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Abstract

The purpose of this study is to present an analytical framework for publicly optimal disaster-

preventive expenditure. We examine the optimal policy combination of tax rate, disaster-preventive

expenditure, and productive government expenditure in a neoclassical growth model, in which natu-

ral disasters occur stochastically and partially destroy existing capital. Based on this model, we can

decompose the welfare effect of raising preventive expenditure into three effects: the damage reduc-

tion, crowding out, and precautionary effects. By identifying these marginal benefits and costs, we

obtain the policy conditions that maximize household welfare. Furthermore, we show that optimal

prevention is increasing in disaster probability, and by using a numerical example, we show that there

is an inverse U-shaped relationship between the expected growth rate and disaster probability.
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1 Introduction

In recent years, increasing global economic damage has been caused by a growing number of natural

disasters such as earthquakes, floods, and hurricanes, as Cavallo and Noy (2011) point out. Figure

1(a) shows the worldwide trend of natural disaster occurrences and their economic damage in 1975–

2015 and Figure 1(b) shows those of the United States. In these figures, the dotted lines indicate

the regression lines of the number of natural disasters and the solid lines indicate those of economic

damage.1 At the total level, Figure 1(a) shows that both the number of natural disasters and economic

damage have increased over time. In Figure 1(b), we see that in the United States, natural disasters,

especially hurricanes, frequently occur, with the number of disasters and economic damage also rising

as in Figure 1(a). These figures imply that the influence of natural disasters on economic behavior has

become increasingly important, and it is necessary to consider natural disasters as an economically

crucial stochastic event. Moreover, because the requisite manner of governmental intervention is also

an economically meaningful question, we must discuss the intervention of governments to cope with

natural disasters.

Then, how can the government intervene in natural disasters? There are two measures to cope

with natural disasters: mitigation (or abatement) and adaptation. Mitigation is a method of control-

ling root generating disasters. For example, mitigation may include the reduction of CO2 emissions

and purchase of eco-friendly goods so as not to accumulate pollutants. This results in the decreased

occurrence of climate change and disasters such as abnormal meteorology and hurricanes. On the

contrary, adaptation is a method of decreasing the damage caused by disasters when they occur. Adap-

tation includes the refinement of buildings, reinforcement of disaster-resistant construction codes, and

preparation of survival food. Naturally, each method is equally important for tackling natural disas-

ters. In fact, the report of the Intergovernmental Panel on Climate Change (IPCC, 2007); “Climate

1The data for each figure are obtained from the Emergency Events Database (EM-DAT) at http://www.emdat.be/. Ac-
cording to the EM-DAT website, the natural disasters included in these figures satisfy at least one of the following criteria:

1. 10 or more people dead;

2. 100 or more people damaged;

3. Declaration for a state of emergency; or

4. Call for international assistance.
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(a) Data at the total level
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(b) Data on the United States

Figure 1: Time trend of disaster risk

Change 2007: Synthesis Report” states as follows.

“There is high confidence that neither adaptation nor mitigation alone can avoid all

climate change impacts; however, they can complement each other and together can

significantly reduce the risks of climate change.”

Both adaptation and mitigation are required to cope with disasters; in fact, there are many repre-

sentative examples of research on mitigation and empirical studies of the damage caused by disasters.

However, there is little theoretical literature and few empirical studies of adaptation, especially from

the viewpoint of macroeconomic theory. As Figures 1(a) and 1(b) show, the occurrence of disasters
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and resulting damage are increasing; therefore, it is crucial for us to focus on adaptation as well as mit-

igation. Furthermore, as IPCC says,2 there are many adaptation options, but there is little knowledge

about the effects of adaptation on macroeconomic performance, such as consumption, savings, and

economic growth rates as well as other non-climate policies such as tax rates and productive govern-

ment expenditure. Thus, it is necessary to include other non-climate policies in addition to adaptation

policy and to establish the effect of adaptation expenditure on macroeconomic performance and other

policies. To treat these problems, we require a dynamic general equilibrium model with a government

and a stochastic disaster shock.

Therefore, we construct such a macroeconomic model in which disasters destroy the existing capi-

tal stock stochastically and in which the government implements adaptive expenditure and productive

expenditure. We consider productive government expenditure, following Barro (1990), as well as

adaptive expenditure in order to establish the effect of adaptation on the other non-climate policies.

Hereafter, for apposition we use the word “prevention” instead of “adaptation.” In this model, a Pois-

son stochastic disaster shock is adopted, that is, disasters occur at a certain constant probability in

each period. In the model, we assume that households cannot diversify disaster risks through disaster

insurance,3 and by adopting a constant relative risk aversion (CRRA) instantaneous utility function,

we can take account of household behavior toward risk. The benevolent government implements its

policy by levying taxes on households. There are two policy alternatives in this model: disaster-

preventive expenditure and productive government expenditure. Since disaster prevention has the

properties of public goods, the government finances disaster -preventive expenditure, which allows it

to reduce the damage to physical capital caused by disasters. On the contrary, productive government

2In addition, the IPCC makes the following two statements.

“A wide array of adaptation options is available, but more extensive adaptation than is currently occurring
is required to reduce vulnerability to climate change. There are barriers, limits and costs, which are not fully
understood.”

“In several sectors, climate response options can be implemented to realise synergies and avoid conflicts
with other dimensions of sustainable development. Decisions about macroeconomic and other non-climate
policies can significantly affect emissions, adaptive capacity and vulnerability.”

3According to data provided by the Munich Reinsurance Company, only about 25 % of the economic losses of the 10
costliest natural disasters in 1980 –2015 (as an aside, eight of these disasters occurred after 2004) was insured. Indeed,
even when we choose the top 10 natural disasters ordered by insured loss, only 38 % of economic losses was insured.
These figures imply that disaster insurance market is still developing and that the assumption of no disaster insurance
market is justified. These data are available at https://www.munichre.com/touch/naturalhazards/en/natcatservice/annual-
statistics/index.html.
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expenditure increases the productivity of final goods.

Based on this model, we can decompose the welfare effect of raising preventive expenditure into

the following three effects: the damage reduction, crowding out, and precautionary effects. First,

the damage reduction effect is the positive welfare effect in which higher preventive expenditure

increases a household’s expected disposable total income by reducing the damage caused by disasters,

thereby raising the household’s consumption and savings. Second, the crowding out effect is caused

because higher preventive expenditure requires productive government expenditure to decrease and

the tax rate to increase to finance it. This decreases the household’s consumption and savings and

has a negative impact on its welfare. Finally, the precautionary effect is related to the household’s

risk averse behavior. If the household is relatively risk averse and there is no disaster insurance

market, it saves more in the case of natural disasters. Such savings are called precautionary savings.

