is plausible for the following reasons. In this setting, as the absolute value

of preventive expenditurkl; increases, damage decreases, while when output Yeustreases, all

other things being equal, damage increases. The former is natural and the latter would be true since if
Y; is large, the economy is filled with machinery, buildings, and so on. Then, these are destroyed in a
chain reaction when a disaster occurs, which could magnify the damage ratio. Let us assume that the

government’s budget balances in each period. Then, the budget constraint becomes
Ti(res +we) = (G + hy) Yt (5)
Hereafter, we denote the poli¢y;, h;, Gt} asn.

3.4 Disaster shock

We define a disaster shock as folloWs.

e Adisaster may occur after the firm finishes producing, households finish consuming and saving,

and the government finishes levying taxes and implementing its policy in each period.

8In addition to the following settings, we can introduce the stochastic severity caused by disasters. In this case, we
capture the degree of severity by introducing a random varidbiehich is distributed with probability density function
¢(d) c [g,a] and cumulative distribution functio®(d). However, introducing this term has littléfect on the following
calculation, and the comparative statics with respect to severity resembles that with respect to disaster probability. There-
fore, we omit this term. To introduce such severity, this version of the conditions for optimal policy can be obtained by
replacingD(h) with ED(h, d) in the equation below, whei&remains in the latter since the damage caused by didagter
contains a random variabteafter the disaster occurs.



¢ If a disaster occurs, a certain ratio of the existing capital stock denotél lay[0, 1] is de-

stroyed. In this study, we call this ratibe damage ratio

e The probability of a disaster occurring is given pywhich is a constant and exogenous value.
We call thisthe disaster probability The investor and government know this probability pre-

cisely. Based on these assumptions, we can write the next level of capitak

(1 - Dy)ar1  with probability p,
S+1 = ) o (6)
A1 with probability 1— p.

e When the government pays preventive expenditure in peribeé damage ratio lowers to some
degree. That is, when the government incurs preventive expenditure in pehedlamage to
the capital stock reduces. Here, we assume that preventive expenditure intéitads only

the damage ratio in periddand there are nofiects thereafter.

From the fourth assumption, we can write the damage ratio in peded function ofi;, such as
D; = D(h). As for the relationship between the damage ratio and preventive expenditure—production

ratio, we assume the following.
Dt = D(hy) € (0,1), D’(h) <0, D”(h) > 0. (7)

The second and third properties indicate that the damage ratio function is decreasing, ftetea-di
tiable, and weakly convex with respect to the preventive expenditure—production ratio. The convexity
of the damage ratio function implies a decrease in the margifedtezeness of preventive expendi-
ture. Hereafter, we abbreviate the subscripasdt + 1 for notational simplicity. These equations

enable us to solve optimal poliey .

9For example, these properties are satisfied under the following fractional function:
d d
Dhy) = — - —,
1-d h-d

whered = - (1-d)/dford € (0,1). In this specificationd is the upper limit of the damage ra(0) = d, while the lower
limit of damage ratio is zer®(1) = 0. In the numerical example presented in Subsection 5.3, we use this specification.

10



4 Model solution

4.1 Equilibrium

In this subsection, we define the equilibrium of this economy. First, we obtain the market equilibrium.

That is, given the announced poligy= {r, h, G} and initial savingsy,

1. A worker consumes,, as (1) and an investor maximizesisr intertemporal utility. Then, the

worker’s and investor’'s consumption functions and the investor’s savings function are obtained,
2. Afirm chooseK andL to maximize its profit,
3. Demand for and supply of inputs are equal, that is,

s=K, L=1, (8)

4. The budget constraint for the government (5) is satisfied.

Second, given the household’s consumption and savings functions, initial condijaryd the
government’s budget constraint (5), the government chooses optimal pbkcyr*, h*, g*} such that

it maximizes the sum of the investor’s and worker’s intertemporal ufifityiven by

1 e —cll_y .
-y 1-y

Finally, under the optimal policy, we can obtain the household’s optimal level of consumption and

savings(c;, ¢}, a"}.
4.2 Investor’s problem

To obtain the optimal policy, we must first solve the investor’s utility maximization problem by maxi-
mizing (2) subject to (3), givemand initial savingsy. DenotingV(s) as the investor’s value function,

we can describe the investor’s problem in peries

1-y

V(s) = qu{ f' +,8EV(§)},

aa |1-y 9)

subjecttoa’=[1+ (1 - 7)r - 6]s— ¢ = Rs- ¢, givenn, .

10This procedure is used in, for example, Glomm and Ravikumar (1994) and Rioja (2003). Under this rule, a problem
exists in which a government has an incentive to change its policy after the household and firm finish their behavior.
However, by assuming that the government commits its announced policy, we ignore this problem. In addition, see also
Ljunggvist and Sargent (2004, Chapter 15) for this problem.

11



In (9), the termE indicates the expectation operator in pertoahd the superscript ~ refers to the
value of the variables in the next period. The tdRn= [1 + (1 — 7)r — §] summarizes the return on
savings. By solving this dynamic programming problem, we can obtain the investor’'s savings and

consumption functions analytically, as shown in Proposition 1.

Proposition 1 By solving (9), we can obtain the investor's savings and consumption functions as

follows:

a=RY [B(p(L - D) +1-p)]" s= Ro(n) s = r(r, h)s (10)
¢ = [R-o(s,h)s, (11)

wherep(h) = B(p(1 — D(h))* + 1 — p) is a risk-adjusted discount factor ame(r, h) = (Ro(h))¥” is

the investor’s savings rate for current savings.

Proof.

See Appendix A.1 for deriving (10). Then, substituting (10) into (3) yields (11)m

Note that the savings function iffected by disaster probabilifyand preventive expenditufe
The intuition of this is discussed below. Moreover, to make consumption positive, w&have- 0.
As shown in Proposition 3 described in Subsection 5.1., this inequality must hold under the optimal
policy and hence, we confine the case to that in which the investor’s consumption is positive.

Before moving onto the government problem, we check the signs of the derivatives of the savings
rateo(t, h) with respect to disaster probabilityand each policy variable. We can check the sign of

the derivative of the savings rate on the tax rags

do(t, h)
or

<0,

which is natural since a higher tax rate decreases the investor’s disposable income and savings. In
contrast, raising the tax rate has an ambigudisceon the investor's consumption since savings
decrease, while disposable income decreases, and we do not know fibatisedominant. However,

when an increase in the tax rate decreases consumption, this condition can be written gR.