Aside from the decrease in savings because of the reduction in income from the damage caused by

disasters, the saving level under disaster risk is higher than that under no disaster risk. On the contrary,

higher preventive expenditure can reduce the household’s precautionary savings through a decrease in

disaster risk. Since welfare under no disaster risk is higher than that under disaster risk, a decrease in

precautionary savings through higher preventive expenditure improves the household’s welfare. This

effect is generated since we adopt CRRA utility rather than logarithmic utility and there is no disaster

insurance, and is one of the interesting implications obtained from this model. The government must

choose the optimal policy by equalizing these effects, and we can obtain the optimal policy conditions

in that they maximize the household’s intertemporal utility. Furthermore, we can show the existence

of the optimal policy under some assumptions.

From the comparative statics of optimal prevention with respect to disaster probability, we can ob-

tain two interesting results. One is that in addition to the direct effect, the precautionary effect causes

the optimal preventive expenditure to rise as disaster probability increases. This is because higher

disaster probability shifts household consumption to savings in case disaster occurs, and it is optimal

for the government to invest in disaster-preventive expenditure in order to encourage households to

reallocate their savings to consumption. This effect results from the precautionary savings motive,

which cannot be captured by a static model or a dynamic model with an instantaneous log-utility
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function. The other interesting result is that although the crowding out effect has a negative impact

on the increase in preventive expenditure in response to disaster risk since higher disaster probability

reduces household expected intertemporal income and makes the crowding out effect of preventive

expenditure severe, this negative effect never dominates the other two positive effects.

Further, we can decompose the effect of an increase in disaster probability on the expected growth

rate into five channels: two positive effects and three negative effects. As disaster probability rises, (i)

the expected disaster loss decreases since prevention increases and (ii) a household’s saving increases

owing to the precautionary savings motive; hence, the economic growth rate increases. By contrast,

(i) the expected disaster loss increases since disaster probability rises, (ii) the crowding out effect

increases to finance preventive expenditure, and (iii) precautionary savings decrease since prevention

increases, which results in a decrease in the economic growth rate. Thus, the overall effect is am-

biguous. In a numerical example, we obtain an inverse U-shaped relationship between the expected

growth rate and disaster probability.

The remainder of this paper is organized as follows. In Section 2, the related literature is in-

troduced. In Section 3, we describe the behavior of each component of this economy: a household

that consists of a worker and investor, a firm, a government, and a disaster shock. In Section 4, we

solve the investor’s and the government’s intertemporal utility maximization problems and describe

the model’s equilibrium. In Section 5, we show the existence of the optimal policy and interpret its

conditions. In addition, we conduct comparative statics of the optimal preventive expenditure with

respect to disaster probability. Furthermore, we obtain the expected economic growth rate and calcu-

late its value using a numerical example, by changing disaster probability. Section 6 summarizes the

study.

2 Related literature

As mentioned in the Introduction, theoretical studies on adaptation are scarce, especially optimal

disaster prevention, but some do exist. An early study of reaction to natural disasters is Lewis and

Nickerson (1989), which considers private protection under deterministic disaster damage. With re-

gard to studies of adaptation in a stochastic environment in which the damage caused by disasters is
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uncertain, Kane and Shogren (2000), Anbarci et al. (2005), and Cohen and Werker (2008) construct

static models. The first study analyzes adaptation and mitigation simultaneously given a disaster oc-

currence probability distribution and the last two studies focus on optimal disaster prevention given a

certain disaster probability. In Anbarci et al. (2005), when an earthquake occurs, the agent may die

and disaster -preventive expenditure can decrease mortality. Cohen and Werker (2008) study the dif-

ference between prevention and reconstruction and show that moral hazard exists from reconstruction.

With regard to a dynamic model with adaptation policy, to the best of my knowledge, Bretschger and

Valente (2011), De Zeeuw and Zemel (2012), Brechet et al. (2013), and Tsur and Withagen (2013)

construct such a model. De Zeeuw and Zemel (2012) and Tsur and Withagen (2013) study the dy-

namics of adaptation (the former authors also study mitigation) under a stochastic once-and-for-all

disaster (or catastrophe). In such a setting, unlike our setting in which natural disasters may occur

in each period, a maximum principle can be used and the calculation becomes easier. Brechet et al.

(2013) study the dynamics of adaptation and mitigation with a stock of pollutants rather than stochas-

tic climate change and so do Bretschger and Valente (2011). In contrast, Rietz (1988), Barro (2009),

Gourio (2012), and Ikefuji and Horii (2012) construct a dynamic model that includes natural disas-

ters as a stochastic event. The first three studies concentrate on asset pricing, especially on solving

a risk-premium puzzle, and the last study obtains an optimal carbon tax, such that it maximizes the

economic growth rate under a full-coverable disaster shock. However, their motives are not to obtain

optimal prevention, and hence, these terms do not appear in their model. If we regard preventive ex-

penditure as a maintenance cost, which is a similar idea in that both can decrease the depreciation rate

of the capital stock, then some studies exist on optimal levels of maintenance, such as Rioja (2003)

and Kalaitzidakis and Kalyvitis (2004). Two important differences between our study and theirs are

as follows. First, we take account of the Poisson process of disaster occurrence, and hence, our model

can consider household behavior toward uncertainty. Second, we consider a trade-off between pre-

ventive and productive government expenditure, unlike these studies. Neither of these studies treat

such problems. A recent study that is close to ours is Barro (2015). In his model, which is similar

to Barro (2009), the damage caused by disasters occurs stochastically, and he considers an optimal

consumption/savings problem with utility maximizing environmental protection, which decreases the
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probability of a natural disaster occurring. The difference between Barro’s study and ours is that his

model adopts a Lucas-tree asset pricing model with an Epstein-Zin-Weil utility function, and hence,

the (intrinsic) economic growth rate is exogenous. In our model, on the contrary, the economic growth

rate is also endogenous.

3 The environment

3.1 A household

This model is characterized by discrete time and a closed economy. In this economy, there are two

types of infinitely-lived households, which each comprise a worker or an investor. The number of

workers is normalized to one and that of investors is also one. They have the same utility functions

and discount factors. However, their behavior and income are different. A worker supplies one unit of

labor inelastically and earns wagew from a firm. We assume that the worker consumes all of his/her

income after paying tax (i.e., the worker does not save).4 On the contrary, an investor earns income

by selling his/her capital remaining from the previous period. The price of capital is denoted byr,

which is equivalent to the net interest rate. Here, we assume that the investor’s capital is held in the

form of machinery, and hence, there is a risk that some of his/her capital is damaged by a natural

disaster.5 In addition, we assume that there is no disaster insurance market to compensate for the

investor’s damaged machinery, that is, disaster risk cannot be pooled and diversified.6 Therefore, the

investor must respond to disaster risk by self-insurance or an adjustment of savings. In this setting,

the consumption of workercw is derived as

cwt = (1− τt)wt, (1)

whereτt is the tax rate for both the worker and the investor in periodt. 7

4This setting enables us to obtain closed-form consumption and savings functions under a general equilibrium model
with a CRRA utility function. Such a setting is assumed in some studies on optimal tax. The best-known study that adopts
this setting is Judd (1985).

5In reality, an investor’s savings are held in monetary assets, which are not damaged by disasters, and a firm purchases
machinery by borrowing savings from the investor before disaster risk is realized. Hence, the agent who faces uncertainty
is not the investor but the firm. However, with regard to our calculation, this setting is essentially equivalent to the setting
we use in this model. Therefore, we adopt the model described in the text.

6This assumption results from the statement presented in footnote 3. However, we consider how the existence of a
competitive disaster insurance market affects an investor’s behavior in Subsection 5.4.

7It may be assumed that the tax rate for the worker and investor should be separated. However, since one of the tax
rates is represented by the linear combination of the other tax rate at the optimal policy, (i.e., the tax rate for the worker is a
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The investor’s problem is somewhat cumbersome. His/her purpose is to maximize his/her ex-

pected utility under a budget constraint. The expected utility for the investor in period 0 is given

by

U(cIt) = E0

∞∑
t=0

βt c1−γ
It

1− γ , (2)

wherecIt is the investor’s consumption in periodt, β ∈ (0,1) indicates a discount factor, andE0

represents an expectation operator in period 0. The reason why an expectation operator exists in (2)

is that we take account of natural disasters that occur stochastically. An instantaneous utility function

is characterized by a CRRA utility function, whereγ indicates the parameter of relative risk aversion.

Hereafter, we assumeγ > 1, that is, the investor is relatively risk averse, which is plausible based

on both intuition and the findings of empirical studies. The budget constraint faced by the investor is

given by

at+1 = [1 + (1− τt)rt − δ]st − cIt . (3)

In (3), at+1 is the capital carried over to the next period, which has not yet been affected by disaster

risk, andδ ∈ (0,1) is the depreciation rate of capital. In addition,st is the resultant capital defined as

(6) later.

3.2 A firm

A representative firm exists in this economy. It produces final goods, whose price is set as a numeraire,

by using machinery from investors and labor from workers. In addition, productive government

expenditure positively affects the firm’s production. Its production technology is given by

Yt = AKαt (LtGt)
1−α, A > 0, α ∈ (0, 1), (4)

whereYt is final good production in periodt, Kt represents the capital stock in periodt, Lt is the labor

force in periodt, andGt represents productive government spending in periodt. The purpose of this

firm is to maximize profit. Since the firm can employKt andLt givenGt and use them before disaster

risk occurs, it faces no uncertainties.

positive linear function of the tax rate for the investor), there is little effect on the result by assuming the same tax rate for
the worker and investor.
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3.3 A government

Next, we turn to the government’s behavior. The government is benevolent and its purpose is to

maximize total household welfare. The government can control household utility by levying taxes

and using the tax revenue to implement its policy. The government faces two policy alternatives

in period t: disaster-preventive expenditureHt and productive government expenditureGt. In this

model, following Barro (1990), we assume thatGt is a certain ratio of output, that is,Gt = gtYt

for gt ∈ (0,1). The government knows this rule and controlsgt when choosing the optimal policy,

while the household and firm do not know this rule and takeGt as given. Preventive expenditure

can reduce the damage to physical capital caused by disasters. Here, we assume that damage has a

decreasing relationship with respect not toHt but to the preventive expenditure–production ratioht,

whereHt = htYt. This is plausible for the following reasons. In this setting, as the absolute value

of preventive expenditureHt increases, damage decreases, while when output levelYt increases, all

other things being equal, damage increases. The former is natural and the latter would be true since if

Yt is large, the economy is filled with machinery, buildings, and so on. Then, these are destroyed in a

chain reaction when a disaster occurs, which could magnify the damage ratio. Let us assume that the

government’s budget balances in each period. Then, the budget constraint becomes

τt(rtst + wt) = (gt + ht)Yt. (5)

Hereafter, we denote the policy{τt,ht,Gt} asπt.

3.4 Disaster shock

We define a disaster shock as follows.8

• A disaster may occur after the firm finishes producing, households finish consuming and saving,

and the government finishes levying taxes and implementing its policy in each period.

8In addition to the following settings, we can introduce the stochastic severity caused by disasters. In this case, we
capture the degree of severity by introducing a random variabled, which is distributed with probability density function
ϕ(d) ⊂ [d,d] and cumulative distribution functionΦ(d). However, introducing this term has little effect on the following
calculation, and the comparative statics with respect to severity resembles that with respect to disaster probability. There-
fore, we omit this term. To introduce such severity, this version of the conditions for optimal policy can be obtained by
replacingD(h) with ED(h, d) in the equation below, whereE remains in the latter since the damage caused by disasterD(h)
contains a random variabled after the disaster occurs.
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• If a disaster occurs, a certain ratio of the existing capital stock denoted byDt ∈ [0, 1] is de-

stroyed. In this study, we call this ratiothe damage ratio.

• The probability of a disaster occurring is given byp, which is a constant and exogenous value.

We call thisthe disaster probability. The investor and government know this probability pre-

cisely. Based on these assumptions, we can write the next level of capitalst+1 as

st+1 =

(1− Dt)at+1 with probability p,

at+1 with probability 1− p.
(6)

• When the government pays preventive expenditure in periodt, the damage ratio lowers to some

degree. That is, when the government incurs preventive expenditure in periodt, the damage to

the capital stock reduces. Here, we assume that preventive expenditure in periodt affects only

the damage ratio in periodt and there are no effects thereafter.

From the fourth assumption, we can write the damage ratio in periodt as a function ofht, such as

Dt = D(ht). As for the relationship between the damage ratio and preventive expenditure–production

ratio, we assume the following.9

Dt = D(ht) ∈ (0,1), D′(ht) < 0, D′′(ht) ≥ 0. (7)

The second and third properties indicate that the damage ratio function is decreasing, twice differen-

tiable, and weakly convex with respect to the preventive expenditure–production ratio. The convexity

of the damage ratio function implies a decrease in the marginal effectiveness of preventive expendi-

ture. Hereafter, we abbreviate the subscriptst and t + 1 for notational simplicity. These equations

enable us to solve optimal policyπ∗.

9For example, these properties are satisfied under the following fractional function:

D(ht) =
d̂

1− d̂
− d̂

ht − d̂
,

whered̂ = −
(
1− d̄

)
/d̄ for d̄ ∈ (0,1). In this specification,̄d is the upper limit of the damage ratioD(0) = d̄, while the lower

limit of damage ratio is zeroD(1) = 0. In the numerical example presented in Subsection 5.3, we use this specification.
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4 Model solution

4.1 Equilibrium

In this subsection, we define the equilibrium of this economy. First, we obtain the market equilibrium.