Hence, if consumption is positive, that B> ¢, this is satisfied. Positive consumption is guaranteed

under the optimal policy, as shown in Proposition 4, and a higher tax rate also decreases the investor’s

12



consumption. The derivative of(r, h) on pis as follows:

%;;h) > 0.

Since the investor is relatively risk aversex 1) and cannot diversify risk through disaster insurance,
s’he must mitigate disaster risk by self-insurance. Théme fas an incentive to save in the case

of disasters becausghe prefers consumption smoothing between a disaster-stricken state and no
disaster state, which is known as precautionary saviig¥ On the contrary, theffect of preventive

government expenditure on the savings rate is

oo (t,h) -

h 0.

This derivative has the opposite sigrdo(r, h)/d pbecause an increasehmeduces the expected loss
of disastempD(h), and the investor need not prepare more than before and thus saves less. We call this
effect the precautionanyffiect since higher preventive expenditure dilutes the investor’s precautionary

savings motives if&e is relatively risk averse.
4.3 Firm’s problem and equilibrium condition
The representative firm maximizes its profit by chooskh@ndL given its factor price and policy.
The familiar conditions for profit maximization are given by
r = aAK*Y(LG)1™?,
w = (1 - a)AKL G,

By substituting (8) and the profit maximization conditions into (1), (10), and (11), we can obtain the

consumption levels of both agents and the investor’s savings function under the market equilibrium

11See, for example, Sandmo (1970) for precautionary savings.

Moreover, ify = 1, which is the logarithmic preference, disaster probability does fiettethe household’s savings
because a highgrdecreases the expected return on savings, while disposable income also decreases. Under the logarithmic
preference, a change in disaster probability does fiettthe household’s savings owing to dfiset of income and the
substitution &ect. The amount of precautionary savings is equivalent to that of a decrease in savings from a decrease in
expected intertemporal income.

13



as follows:

cE = (1- 1)1 - a)AK? G,
cF = [R- o(r,h)]K, whereR = 1 + (1 - 7)aAK* G -, (12)

&F = o(r, h)K, whereRis defined above

By using (12), the government budget constraint (5) is reduced to
g=1-h (13)
4.4 Government’s problem

Given the equilibrium condition (12) and under the budget constraint for the government (13), the
government solves the following dynamic programming problem by expre$&i(ig) as its value
function. Note that the government kno@s= gY, and the production function for the government
becomesr = (Ag--*)Y?K = B(g)K. Moreover, for the governmer® = (1 - 7)eB(g) + 1 — § and

w = (1 - @)B(g)K. Considering these, the government’s dynamic programming problem is given by

VI(K) = max{ ic&," + +ﬁEV9(K)},
subject to (12) and (13), givef,.
We define the consumption propensity for the governroerst follows:
1 4 1 ¢ = L [[(1 -7)(1-a)B@]Y” + (R- 0')1_7] Kl = 1 sl (15)
1-vy 1-v 1-vy 1-v
Then, the dynamic programming problem (14) is reduced to
VI(K) = max{iaKl—y + BEVQ(K)},
s 1- Y (16)

subject toa’™= oK, g = 7 — h, givenKo.
By substitutingg = 7 — hinto B(g), this problem contains only two endogenous varialiesdh.

From the calculation presented in Appendix A.2, we can obtain the first-order conditions with respect
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to {r, h} as!®

1 K—y5_6+,3p\/'9((1 - D)a)(1- D)aﬁ +B(1- p)V’g(é)aﬁ =0, (17)
1-vy or or ot
1 _.oc , ~ do
ryK y% +BpV'Y(1-D)a) [(1- D)%]

(18)

- V(1L - D)A)D (M) + (L~ V(@) o = .
where the superscripimplies a derivative. The marginal condition of tax rate (17) is interpreted as
follows. The second and third terms of (17) are the marginal disutility from the reduction in savings
because of a reduction in income from raising the tax rate. The first term includes the marginal
disutility from the reduction in consumption because of a reduction in income and the marginal benefit
from raising tax, which means that the levied tax is used as productive government expenditure. The
interpretation of (18) is similar to that of (17). The second and fourth terms are the marginal disutility
from raisingh on savings. A decrease in savings comes about fromfigots. The firstis a reduction
in the return on savings because of the crowding digce Higher preventive expenditure means
less productive expenditure given the tax rate to findn@nd this leads to a decrease in the return
on savingsR. The second féect is that higher preventive expenditure lessens an investor’'s saving
incentives because of the precautionaffiget, as mentioned in Subsection 4.2. Higher preventive
expenditure increases expected savings and this shifts the investor’s savings to consumption. The
third term of (18) is the directfiect of preventive expenditure which captures the following benefit.
Higher preventive expenditure decreases the damage caused by disadig(k)bgnd we obtain
the marginal utility bygV’9((1 — D)a)o x D’(h) because of an increase in expected intertemporal
income. With probabilityp, we can enjoy this utility, and hence, this term is the marginal utility
from the direct éect of raising preventive expenditure. The first term summarizes the change in the
household’s consumption, which comes from tvffeets. The first is a decrease in the worker’s and
investor's consumption because of the crowding digat, while the second is an increase in the
investor’s consumption from the precautionafieet.

For simplicity, hereafter, we assume the full depreciation of physical capital, ti#ati&, Then,

3For notational simplicity, we omit the variable of the function such B(@) — B if it causes no confusion.
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from the calculation in Appendix A.2, we can obtain the optimal policy conditions as follows:

[(1 ~0)7[(L- DB 7 + (R-0) e (YRy;eU) 'R - ;fwre] (1-7)B -Bl=0, (19)
o 1— _ 1-«a
(20)
+[YR=-0)7 +[A - )1 - DB (R- )] 0'? _o,
where, for convenience, we define functiefh) as follows:
_ -D’
F(h) = ﬂpm- (22)

FunctionF(h) indicates the marginal direct benefit from raising preventive expenditure, and this is a

decreasing function since, from (7),

< 0.

g( D’ ):_ﬁ D”(1- D) + yD’?

F) =g\ d—py (1- D)™

This means that the marginal direct benefit from raising preventive expenditure is decreasing. Here-
after, we assume the following to ensure that an inner solution of optimal preventive expenditure

exists.

Assumption 1 The damage ratio function (7) satisfies the following.

. F y-1
alim — + - > .
h-0p 1l+limyo(R-0) h-00

Assumption 1 states that a marginal direct benefit under zero preventive expenditure muEt be su
ciently large to satisfy the above expression. Otherwise, there may be a case in which it is optimal
not to invest in preventive expenditure since there is little marginal benefit even under zero preventive
expenditure. Note that imposing this assumption is, in fact, less restrictive than imposing the Inada
condition of the damage ratio function, limy D’(h) — oo.

By simultaneously solving (19) and (20), we can obtain the optimal policy{paih*}. Note that
the value of the pair, if any, is state- and time- independent since the return on savingsnstant
because of thé&K production structure and hence, (19) and (20) do not contain any state variables.

From the budget constraint for the government (13), the optimal productive expenditure—production
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ratio g* becomeg™ — h*. Given optimal policyr*, the resulting consumption and savings functions
are

G = (1-7)(1 - @)B@)K,

¢ = [R" — o(v*, h")]K with R* = (1 - 7%)aB(g"), o(r*, h*) = (R'p(h*))” (22)

a" = o(r*, h")K with o-(7*, h*) defined above
5 Optimal disaster-preventive expenditure
5.1 Existence and conditions of the optimal policy

At first glance, optimal conditions (19) and (20) are too complicated to deal with. However, these

conditions can be simplified as shown in the following proposition.
Proposition 2 Assume Ro > 0. Then, from (19), the optimal policy satisfies the following equation:
Q-7 B=Ber=ah+1-a - 7=1(h). (23)

By using (23), (20) becomes

[R- ) + [ - a)(1 - 181 7] 2
o

. (24)

a(l-h)’

=y +2[(1 - )1 - 7)B]* " + (R- o) "7R]

where z= o/(R - o) is the savings—consumption ratio for the investor and all tax raties(24) are

evaluated at = 7(h). The optimal preventive expendituregatisfies (24).

Proof.
First, we prove that the first term of (19) must be positive under non-negative consuRption

0. When we use the definition ofand rewrite the first term of (19), it becomes

1+ ﬁe] [(1-a)(1-17)B]Y + a(R- o).

Hence, ifR—- o > 0, this term is positive. Therefore, by dividing both sides of (19) by the first term
of (19), we obtain (23).

Next, we show that under (23), (20) becomes (24). Consid@&iagAgt-*)Y*, the first equation
of (23) implies the second one and this implies (1 - a)(1 - h) and (1- 1) = @(1 - h). By defining
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z= o /(R- o) as the investor’s savings—consumption ratio and substitating = (1 - a)(1 - h) and
zinto (20), we obtain (24)m

The first condition, (: 7)B’ = B, implies that the government choosesuch that a marginal
increase in the household’s total income from more productive government expenditure is equal to a
marginal decrease in that from raising the tax rate. According to (28)i0, 7 = g = 1 — «, which
is equivalent to the result of Barro (1990); in addition, when the government finances one unit of
preventive expenditure is collected by raising the tax rate and{d)% is collected by decreasing
productive expenditure. The second equation of Proposition 3, (24), which is the most important
equation in this model, summarizes the marginal benefit and disutility from preventive expenditure.
The left-hand side (LHS) of (24) is the marginal utility and the right-hand side (RHS) is the marginal
disutility from preventive expenditure. The LHS of (24) summarizes the marginal utility from two
effects, namely the precautionarffect and anet direct dfect. The first term implies a marginal
increase in utility from an increase in the investor's consumption since higher preventive expenditure
causes an investor to shift savings to consumption owing to the precautidfiect, eThe second
term, thenetdirect dfect, consists of two terms. One is the increase in utility from the diféete
while the other is the marginal disutility from a decrease in savings because of the precautionary
effect. Interestingly, the sum of these twfieets becomes positive, and hence, it is categorized on
the LHS and we refer to it aget since it includes the marginal disutility from the precautionary
effect. 14 The RHS of (24) is marginal disutility, which comes from the crowding dtgat. The
first term is the decrease in the worker's consumption, the second is the decrease in the investor's
consumption, and the third term is the decrease in the investor’s savings because of the crowding out

effect. 1> By equalizing the marginal benefit and cost of raising preventive expenditure, we obtain

A marginal decrease in utility from a decrease in savings because of the precautifieetrysecaptured bgs(1 —
v)/y(R- o) = F/p, while a marginal increase in utility from the diredfect is given byco/(R- o) = F/p. Hence, the sum
of these two terms becomes/y(R- o) = F/p > 0. See Appendix A.2 for why these terms represent the precautionary
effect and direct fect.

151f logarithmic utility is adopted, which is the casepf 1, (24) can be rewritten as the following simple form.

1

F) = oy

We obtain such a simple form undgr= 1 as the precautionaryffect does not exist. In such a case, at the same time, the
direct dfect and crowding outfeect are not as complex as in this model. In fact, in the above equation, the LHS implies a
direct efect, while the RHS implies a crowding outect.

18



the optimal preventive expenditure ratio. The presence of the precautidiectimplies that, if we
were to consider the optimal prevention under the static model or instantaneous logarithmic utility,
underinvestment in prevention in contrast to under CRRA utility could occur.

The important point is whether there existsthat satisfies (24). To identify the existence of the
root of (24), we defin®(h) = (1-7(h))aB(g(h)), whereg(h) = (1-«a)(1-h) and impose the following

assumption.

Assumption 2 When h= 0, the investor’'s consumption is positive, that is,
171
ROy > p(0). & {az [AL- a)l-“]“} > (L~ D(O)"” +1-p).
This assumption should be satisfied sincde # 0, this model is similar to Barro’s (1990) model;
however, even in this case, the investor’s consumption should be positive. By combining Assumptions

1 and 2, we have the following proposition considering the existenbe of

Proposition 3 Given Assumptions 1 and 2, at least one root of (24)ekists, and this is less their,]

whereh satisfies ®)”~1 = p(h).

Proof. See Appendix A.3.

Proposition 3 guarantees optimal preventive expendrtrelence, under the optimal policy, the
investor's consumption must be positive sifte< h. There are probably multiple candidates fioy
but we do not treat this problem hereafter. Oh¢es determined, the optimal tax rate is given by

™ = ah* + 1 — a and the optimal productive government rati@is= (1 — «)(1 — h*) from (23).
5.2 Comparative statics with respect to disaster probability

Of the parameters in equation (24), we focus only on disaster probahilityen, we can obtain the

following proposition.