That is, given the announced policyπ = {τ,h,G} and initial savingss0,

1. A worker consumescw as (1) and an investor maximizes his/her intertemporal utility. Then, the

worker’s and investor’s consumption functions and the investor’s savings function are obtained,

2. A firm choosesK andL to maximize its profit,

3. Demand for and supply of inputs are equal, that is,

s= K, L = 1, (8)

4. The budget constraint for the government (5) is satisfied.

Second, given the household’s consumption and savings functions, initial conditionss0, and the

government’s budget constraint (5), the government chooses optimal policyπ∗ ≡ {τ∗, h∗, g∗} such that

it maximizes the sum of the investor’s and worker’s intertemporal utility10 given by

E0

∞∑
t=0

βt
[

1
1− γc1−γ

w +
1

1− γc1−γ
I

]
.

Finally, under the optimal policy, we can obtain the household’s optimal level of consumption and

savings{c∗w, c∗I , ã∗}.

4.2 Investor’s problem

To obtain the optimal policy, we must first solve the investor’s utility maximization problem by maxi-

mizing (2) subject to (3), givenπ and initial savingss0. DenotingV(s) as the investor’s value function,

we can describe the investor’s problem in periodt as

V(s) = max
{cI ,ã}

 c1−γ
I

1− γ + βEV(s̃)

 ,
subject to ˜a = [1 + (1− τ)r − δ]s− cI ≡ Rs− cI , givenπ, s0.

(9)

10This procedure is used in, for example, Glomm and Ravikumar (1994) and Rioja (2003). Under this rule, a problem
exists in which a government has an incentive to change its policy after the household and firm finish their behavior.
However, by assuming that the government commits its announced policy, we ignore this problem. In addition, see also
Ljungqvist and Sargent (2004, Chapter 15) for this problem.
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In (9), the termE indicates the expectation operator in periodt and the superscript ˜ refers to the

value of the variables in the next period. The termR ≡ [1 + (1 − τ)r − δ] summarizes the return on

savings. By solving this dynamic programming problem, we can obtain the investor’s savings and

consumption functions analytically, as shown in Proposition 1.

Proposition 1 By solving (9), we can obtain the investor’s savings and consumption functions as

follows:

ã = R1/γ
[
β(p(1− D(h))1−γ + 1− p)

]1/γ
s≡ (Rρ(h))1/γs≡ σ(τ,h)s, (10)

cI = [R− σ(τ,h)]s, (11)

whereρ(h) ≡ β(p(1− D(h))1−γ + 1− p) is a risk-adjusted discount factor andσ(τ,h) ≡ (Rρ(h))1/γ is

the investor’s savings rate for current savings.

Proof.

See Appendix A.1 for deriving (10). Then, substituting (10) into (3) yields (11).�

Note that the savings function is affected by disaster probabilityp and preventive expenditureh.

The intuition of this is discussed below. Moreover, to make consumption positive, we haveR−σ > 0.

As shown in Proposition 3 described in Subsection 5.1., this inequality must hold under the optimal

policy and hence, we confine the case to that in which the investor’s consumption is positive.

Before moving onto the government problem, we check the signs of the derivatives of the savings

rateσ(τ,h) with respect to disaster probabilityp and each policy variable. We can check the sign of

the derivative of the savings rate on the tax rateτ as

∂σ(τ,h)
∂τ

< 0,

which is natural since a higher tax rate decreases the investor’s disposable income and savings. In

contrast, raising the tax rate has an ambiguous effect on the investor’s consumption since savings

decrease, while disposable income decreases, and we do not know which effect is dominant. However,

when an increase in the tax rate decreases consumption, this condition can be written asσ < γR.

Hence, if consumption is positive, that is,R> σ, this is satisfied. Positive consumption is guaranteed

under the optimal policy, as shown in Proposition 4, and a higher tax rate also decreases the investor’s
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consumption. The derivative ofσ(τ,h) on p is as follows:

∂σ(τ,h)
∂p

> 0.

Since the investor is relatively risk averse (γ > 1) and cannot diversify risk through disaster insurance,

s/he must mitigate disaster risk by self-insurance. Then, s/he has an incentive to save in the case

of disasters because s/he prefers consumption smoothing between a disaster-stricken state and no

disaster state, which is known as precautionary savings.11 12 On the contrary, the effect of preventive

government expenditure on the savings rate is

∂σ(τ,h)
∂h

< 0.

This derivative has the opposite sign todσ(τ,h)/dpbecause an increase inh reduces the expected loss

of disasterpD(h), and the investor need not prepare more than before and thus saves less. We call this

effect the precautionary effect since higher preventive expenditure dilutes the investor’s precautionary

savings motives if s/he is relatively risk averse.

4.3 Firm’s problem and equilibrium condition

The representative firm maximizes its profit by choosingK andL given its factor price and policy.

The familiar conditions for profit maximization are given by

r = αAKα−1(LG)1−α,

w = (1− α)AKαL−αG1−α.

By substituting (8) and the profit maximization conditions into (1), (10), and (11), we can obtain the

consumption levels of both agents and the investor’s savings function under the market equilibrium

11See, for example, Sandmo (1970) for precautionary savings.
12Moreover, ifγ = 1, which is the logarithmic preference, disaster probability does not affect the household’s savings

because a higherp decreases the expected return on savings, while disposable income also decreases. Under the logarithmic
preference, a change in disaster probability does not affect the household’s savings owing to an offset of income and the
substitution effect. The amount of precautionary savings is equivalent to that of a decrease in savings from a decrease in
expected intertemporal income.
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as follows:

cE
w = (1− τ)(1− α)AKαG1−α,

cE
I = [R− σ(τ,h)]K, whereR= 1+ (1− τ)αAKα−1G1−α − δ,

ãE = σ(τ,h)K, whereR is defined above.

(12)

By using (12), the government budget constraint (5) is reduced to

g = τ − h. (13)

4.4 Government’s problem

Given the equilibrium condition (12) and under the budget constraint for the government (13), the

government solves the following dynamic programming problem by expressingVg(K) as its value

function. Note that the government knowsG = gY, and the production function for the government

becomesY = (Ag1−α)1/αK ≡ B(g)K. Moreover, for the government,R = (1 − τ)αB(g) + 1 − δ and

w = (1− α)B(g)K. Considering these, the government’s dynamic programming problem is given by

Vg(K) = max
π

{[
1

1− γc1−γ
w +

1
1− γc1−γ

I

]
+ βEVg(K̃)

}
,

subject to (12) and (13), givenK0.

(14)

We define the consumption propensity for the government ¯c as follows:[
1

1− γc1−γ
w +

1
1− γc1−γ

I

]
=

1
1− γ

[
[(1 − τ)(1− α)B(g)]1−γ + (R− σ)1−γ] K1−γ ≡ 1

1− γ c̄K1−γ. (15)

Then, the dynamic programming problem (14) is reduced to

Vg(K) = max
π

{
1

1− γ c̄K1−γ + βEVg(K̃)

}
,

subject to ˜a = σK, g = τ − h, givenK0.