Proposition 4 The optimal preventive expenditure ratié imcreases when disaster probability p
increases. That is, we have the following sign of the derivative:

oh*
ap

> 0. (25)
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Proof. See Appendix A.4.

Although this is an intuitive result, the mechanism is somewhat complex. Recall that the optimal
condition for preventive expenditure can be divided into the direct, precautionary, and crowding out
effects. An increase in disaster probability influences all thféects. Hereafter, we consider the
effect of a rise inp. However, before considering thedeets, it would be useful to revisit théfect
of higher probability on the investor's behavior. Higher disaster probability decreases the expected
intertemporal income of the investor, thereby causinghkbisconsumption and savings to decrease.
We call this éfect theincome gectof higher probability. On the contrary, in the event of a disaster,
the investor saves more than previously, meaning thatdrieonsumption decreases, whereathhis

savings increase as disaster probability rises. We call fféstehesubstitution gect

e The direct &ect

When disaster probability increases, the dirdékdat also rises. In such a case, an incoffiect

arises and the household’s savings and consumption decrease. Then, the favored policy is the
one that can mitigate the expected damage of natural disasters since higher marginal utility
is derived owing to smaller consumption and savings and the concavity of the investor’s value
function. That is, since the investor experiences a more severe situation without any prevention,

it is optimal to invest in preventive expenditure through the diréetoe.

e The precautionaryfeect

Higher disaster probability causes thieet to rise, and thus the optimal preventive expenditure
increases. Thisfiect comes from the substitutioffect, that is, the rise ip shifts consumption

to savings owing to the precautionarffext. Then, relatively scarce consumption makes the
marginal utility of consumption increase because of the concavity of the utility function. Since
the government knows there is an increase in marginal utility from consumption, it invests in

preventive expenditure so that the investallocatessavings to consumption.

e The crowding out ffect

Higher disaster probability worsens the crowding dtiéet, which stems from the income ef-

fect. It decreases the investor's expected income, and hence, consumption and savings decline.
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Now that consumption and savings are lower than previously, the marginal cost of giving up

one unit of consumption and savings increases and the crowdindfecit is magnified.

As pincreases, there is an increase in the marginal benefit, consisting of the direct and precau-
tionary dfects, while there is also an increase in the marginal cost, which is the crowdinffexmit e
16 Thus, the sign odh*/dp could be ambiguous. However, as shown in Appendix A.4, the first two
positive dfects must dominate the third negatiféeet under the optimal policy. Moreover, since the
optimal preventive expenditure rises as disaster probability increases, the optimal tax rate increases

by a = % from (23), and productive government expenditure decreases$ly «) = %
5.3 Expected growth rate

Since this model eventually reduces to ki€ model, endogenous growth arises. This model has a
stochastic disaster shock, and hence, we evaluate the growth rate with expectations. The expected
economic growth rate is defined as the growth rate of production, which is equivalent to that of the
physical capital stock according to thé& construction. The savings rate per unit of physical capital

is given asr(t*, h*) under the optimal policy, and the expected growth rate is

Kir1 — Kt

Kt
_ p(1-D(h"))o(r*, h")K¢ + (L = p)o(r*, h")K = K
= <

Eq(h) = E

L= (1- pD(h"))o (7", h").

Furthermore, sinc®&" is rewritten asy?AY?(1 — o))/ (1 — h*)Y* = R(1 - h*)Y/, by using the

definitions ofo- andp, we obtain the expected growth rate as

Eg = Eg= (1 - pD(h")) {BRe(L — h")¥* [p(L - D(")* + 1 - p|}""”. (26)

Hereafter, as an important form of comparative statics, we examine how an increase in disaster
probability &fects the growth rate. Before considering the case of CRRA utility, for reference, we
consider the logarithmic utility case (= 1). In this case, the precautionanfext vanishes and the

expected growth rate is given as follows:

Eg= (1~ pD(h"))BR:(1 - h)"/*,

18]n the first half of Appendix A.4, we show this result mathematically by using equation (24).
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Higher preventive expenditurdfacts the expected growth rate through the following two channels.
The first dfect is that an increase in disaster probabiliffeets the first term (& pD(h*)). If p
increases, the expected loss increases diwvewhile the damage caused by the disaster decreases
since preventive expenditure increasep aises. Thus, theféect of an increase ip on (1- pD(h*))

is ambiguous: if the féect of the decrease in damage dominates that of the increase in the expected
loss, (1- pD(h*)) increases and vice versa. Whether(pD(h*)) is increasing inp thus crucially
depends on the shape of the damage ratio function. The second channel is the crowdifecput e
that is, greater prevention reduces the term- (¥)Y®. This is because greater prevention requires
more tax revenue and a decrease in productive government expenditure, each of which decreases
the return on capitaR and reduces savings. This leads to a reduction in the expected growth rate.
Thus, if (1- pD(h*)) is decreasing ip, the economic growth rate is also decreasing,invhile if

(1- pD(h*)) is increasing im, there is an inverse U-shaped relationship between disaster probability
and the economic growth rate.

In the CRRA utility case, there is anotheffext in addition to those shown in the logarithmic
utility case. The channel stems from the precautionary savings motive idgeases, an investor
saves more in case of disaster, which enhances economic growth. On the cofftengdsices
precautionary savings since highgaccompanies higher preventive expenditure and this decreases
the expected damage. The lower savings result in a decrease in the growth rate. Thus, generally,
whether precautionary savings increase is ambiguous: if precautionary savings increase (decrease) as
p rises, this &ect enhances (hampers) economic growth. In fact, in (26), the following five channels
of the dfect of an increase ip exist:

17y
Eg=(1- p D())ipR(L-h)""| p [(L-D()”-1]+1|p . (27)
~—— — N
0] (i) (iii) (v) v)
Thus, in the CRRA utility case, the positivEects of an increase in disaster probability on the ex-
pected economic growth rate are twofold: (ii) a decrease in the expected damage because of an
increase in preventive expenditure and (iv) an increase in precautionary savings through a rise in dis-

aster risk. On the contrary, the negativéeets are threefold: (i) an increase in the expected loss,

(iii) the crowding out €ect caused by financing the higher preventive expenditure ratio, and (v) the
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decrease in precautionary savings through a decline in the expected economic loss because of the
higher preventive expenditure ratio. If the former twiteets dominate the latter threleg increases
asprises, and vice versa.

Since the overallféect of disaster probability on the economic growth rate is complicated, in what
follows, we resort to a numerical example. We focus on one state in the United States by using the

data presented in Figure 1(b), and we take one period as one quarter (three months). We assume that

the damage function iB(h) = l—f’dx - h—fd: as in footnote 9. We set the benchmark parameter values as
B = (0.95)1/4 ~ 0987, y = 2, @ = 1/3, A= 4.076 p = 14/75~ 187%, andd = —0.25. We set
state-average quarterly disaster probability as abod@4&ince natural disasters occurred 28 times

in the United States in 2015 according to Figure 1(b), and thus average quarterly disaster probability
per state is 2850 x 3) ~ 0.187 17 The other parameter values except fomnd the parameters

on the damage ratio function are the usual parameter values. The vaiis afbitrarily selected
asD(0) = 0.8, that is, when there is no prevention, 80% of physical capital is lost when disasters
occur. Total factor productivity is set as the resulting economic growth rate, which becomes about
(1.02)44 ~ 1.005. Further, we consider the optimal preventive expenditure and expected growth rate
under the values of disaster probability from 5% to 55% in steps of 5 percentage points in addition
to 187%. Under this parameter, the probability that exceeds 60% entails no investor's consumption,
R(0) — o(0) < 0, which violates Assumption 2, and hence, we focus on a probability less than 55%.
In this setting, Assumptions 1 and 2 hold, and the optimal preventive expenditurepuad2487 is
around 1079%.

Figures 2(a) and 2(b) are scatter diagrams between disaster probability and the optimal preventive
expenditure and between disaster probability and the expected growth rate, respectively. The values of
p andh* are measured by percentage &uls derived from (26). The optimal preventive expenditure
is given by the value for which (24) holds, and the optimal preventive expenditure—production ratio
ranges from $% atp = 5% to 2215% atp = 55% as probability increases, as in Figure 2(a).

As disaster probability increases, the optimal preventive expenditure rises, which is consistent with

Proposition 4. The corresponding expected economic growth rate, which is derived from (26) with

1"We assume that natural disasters independently and identically occur in each state andfdotmobee than one state
for simplicity.
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Figure 2: Results of the numerical example

the optimal preventive expenditure—production ratio, is given as in Figure 2(b). The interesting point
is that the expected growth rate has an inverse U-shaped relationship with disaster probability in this
parameter setting. The two positiveerts dominate the three negativéeets at low probability,

while the inverse is true at high probability. Until disaster probability reaches the threshold, which is
around 40%, the economic growth rate rises continuously and vice versa.

This result is consistent with the empirical results that tlfect of disaster risk on economic
growth is empirically ambiguous. According to Albala-Bertrand (1993) and Skidmore and Toya
(2002), disaster risk increases with economic growth. On the contrary, Loayza et al. (2009) and
Noy (2009) show that disaster risk is positively related to economic growth in some countries and
negatively related to economic growth in others. According to this model's result, for low disaster
risk, the former positive relationship is supported since higher disaster risk entails a higher economic
growth rate. In addition, the latter negative relationship is realized in this model. In a country with

low (high) disaster risk, there is a positive (negative) relationship between risk and economic growth.
5.4 Discussion on disaster insurance

In this subsection, we discuss the case in which a perfectly competitive disaster insurance market
exists and assess th€ext on a household’s behavior. In particular, we consider the following disaster

insurance: if an investor payg x 6; X a1 to an insurance company, fiier asset is compensated
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by 6; x at,1 from the company in case of disaster; in other worgslenotes the insurance price and
6, denotes the insurance coverage. An investor can choose covetagaaximize higher lifetime

utility. Then, the resulting asset,; becomes as follows:

[(A — D(h))(1 - qi8;) + 6]a1 with probability p
St+1 = (28)

(1 - abr)ac1 with probability 1- p.
Since the insurance market is competitive, the expected profit of the insurance company becomes
zero, that isg; = p. If the disaster insurance can perfectly insure an investor’'s asset from disaster
risks, the resulting asset is equalized with and without disaster occurrence. That is, when we define

perfectly insuring coverage asit must satisfy

D(h)

(1—D(h))(1—q0)+0: 1—q9<:>9: m

(29)

Here, we assume that the insurance company @@n coverage to the maximum ¢, whereg €

[0, 1] captures the incompleteness of disaster insurance reflecting measurement errors and so on.
¢ = 1 means perfect disaster insurance, wigilee 0 means no disaster insurance. Moreover, as
described in footnote 3, for the top 10 natural disasters ordered by economig les%25. In this

situation, we can obtain the following proposition.

Proposition 5 If there is an insurance market in the economy, an investor chases ¢ and

savings are determined as

a= ,\SEO'¢S, (30)

wherepy is defined as

_ 1+ (1-¢)D(h)[p( - D(h) - 1]\*”
p¢=ﬁ[p( o +1_'°l’ oy
andoy = (p¢R)1/7/(1 — p#d). In particular, if § = 1 (perfect insurance)ys = g and if¢ = 0 (no

disaster insurance), = 8[p(1 - D(M)™ + 1 - p| = p.

Proof. See the first half of Appendix A.5.
If = 0, which is the same case as in the previous section, Proposition 5 corresponds to Propaosition
1. Otherwise, an investor demands the upper limit of coverage begtugsis sisk averse and some

disaster risks can be diversified through the disaster insurance. In particulargwhiéno = g and
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the investor’s resulting savings become {8R)Y/”sirrespective of the occurrence of disasters since
income risk is perfectly diversified.