(16)

By substitutingg = τ−h into B(g), this problem contains only two endogenous variables,τ andh.

From the calculation presented in Appendix A.2, we can obtain the first-order conditions with respect
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to {τ,h} as13

1
1− γK−γ

∂c̄
∂τ
+ βpV′g((1− D)ã)(1− D)

∂σ

∂τ
+ β(1− p)V′g(ã)

∂σ

∂τ
= 0, (17)

1
1− γK−γ

∂c̄
∂h
+ βpV′g((1− D)ã)

[
(1− D)

∂σ

∂h

]
− βpV′g((1− D)ã)D′(h)σ + β(1− p)V′g(ã)

∂σ

∂h
= 0,

(18)

where the superscript′ implies a derivative. The marginal condition of tax rate (17) is interpreted as

follows. The second and third terms of (17) are the marginal disutility from the reduction in savings

because of a reduction in income from raising the tax rate. The first term includes the marginal

disutility from the reduction in consumption because of a reduction in income and the marginal benefit

from raising tax, which means that the levied tax is used as productive government expenditure. The

interpretation of (18) is similar to that of (17). The second and fourth terms are the marginal disutility

from raisingh on savings. A decrease in savings comes about from two effects. The first is a reduction

in the return on savings because of the crowding out effect. Higher preventive expenditure means

less productive expenditure given the tax rate to financeh, and this leads to a decrease in the return

on savingsR. The second effect is that higher preventive expenditure lessens an investor’s saving

incentives because of the precautionary effect, as mentioned in Subsection 4.2. Higher preventive

expenditure increases expected savings and this shifts the investor’s savings to consumption. The

third term of (18) is the direct effect of preventive expenditure which captures the following benefit.

Higher preventive expenditure decreases the damage caused by disasters byD′(h), and we obtain

the marginal utility byβV′g((1 − D)ã)σ × D′(h) because of an increase in expected intertemporal

income. With probabilityp, we can enjoy this utility, and hence, this term is the marginal utility

from the direct effect of raising preventive expenditure. The first term summarizes the change in the

household’s consumption, which comes from two effects. The first is a decrease in the worker’s and

investor’s consumption because of the crowding out effect, while the second is an increase in the

investor’s consumption from the precautionary effect.

For simplicity, hereafter, we assume the full depreciation of physical capital, that is,δ = 1. Then,

13For notational simplicity, we omit the variable of the function such thatB(g)→ B if it causes no confusion.
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from the calculation in Appendix A.2, we can obtain the optimal policy conditions as follows:[
(1− α)1−γ[(1 − τ)B]−γ + (R− σ)−γα

(
γR− σ
γR

)
+

c̄ασ
(R− σ)γR

]
[(1 − τ)B′ − B] = 0, (19)

−
[(
γ +

σ

R− σ

)
[(1 − α)(1− τ)B]1−γ + (R− σ)−γγR

] 1− α
α(τ − h)

+
[
γ(R− σ)−γ + [(1 − α)(1− τ)B]1−γ(R− σ)−1

]
σ

F(h)
ρ
= 0,

(20)

where, for convenience, we define functionF(h) as follows:

F(h) ≡ βp −D′

(1− D)γ
. (21)

FunctionF(h) indicates the marginal direct benefit from raising preventive expenditure, and this is a

decreasing function since, from (7),

F′(h) = −βp ∂
∂h

(
D′

(1− D)γ

)
= −βpD′′(1− D) + γD′2

(1− D)1+γ
< 0.

This means that the marginal direct benefit from raising preventive expenditure is decreasing. Here-

after, we assume the following to ensure that an inner solution of optimal preventive expenditure

exists.

Assumption 1 The damage ratio function (7) satisfies the following.

α lim
h→0

F
ρ
+

γ − 1
1+ limh→0(R− σ)

> lim
h→0

R
σ
.

Assumption 1 states that a marginal direct benefit under zero preventive expenditure must be suffi-

ciently large to satisfy the above expression. Otherwise, there may be a case in which it is optimal

not to invest in preventive expenditure since there is little marginal benefit even under zero preventive

expenditure. Note that imposing this assumption is, in fact, less restrictive than imposing the Inada

condition of the damage ratio function, limh→0 D′(h)→ ∞.

By simultaneously solving (19) and (20), we can obtain the optimal policy pair{τ∗, h∗}. Note that

the value of the pair, if any, is state- and time- independent since the return on savingsR is constant

because of theAK production structure and hence, (19) and (20) do not contain any state variables.

From the budget constraint for the government (13), the optimal productive expenditure–production
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ratio g∗ becomesτ∗ − h∗. Given optimal policyπ∗, the resulting consumption and savings functions

are

c∗w = (1− τ∗)(1− α)B(g∗)K,

c∗I = [R∗ − σ(τ∗, h∗)]K with R∗ = (1− τ∗)αB(g∗), σ(τ∗, h∗) = (R∗ρ(h∗))1/γ

ã∗ = σ(τ∗,h∗)K with σ(τ∗, h∗) defined above.

(22)

5 Optimal disaster-preventive expenditure

5.1 Existence and conditions of the optimal policy

At first glance, optimal conditions (19) and (20) are too complicated to deal with. However, these

conditions can be simplified as shown in the following proposition.

Proposition 2 Assume R−σ ≥ 0. Then, from (19), the optimal policy satisfies the following equation:

(1− τ)B′ = B⇔ τ = αh+ 1− α→ τ = τ(h). (23)

By using (23), (20) becomes[
γ(R− σ)1−γ + [(1 − α)(1− τ)B]1−γ] z

F
ρ

=
[
(γ + z)[(1 − α)(1− τ)B]1−γ + (R− σ)−γγR

] 1
α(1− h)

,

(24)

where z= σ/(R− σ) is the savings–consumption ratio for the investor and all tax ratesτ in (24) are

evaluated atτ = τ(h). The optimal preventive expenditure h∗ satisfies (24).

Proof.

First, we prove that the first term of (19) must be positive under non-negative consumptionR−σ ≥

0. When we use the definition of ¯c and rewrite the first term of (19), it becomes[
1+

ασ

(R− σ)γR

]
[(1 − α)(1− τ)B]1−γ + α(R− σ)−γ.

Hence, ifR− σ ≥ 0, this term is positive. Therefore, by dividing both sides of (19) by the first term

of (19), we obtain (23).

Next, we show that under (23), (20) becomes (24). ConsideringB = (Ag1−α)1/α, the first equation

of (23) implies the second one and this impliesg = (1− α)(1− h) and (1− τ) = α(1− h). By defining
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z≡ σ/(R−σ) as the investor’s savings–consumption ratio and substitutingτ− h = (1−α)(1− h) and

z into (20), we obtain (24).�

The first condition, (1− τ)B′ = B, implies that the government choosesτ such that a marginal

increase in the household’s total income from more productive government expenditure is equal to a

marginal decrease in that from raising the tax rate. According to (23), ifh = 0, τ = g = 1− α, which

is equivalent to the result of Barro (1990); in addition, when the government finances one unit of

preventive expenditure,α% is collected by raising the tax rate and (1−α)% is collected by decreasing

productive expenditure. The second equation of Proposition 3, (24), which is the most important

equation in this model, summarizes the marginal benefit and disutility from preventive expenditure.

The left-hand side (LHS) of (24) is the marginal utility and the right-hand side (RHS) is the marginal

disutility from preventive expenditure. The LHS of (24) summarizes the marginal utility from two

effects, namely the precautionary effect and anet direct effect. The first term implies a marginal

increase in utility from an increase in the investor’s consumption since higher preventive expenditure

causes an investor to shift savings to consumption owing to the precautionary effect. The second

term, thenetdirect effect, consists of two terms. One is the increase in utility from the direct effect,

while the other is the marginal disutility from a decrease in savings because of the precautionary

effect. Interestingly, the sum of these two effects becomes positive, and hence, it is categorized on

the LHS and we refer to it asnet since it includes the marginal disutility from the precautionary

effect. 14 The RHS of (24) is marginal disutility, which comes from the crowding out effect. The

first term is the decrease in the worker’s consumption, the second is the decrease in the investor’s

consumption, and the third term is the decrease in the investor’s savings because of the crowding out

effect. 15 By equalizing the marginal benefit and cost of raising preventive expenditure, we obtain

14A marginal decrease in utility from a decrease in savings because of the precautionary effect is captured by ¯cσ(1 −
γ)/γ(R− σ) ∗ F/ρ, while a marginal increase in utility from the direct effect is given by ¯cσ/(R− σ) ∗ F/ρ. Hence, the sum
of these two terms becomes ¯cσ/γ(R− σ) ∗ F/ρ > 0. See Appendix A.2 for why these terms represent the precautionary
effect and direct effect.

15If logarithmic utility is adopted, which is the case ofγ = 1, (24) can be rewritten as the following simple form.

F(h) =
1

α(1− h)
.

We obtain such a simple form underγ = 1 as the precautionary effect does not exist. In such a case, at the same time, the
direct effect and crowding out effect are not as complex as in this model. In fact, in the above equation, the LHS implies a
direct effect, while the RHS implies a crowding out effect.
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the optimal preventive expenditure ratio. The presence of the precautionary effect implies that, if we

were to consider the optimal prevention under the static model or instantaneous logarithmic utility,

underinvestment in prevention in contrast to under CRRA utility could occur.

The important point is whether there existsh∗ that satisfies (24). To identify the existence of the

root of (24), we defineR(h) ≡ (1−τ(h))αB(g(h)), whereg(h) ≡ (1−α)(1−h) and impose the following

assumption.

Assumption 2 When h= 0, the investor’s consumption is positive, that is,

R(0)γ−1 > ρ(0), ⇔
{
α2

[
A(1− α)1−α] 1

α

}γ−1

> β(p(1− D(0))1−γ + 1− p).

This assumption should be satisfied since ifh = 0, this model is similar to Barro’s (1990) model;

however, even in this case, the investor’s consumption should be positive. By combining Assumptions

1 and 2, we have the following proposition considering the existence ofh.

Proposition 3 Given Assumptions 1 and 2, at least one root of (24), h∗, exists, and this is less thanĥ,

whereĥ satisfies R(ĥ)γ−1 = ρ(ĥ).

Proof. See Appendix A.3.

Proposition 3 guarantees optimal preventive expenditureh∗. Hence, under the optimal policy, the

investor’s consumption must be positive sinceh∗ < ĥ. There are probably multiple candidates forh∗,

but we do not treat this problem hereafter. Onceh∗ is determined, the optimal tax rate is given by

τ∗ = αh∗ + 1− α and the optimal productive government ratio isg∗ = (1− α)(1− h∗) from (23).

5.2 Comparative statics with respect to disaster probability

Of the parameters in equation (24), we focus only on disaster probabilityp. Then, we can obtain the

following proposition.

Proposition 4 The optimal preventive expenditure ratio h∗ increases when disaster probability p

increases. That is, we have the following sign of the derivative:

∂h∗

∂p
> 0. (25)
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Proof. See Appendix A.4.

Although this is an intuitive result, the mechanism is somewhat complex. Recall that the optimal

condition for preventive expenditure can be divided into the direct, precautionary, and crowding out

effects. An increase in disaster probability influences all three effects. Hereafter, we consider the

effect of a rise inp. However, before considering these effects, it would be useful to revisit the effect

of higher probability on the investor’s behavior. Higher disaster probability decreases the expected

intertemporal income of the investor, thereby causing his/her consumption and savings to decrease.

We call this effect theincome effectof higher probability. On the contrary, in the event of a disaster,

the investor saves more than previously, meaning that his/her consumption decreases, whereas his/her

savings increase as disaster probability rises. We call this effect thesubstitution effect.

• The direct effect

When disaster probability increases, the direct effect also rises. In such a case, an income effect

arises and the household’s savings and consumption decrease. Then, the favored policy is the

one that can mitigate the expected damage of natural disasters since higher marginal utility

is derived owing to smaller consumption and savings and the concavity of the investor’s value

function. That is, since the investor experiences a more severe situation without any prevention,

it is optimal to invest in preventive expenditure through the direct effect.

• The precautionary effect

Higher disaster probability causes this effect to rise, and thus the optimal preventive expenditure

increases. This effect comes from the substitution effect, that is, the rise inp shifts consumption

to savings owing to the precautionary effect. Then, relatively scarce consumption makes the

marginal utility of consumption increase because of the concavity of the utility function. Since

the government knows there is an increase in marginal utility from consumption, it invests in

preventive expenditure so that the investorreallocatessavings to consumption.

• The crowding out effect

Higher disaster probability worsens the crowding out effect, which stems from the income ef-

fect. It decreases the investor’s expected income, and hence, consumption and savings decline.
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Now that consumption and savings are lower than previously, the marginal cost of giving up

one unit of consumption and savings increases and the crowding out effect is magnified.

As p increases, there is an increase in the marginal benefit, consisting of the direct and precau-

tionary effects, while there is also an increase in the marginal cost, which is the crowding out effect.

16 Thus, the sign of∂h∗/∂p could be ambiguous. However, as shown in Appendix A.4, the first two

positive effects must dominate the third negative effect under the optimal policy. Moreover, since the

optimal preventive expenditure rises as disaster probability increases, the optimal tax rate increases

by α ∗ dh∗

dp from (23), and productive government expenditure decreases by−(1− α) ∗ dh∗

dp .