Then, how about the comparative statics of savings #gtavith respect top andh? In this
setting, in addition to the precautionarfyet, there is anotheiffect of raisingp andh onos. When
p increases, insurance paymew increases through a rise in the insurance price. On the contrary,
if hincreases, demand for insurance and insurance payment decreases since disaster risk decreases.
As a result, we have the following signs of the derivatives, although there is an &eiratbrough

the insurance market:

In summary, the signs are the same as those presented in the previous subsection, although the
values of the derivatives are more complicaté®. To consider these results, let us addl,/di for
i = {p, h} themodified precautionaryfectsandd(pd)/di for i = {p, h} theinsurance gects Then,
we havedps/dp > 0 and the modified precautionarffect increases savings gsncreases, while
dog/dh < 0 and the modified precautionaryfect decreases savings lasncreases, which holds
from the same reasoning as before. In terms of the insurafeet® we havesd(pd)/dp > 0 and
¢pdd/dh < 0. Whenp increases, aside from the modified precautionéisog, the insurance payment
increases, and in turmgtsaving (saving after paying the insurance fee) decreases given theasame ~
hence, to sustain the same level of net savingust increase. The inverse relation holds in the case
of an increase i. Thus, both the modified precautionarfeet and the insurancdfect increase
(decreasea asp (h) increases. Sincg is small in reality and the values of the derivatives are too

complicated, we impos¢ = 0 to derive the optimal policy conditions.

6 Conclusion

In this study, we construct a macroeconomic model in which disasters destroy the existing capital
stock stochastically and we obtain an optimal policy, consisting of a tax rate, disaster-preventive ex-
penditure, and productive government expenditure. In this model, the optimal policy conditions and

the existence of the optimal policy are shown in Propositions 2 and 3. According to the condition for

183ee the latter half of Appendix A.5 for the values of the derivatives.
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optimal preventive expenditure (24), the government must choose its optimal disaster-preventive ex-
penditure such that the marginal utility from preventive expenditure, which is a net difect @&nd a
precautionary #ect, is equal to the marginal disutility from the crowding offeet. The precaution-
ary dfect is the &ect in which higher preventive expenditure decreases a household’s precautionary
savings through a decrease in disaster risk, and the government optimally sets the preventive expen-
diture to reallocate the precautionary savings into consumption. Since we assume the CRRA utility
function and that disaster risks cannot be diversified, the precautiofiacy arises. Furthermore, in
the comparative statics with respect to disaster probability, we obtain a positive relationship between
the optimal preventive expenditure and disaster probability. Higher disaster probability strengthens
the direct and precautionaryfects, and so does the crowding offeet. Although the marginal bene-
fit of preventive expenditure and marginal cost of preventive expenditure increase simultaneously, we
can show that the marginal benefit necessarily dominates the marginal cost. When we consider the
relationship between the expected growth rate and disaster probability, we decompd$ecthef e
an increase of disaster probability into five channels: two positiiexts and three negativéfects.
Furthermore, we observe an inverse U-shaped relationship in the presented numerical example. Such
a non-monotonic relationship between disaster risk and economic growth is supported by the findings
of empirical studies such as Loayza et al. (2009) and Noy (2009).

Finally, we present some extensions of this model. One important extension would be to intro-
duce mitigation in addition to prevention. Mitigation can reduce disaster probability and it would
be interesting to investigate whether each policy is substitutive or complementary. This model may
suggest that each policy is substitutive since lower disaster probability leads to less preventive expen-
diture as the comparative statics show. The other extension would be to make this model more useful
by using a numerical method. For example, defining government expenditure and preventive expen-
diture as stock variables and introducing government debt as a safe asset could alter or strengthen
our results. Moreover, it would be interesting to introduce technical change and human capital as
disaster-proof capital. These modifications would lead to many endogenous variables, and this would
be dificult to solve by hand; hence, we would have to resort to a numerical calculation. Finally, as

briefly discussed in Subsection 5.4, the optimal policy in the disaster insurance market should also be

27



considered. These research directions are left to future studies.

Appendices

A.1 Derivation of equation (10) from (9)

Equation (9) is rewritten as

(Rs— &)

V(s) = méalx{ 1,

+BpV((1 - D(h)a) + (1 - D)V(é)} : (A1)

Guess thaV(s) = 1%7(&18)1_7, wherea; is an undermined variable. By substituting this into (A.1),

we obtain
1-y _ 3\1-y _ =\1-y =\1-y
@977 | JRSAT (@@ DO @@ty
1-vy a 1-vy 1-y 1-y
The first-order condition with respect &is’
(Rs—8)7 = By "(p(L - D) + 1 - Pa~ = a3 "p(N)a 7,
wherep(h) = B(p(1 — D(h))* + 1 — p) is a risk-adjusted discount rate. Hence,
d= (B +1)'Rs (A.3)

whereg; = a; N 7p(h)~Y7. Substituting (A.3) into (A.2) and multiplying (&) on both sides lead
1

to

(2197 = {(Rs— (B1+ 1) 'R9" + Bplaa(1 - D(M)(B1 + 1) 'R + B(1 - plea(Br + 1) 'R}

The RHS of this equation can be simplified?&yﬁiy(ﬁl +1)st7, and by equating the céiients,
o = R7B (B + 1),

By solving this equation with respect éq, we can obtain

-y/(1~y) ‘

@y = R(l _ R(l—y)/yp(h)l/y)

Under this valueB; becomes

B1= RAMYpn)y=r — 1,

Therefore, by substituting this value into (A.3), savings function (10) is derived, that is,
&= (Ro(h)""s.
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A.2 The derivation of equations (19)—(20) from (16)

Equation (16) is, when we consider an expectation,
VI(K) = max{lL K1 4+ BpV9((1 - D)&) + B(1 - p)vg(a)} ,
n -y

subject toa’= oK, g = 7 — h, givenKj.
By substituting the second constragnt = — hinto B(g), this problem has only two endogenous vari-
ablesr andh. Then, the first-order conditions with respectrtandh are obtained by dierentiating

(16), setting it to be equal to zero, and dividing both side&by

KP4 BpV((A - DAL - D) + L~ VIR =0,
1-vy or or or

O

K7 5h +APV(1- D))

(1- D)Z—(;]

~ BPV'Y((1 - D)AD' (o + B(L - p)V'g(a)Z—Z - 0.

which are the same as (17) and (18). To obtain more tractable forms of these equations, we must
obtain a closed-form of the value function \@#(K). Here, we guess thatd(K) = %Kl‘y + a3

for some undetermined variables andas. Then, at the optimal policy, the derivatives of the value
function with respect to capital are given by

NVI(K) _

o @K™ =K + B8[p(L - D)} + 1 - plaoc K™ = CK™ + Bpasoct VK™,

Therefore, by dividing both sides ¢~ and solving this equation with respectds,

C _ R
= =C 0. A.4
l-polr "R-o g (A4)

@2

Hence, we obtain the value function ¥8(K) = l"%yKl‘V + a3, whereas is defined as (A.6). By
substituting this value function into the first-order conditions (17) and (18) and dividing both sides by
K=Y, we can obtain such equations as
1 oc c Jo
— + — =0,
l-y0r R-oor
1 (9_5+ c a_o-+ co F(h)
1-yoh R-ocoh R-o p

(A.5)

0, (A.6)
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where we use,po~" = ¢/(R- o) andF(h) defined as (21). Next, we calculate a derivative of saving

ratec andc with respect ta andh. Each derivative is derived as follows:

dr_aR1_ac
ar  yo0rR R

doc o |[0R1l dpl| o B F(h)

ﬁh_y[ahR+6hp] [(1 Neg+1=7)

[(1-7)B" -8

(96_ 1— 0 1- 0 1-
E_—[(l—a) ya[(l—T)B Y+E(R—O') 7]

- (1= )|@- o - BT - 08 - B+ R- )| 5 - 5 |
or Ot

~ (1)@= @I - 087 + R-0) a2 @ - 0 -

ac

= |Ha-ou-or g

0
v Z(R= )17
B~ + h (R-0) ]

1| B8 1 7y | R
_a y)[[(l )(1- )]~ 7B7B + (R )’[ah ah”

=(1-7) [-[(1 ~1)(1-a)]"7B7B + (R-0)” [(1— )aB’ (‘T _ 7R) - yoF(h)”,
YR Y P

where note thalR/dr = o[(1-7)B'-B], dR/oh = —(1-1)aB’, anddp/oh = (1-y)F(h). Furthermore,
if we assume = 1 as in the latter half of Subsection 4R= (1-7)aBandB’/B = (1-a)/[a(r - h)]
from B = (A(r — h)1=®)¥2, Then, we obtain

=)= @B = R0 | SR - 2 E0
oh a(r—h) ya(r —h) Yy P

By substituting the derivatives with respect to the tax rate into (A.5), we obtain

[(1 — )1 -1)B” + (R-0) e (VF;;{“)] [(1-7)B - B] + Rf_g‘;—g[a ~7)B - B

=[(1—a)1-7[(1—T)B]—7+(R—a)—7a(7r‘;;f) RCO_QR][(].—T)B/ B] =

This is the same as (19). Similarly, by substitutiig/oh anddc/oh into (A.6),

, 1-a 1] 1-a F()

A= BT s R ) 72| e - yR - (-
¢ o 1-a . _FO)] & Fh)_

R—O'y[ a(r - h) +(1=7) } R-o p 0
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R(h)Y~1

|
1
|
|
1
|
|
|
|
h 1
Figure 3: The positional relationship betwegn)~ andp(h)

where note that(1 - 7)aB’/R = —(1 - a)/(a(r — h)) in the first term in the bracket of the second

term. Rearranging these terms and multiplying/tiyn both sides lead to
co l-«a

A== B 7 + R-0) o 3R - g |

c ] F(h)
o—— =
177
By using the definition o€ = [(1 — )(1 - 7)B]* + (R- o)1, each term is simplified to

-la-PR-0)7 - 5 0.

l1-a
a(t —h)
Fh) _
e

-|(r+ 25 )@ - )@ - DB + R-) R

+[R-0)7 +[1 - (A - DB R-0) o =0

This equation corresponds to (20).
A.3 Proof of Proposition 3

First, we show that under Assumptionh)?~! andp(h) intersect only once ih € (0, 1). When we
evaluate them &t = 1, we obtainR(1)’~ = 0 andp(1) = B(p(1 — D(1))*” + 1 - p) > 0. Then, the

first and second derivative pfwith respect tdh are given by

p'(h) = pp(1 - D(h)) 7 (-D’(h)) <O,

D) D"(h)
1-D(h) '~ D'(h)

p”(h) = p'(h) > 0.
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Hencep(h) is a decreasing and concave function. On the contrary, the first and second derivatives of
R(h)*~1 = G(h) are given by

o 1-yG(h
G(h)=7y£<0,

G (h) = (%ffhg) 20 l1l+asy.

Thus,R(h)”~1 is a decreasing function and whether it is convex or concave depends on the parameter.
Figure 3 shows thaR(h)*~* andp(h) cross only once regardless of the concavitggh) and hence,
we can show that there must be one intersection. Next, we show that there is at least one root of (24)

that is less thah, which satisfiefk(h)”~* = p(h). Equation (24) is written as

F
ﬂR—UYﬁG;—aB

a(l—l—h) - z; [(1 - a)e(1 - h)B]Y, (A.7)

(y+2
where note that + 7 = «(1 — h) andR/(a(1 — h)) = aB. In (A.7), we show that limo LHS >
limp_o RHS from Assumption 1. Hereafter, to see the values of the LHS and RHIS-ath, we

check the properties &f At h = h, the followings is true:
1. R=0,© 72— o,
d py-1 9 RF
2. |&2RrR7Y > ’(,)—f]’,@ B> BE.

See Figure 3 for the second statement, in which the slof&dfis steeper than that efath = h.
Considering these facts, we see what the LHS and RHS of (A.7) becomesah. At h = h, the
following holds:

. . [ F
lim LHS = y im(R- o)™ = lim [a‘— - ch] :
h—h h—h hoh| P

The first term becomes infinity sincR ¢ o) — 0 from the first property of andy > 0. The second
term becomes negative constanhab h since

. . F . . RF .
=limolim — —alimB=Ilm — -alimB <0,
h—h h-hp h—h h—h PO h—h

F
oc— —-aB
0

lim
h—h

where the second equality holds from the first properti ahd the first inequality holds from the

second property di. Therefore, ah = h, the LHS is negative infinity, that is, lim,; LHS — —co.
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The limit of the RHS is derived as follows. First, we use the following expression:

Z;_ZE—Z(;_E)—E(L_&:)—E(QB_R_F)
a(l-h) “p \e(-h p/ Rla(l-h) p ) R A

Second, we rewrite the RHS of (A.7) as

[a(ly_ 5t é(aB - R?F)} [(1 - a)a(l - h)B]:.