5.3 Expected growth rate

Since this model eventually reduces to theAK model, endogenous growth arises. This model has a

stochastic disaster shock, and hence, we evaluate the growth rate with expectations. The expected

economic growth rate is defined as the growth rate of production, which is equivalent to that of the

physical capital stock according to theAK construction. The savings rate per unit of physical capital

is given asσ(τ∗, h∗) under the optimal policy, and the expected growth rate is

Egt(h
∗) = Et

Kt+1 − Kt

Kt

=
p(1− D(h∗))σ(τ∗, h∗)Kt + (1− p)σ(τ∗, h∗)Kt − Kt

Kt
= (1− pD(h∗))σ(τ∗, h∗).

Furthermore, sinceR∗ is rewritten asα2A1/α(1 − α)(1−α)/α(1 − h∗)1/α ≡ Rc(1 − h∗)1/α, by using the

definitions ofσ andρ, we obtain the expected growth rate as

Egt = Eg= (1− pD(h∗))
{
βRc(1− h∗)1/α

[
p(1− D(h∗))1−γ + 1− p

]}1/γ
. (26)

Hereafter, as an important form of comparative statics, we examine how an increase in disaster

probability affects the growth rate. Before considering the case of CRRA utility, for reference, we

consider the logarithmic utility case (γ = 1). In this case, the precautionary effect vanishes and the

expected growth rate is given as follows:

Eg= (1− pD(h∗))βRc(1− h∗)1/α.

16In the first half of Appendix A.4, we show this result mathematically by using equation (24).
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Higher preventive expenditure affects the expected growth rate through the following two channels.

The first effect is that an increase in disaster probability affects the first term (1− pD(h∗)). If p

increases, the expected loss increases givenh∗, while the damage caused by the disaster decreases

since preventive expenditure increases asp rises. Thus, the effect of an increase inp on (1− pD(h∗))

is ambiguous: if the effect of the decrease in damage dominates that of the increase in the expected

loss, (1− pD(h∗)) increases and vice versa. Whether (1− pD(h∗)) is increasing inp thus crucially

depends on the shape of the damage ratio function. The second channel is the crowding out effect,

that is, greater prevention reduces the term (1− h∗)1/α. This is because greater prevention requires

more tax revenue and a decrease in productive government expenditure, each of which decreases

the return on capitalR and reduces savings. This leads to a reduction in the expected growth rate.

Thus, if (1− pD(h∗)) is decreasing inp, the economic growth rate is also decreasing inp, while if

(1− pD(h∗)) is increasing inp, there is an inverse U-shaped relationship between disaster probability

and the economic growth rate.

In the CRRA utility case, there is another effect in addition to those shown in the logarithmic

utility case. The channel stems from the precautionary savings motive. Asp increases, an investor

saves more in case of disaster, which enhances economic growth. On the contrary, s/he reduces

precautionary savings since higherp accompanies higher preventive expenditure and this decreases

the expected damage. The lower savings result in a decrease in the growth rate. Thus, generally,

whether precautionary savings increase is ambiguous: if precautionary savings increase (decrease) as

p rises, this effect enhances (hampers) economic growth. In fact, in (26), the following five channels

of the effect of an increase inp exist:

Eg= (1− p︸︷︷︸
(i)

D(h∗)︸︷︷︸
(ii)

)

βRc (1− h∗)1/α︸       ︷︷       ︸
(iii)

 p︸︷︷︸
(iv)

[(1 − D(h∗))1−γ︸            ︷︷            ︸
(v)

−1] + 1




1/γ

. (27)

Thus, in the CRRA utility case, the positive effects of an increase in disaster probability on the ex-

pected economic growth rate are twofold: (ii) a decrease in the expected damage because of an

increase in preventive expenditure and (iv) an increase in precautionary savings through a rise in dis-

aster risk. On the contrary, the negative effects are threefold: (i) an increase in the expected loss,

(iii) the crowding out effect caused by financing the higher preventive expenditure ratio, and (v) the
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decrease in precautionary savings through a decline in the expected economic loss because of the

higher preventive expenditure ratio. If the former two effects dominate the latter three,Eg increases

asp rises, and vice versa.

Since the overall effect of disaster probability on the economic growth rate is complicated, in what

follows, we resort to a numerical example. We focus on one state in the United States by using the

data presented in Figure 1(b), and we take one period as one quarter (three months). We assume that

the damage function isD(h) = d̂
1−d̂
− d̂

h−d̂
as in footnote 9. We set the benchmark parameter values as

β = (0.95)1/4 ≃ 0.987, γ = 2, α = 1/3, A = 4.076, p = 14/75 ≃ 18.7%, andd̂ = −0.25. We set

state-average quarterly disaster probability as about 18.7% since natural disasters occurred 28 times

in the United States in 2015 according to Figure 1(b), and thus average quarterly disaster probability

per state is 28/(50 × 3) ≃ 0.187. 17 The other parameter values except forA and the parameters

on the damage ratio function are the usual parameter values. The value ofd̂ is arbitrarily selected

asD(0) = 0.8, that is, when there is no prevention, 80% of physical capital is lost when disasters

occur. Total factor productivityA is set as the resulting economic growth rate, which becomes about

(1.02)1/4 ≃ 1.005. Further, we consider the optimal preventive expenditure and expected growth rate

under the values of disaster probability from 5% to 55% in steps of 5 percentage points in addition

to 18.7%. Under this parameter, the probability that exceeds 60% entails no investor’s consumption,

R(0)− σ(0) < 0, which violates Assumption 2, and hence, we focus on a probability less than 55%.

In this setting, Assumptions 1 and 2 hold, and the optimal preventive expenditure underp = 0.187 is

around 10.79%.

Figures 2(a) and 2(b) are scatter diagrams between disaster probability and the optimal preventive

expenditure and between disaster probability and the expected growth rate, respectively. The values of

p andh∗ are measured by percentage andEg is derived from (26). The optimal preventive expenditure

is given by the value for which (24) holds, and the optimal preventive expenditure–production ratio

ranges from 3.5% at p = 5% to 22.15% at p = 55% as probability increases, as in Figure 2(a).

As disaster probability increases, the optimal preventive expenditure rises, which is consistent with

Proposition 4. The corresponding expected economic growth rate, which is derived from (26) with

17We assume that natural disasters independently and identically occur in each state and do not affect more than one state
for simplicity.
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Figure 2: Results of the numerical example

the optimal preventive expenditure–production ratio, is given as in Figure 2(b). The interesting point

is that the expected growth rate has an inverse U-shaped relationship with disaster probability in this

parameter setting. The two positive effects dominate the three negative effects at low probability,

while the inverse is true at high probability. Until disaster probability reaches the threshold, which is

around 40%, the economic growth rate rises continuously and vice versa.