Then, as converged, the RHS of (A.7) becomes

[Iim Y +Iim[z
h—h (X(l—h) h—h R

(ch - R—F)” lim[(1 - @)a(1 - h)B]*™.
P h—h

Since lim,_j, ﬁ and lim,_;[(1 — a)e(1 — h)B]*™ converge to some positive constant, we have
only to check the value of lig,| & (B - BF)]. its limitis

.z RF

lim = = lim (a/B— —) — 00,

h—h h—h P

N——

- positive constant

where we use the fact that the second term converges to a positive constant with the second property
of h. These limits imply that the LHS is larger than the RHS1at 0, while the RHS is larger than

the LHS ath = h. Since the LHS and RHS are continuoushiie (0, h), then there must be at least

one intersection with domaime (0, F\). [

A.4 Sign of the derivative of the optimal preventive expenditure with respect to disaster
probability

We use equation (24) when we conduct the comparative statics. First, we can obtain the following

derivatives under fixed preventive expenditure.

dp 1- doc o dp 0o F pBF

= =p[(1-D)*"-1]>0, —=—T1>0, ——="5>0,

ap AL~ D) ! p  ypap pp  pp?
0z 1 0p 0 _ _,Z0p
—=1+2z——>0, —(R-0)7=(R-0)7"-—>0.
op~ T Pp0p 7% p R =R

Then, the &ect of p rising on each term of equation (24) is obtained as follows:

y(R=)7+[(1 - a)(1-7)B] 1—7} zE
— P

——
®

[52]

a(l-h)’

v+ z)AQ-a)@1- T)B]l_y +(R-0)7yR
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where® means thap rising increases the corresponding term. The above-mentioned five derivatives
imply that whenp increases, the LHS of (24) must rise. To establish why the LHS shifts upward,
recall that the LHS represents the marginal utility of raising preventive expenditure and that it consists
of a precautionaryféect and a net directfiect. Each fect increases witlp rising. On the contrary,

the dfect of a rise inp on the RHS is also positive. Since the RHS indicates the marginal cost of
raising preventive expenditure, that is, a crowding dida, a higher RHS indicates less preventive
expenditure. Note thap rising does not fiect the worker's consumption at all since there is no
precautionary fect or income ffect for the worker. The first (secondifect on the RHS reflects a
crowding out éect that decreases the investor's consumption (savings). Thus, seemingly, there is an
ambiguous relationship between the optimal preventive expendituard disaster probabilitp. In

what follows, by integrating thesdfects, we check whethéh*/dp is positive or negative. After

some calculations, the sign of optimal preventive expenditure with resppds twbtained as follows.

19

oh*
ap z0e

(A.8)

= 0.

e+ BRO) R- o) + B2 - et e | 22 L PR
(0= 1" 4 PR )R- 07+ 2PAa - adata - | S22l

Recall thatop/dp is positive. At first glance, the terl(my - 1)0% + %B(R— yO')) could be negative
since the first term is positive, while the second term could be negative. However, under the optimal

policy, we can show that this term is also positive. To show this, ditweer, the following holds:

(-1 + PR=30) > (r - Do+ Blr =0 = (- )| - B
p T p T p

By multiplying both sides of (24) bR and solving this equation ferF/p, we obtain

F_0+2[0-0A-nB +R-)R o o
P HR-0)T (A -a)I- DB +2) |

Since we can show that > 1, under the optimal polick = h*,

o— > aB.

19To obtain (A.8), we move the RHS of (24) to the LHS of (24) anffedlentiate the LHS with respect to disaster
probability p. Now that the resultant LHS indicates théfdience between the marginal utility and marginal disutility from
preventive expenditurk, if this term increases gsincreases, greater preventive expenditure must increase in response to
p. Inequality (A.8) is such a condition.
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Therefore, the first term of (A.8) is positive and this means that the LHS of (A.8) must be positive.

Consequently, we can show that
oh*
ap

>0. m

A.5. The proof of Proposition 5

To obtain the results of Proposition 5, we must solve the following dynamic optimization problem:

11—
V(9 = ma)g{(l:_y+ﬁpV[((1—D)(l—q0)+0)é]+ﬁ(l—p)V((l—q9)é)}, (A9)
6€[0,06],4 Y

s.t. (1- g9)a = Rs—c', givensp.

By following a similar procedure to that described in Appendix A.1, gi®ewe can obtain an equa-
tion corresponding to (A.3) as

(1-g9)a=(1+pB1) 'Rs (A.10)

whereg; = p~ 7], p = B p(1-D+6(1-q6)1)17 +1- p], anda; is an undetermined variable.
Again, by following a similar procedure to that described in Appendix A.1, the undetermined variable

becomesR(1 — RE=1/7p1/7)=7/(1=7) and the optimal savings become

On the contrary, the derivative of (A.9) with respecttbecomes
a[(Rs- (1 - 60)8) 7a~ (1 - 90) 7O (a18)" 7]

where® =g [p[l -D+61-99)]"A-D-gY+1- p]. Hence,

dRHS of (A.9 ~ -
RETAD 2 00 (1-aaz @ +py'Rs

whereg; = ®‘1/7a1(1‘7)/7. Since (1) in equilibriumg = p < 1 and (2) the investor’s savings ~
must not become zerp,> @ from definitions and hengg, > B;. Then, the derivative of (A.9) with
respect t@ must be positive when (A.10) is satisfied. Thus, an investor demands the upper limit of
coverage, that i} = ¢6. Finally, by evaluating até = ¢6 andg; = p, we obtain equation (31) in

Proposition 5. m
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In what follows, we show the derivatives p§ and pé with respect top andh for the comparative

statics of savings rate,. First, we obtain the following derivatives:

d
dh

d (1+(1-¢)D[p(l-D)-1]\ 1 2
ﬂn( T+ (1- 9)pD )‘_(1_¢)D(1+(1—¢)pD)¢D<°’
1+(1-¢)D[p(1-D)-1]\ _ , 1 ?
( T+ @- oD )_—(1—¢>)D (—1+(1—¢)|OD) [1+2pD+(1—¢)p2D2]>0.

Then, the derivatives gfs with respect tgp andh can be calculated as follows:

1+p(1l- y)A—lz—Ap] -1>0,

dp¢ _ _ydA
dah =pp(l-yA an < 0,

whereA = (1+(1‘1ﬁ)(2[_2()1[)‘DD)‘1]) < 1. The derivatives opd with respect tgp andh are simply given by

dpp d pb [ 1 V
d_p_d_p1+pD_(1+pD)D>o’
dpp  d D z
ah " Pants pD_p¢(1+ pD) D' <0

Thus, the comparative statics®f, in the latter half of Subsection 5.4 hold.
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