This result is consistent with the empirical results that the effect of disaster risk on economic

growth is empirically ambiguous. According to Albala-Bertrand (1993) and Skidmore and Toya

(2002), disaster risk increases with economic growth. On the contrary, Loayza et al. (2009) and

Noy (2009) show that disaster risk is positively related to economic growth in some countries and

negatively related to economic growth in others. According to this model’s result, for low disaster

risk, the former positive relationship is supported since higher disaster risk entails a higher economic

growth rate. In addition, the latter negative relationship is realized in this model. In a country with

low (high) disaster risk, there is a positive (negative) relationship between risk and economic growth.

5.4 Discussion on disaster insurance

In this subsection, we discuss the case in which a perfectly competitive disaster insurance market

exists and assess the effect on a household’s behavior. In particular, we consider the following disaster

insurance: if an investor paysqt × θt × at+1 to an insurance company, his/her asset is compensated
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by θt × at+1 from the company in case of disaster; in other words,qt denotes the insurance price and

θt denotes the insurance coverage. An investor can choose coverageθt to maximize his/her lifetime

utility. Then, the resulting assetst+1 becomes as follows:

st+1 =

[(1 − D(ht))(1− qtθt) + θt]at+1 with probability p

(1− qtθt)at+1 with probability 1− p.
(28)

Since the insurance market is competitive, the expected profit of the insurance company becomes

zero, that is,qt = p. If the disaster insurance can perfectly insure an investor’s asset from disaster

risks, the resulting asset is equalized with and without disaster occurrence. That is, when we define

perfectly insuring coverage asθ̂, it must satisfy

(1− D(h))(1− qθ̂) + θ̂ = 1− qθ̂⇔ θ̂ = D(h)
1+ D(h)q

. (29)

Here, we assume that the insurance company can offer coverage to the maximum ofϕθ̂, whereϕ ∈

[0,1] captures the incompleteness of disaster insurance reflecting measurement errors and so on.

ϕ = 1 means perfect disaster insurance, whileϕ = 0 means no disaster insurance. Moreover, as

described in footnote 3, for the top 10 natural disasters ordered by economic loss,ϕ ≃ 0.25. In this

situation, we can obtain the following proposition.

Proposition 5 If there is an insurance market in the economy, an investor choosesθt = ϕθ̂ and

savings are determined as

ã =
(ρϕR)1/γ

1− pϕθ̂
s≡ σϕs, (30)

whereρϕ is defined as

ρϕ ≡ β
p(

1+ (1− ϕ)D(h)[p(1− D(h)) − 1]
1+ (1− ϕ)D(h)p

)1−γ
+ 1− p

 , (31)

andσϕ ≡ (ρϕR)1/γ/(1 − pϕθ̂). In particular, if ϕ = 1 (perfect insurance),ρϕ = β and if ϕ = 0 (no

disaster insurance),ρϕ = β
[
p(1− D(h))1−γ + 1− p

]
= ρ.

Proof. See the first half of Appendix A.5.

If ϕ = 0, which is the same case as in the previous section, Proposition 5 corresponds to Proposition

1. Otherwise, an investor demands the upper limit of coverage because s/he is risk averse and some

disaster risks can be diversified through the disaster insurance. In particular, whenϕ = 1, ρ = β and
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the investor’s resulting savings become ˜s = (βR)1/γs irrespective of the occurrence of disasters since

income risk is perfectly diversified.

Then, how about the comparative statics of savings rateσϕ with respect top and h? In this

setting, in addition to the precautionary effect, there is another effect of raisingp andh onσϕ. When

p increases, insurance paymentpϕθ̂ increases through a rise in the insurance price. On the contrary,

if h increases, demand for insurance and insurance payment decreases since disaster risk decreases.

As a result, we have the following signs of the derivatives, although there is an extra effect through

the insurance market:
dσϕ
dp
> 0,

dσϕ
dh
< 0.

In summary, the signs are the same as those presented in the previous subsection, although the

values of the derivatives are more complicated.18 To consider these results, let us calldρϕ/di for

i = {p, h} themodified precautionary effectsandd(pθ̂)/di for i = {p,h} the insurance effects. Then,

we havedρϕ/dp > 0 and the modified precautionary effect increases savings asp increases, while

dρϕ/dh < 0 and the modified precautionary effect decreases savings ash increases, which holds

from the same reasoning as before. In terms of the insurance effects, we haveϕd(pθ̂)/dp > 0 and

ϕpdθ̂/dh< 0. Whenp increases, aside from the modified precautionary effect, the insurance payment

increases, and in turn,netsaving (saving after paying the insurance fee) decreases given the same ˜a;

hence, to sustain the same level of net saving, ˜a must increase. The inverse relation holds in the case

of an increase inh. Thus, both the modified precautionary effect and the insurance effect increase

(decrease) ˜a as p (h) increases. Sinceϕ is small in reality and the values of the derivatives are too

complicated, we imposeϕ = 0 to derive the optimal policy conditions.

6 Conclusion

In this study, we construct a macroeconomic model in which disasters destroy the existing capital

stock stochastically and we obtain an optimal policy, consisting of a tax rate, disaster-preventive ex-

penditure, and productive government expenditure. In this model, the optimal policy conditions and

the existence of the optimal policy are shown in Propositions 2 and 3. According to the condition for

18See the latter half of Appendix A.5 for the values of the derivatives.
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optimal preventive expenditure (24), the government must choose its optimal disaster-preventive ex-

penditure such that the marginal utility from preventive expenditure, which is a net direct effect and a

precautionary effect, is equal to the marginal disutility from the crowding out effect. The precaution-

ary effect is the effect in which higher preventive expenditure decreases a household’s precautionary

savings through a decrease in disaster risk, and the government optimally sets the preventive expen-

diture to reallocate the precautionary savings into consumption. Since we assume the CRRA utility

function and that disaster risks cannot be diversified, the precautionary effect arises. Furthermore, in

the comparative statics with respect to disaster probability, we obtain a positive relationship between

the optimal preventive expenditure and disaster probability. Higher disaster probability strengthens

the direct and precautionary effects, and so does the crowding out effect. Although the marginal bene-

fit of preventive expenditure and marginal cost of preventive expenditure increase simultaneously, we

can show that the marginal benefit necessarily dominates the marginal cost. When we consider the

relationship between the expected growth rate and disaster probability, we decompose the effect of

an increase of disaster probability into five channels: two positive effects and three negative effects.

Furthermore, we observe an inverse U-shaped relationship in the presented numerical example. Such

a non-monotonic relationship between disaster risk and economic growth is supported by the findings

of empirical studies such as Loayza et al. (2009) and Noy (2009).

Finally, we present some extensions of this model. One important extension would be to intro-

duce mitigation in addition to prevention. Mitigation can reduce disaster probability and it would

be interesting to investigate whether each policy is substitutive or complementary. This model may

suggest that each policy is substitutive since lower disaster probability leads to less preventive expen-

diture as the comparative statics show. The other extension would be to make this model more useful

by using a numerical method. For example, defining government expenditure and preventive expen-

diture as stock variables and introducing government debt as a safe asset could alter or strengthen

our results. Moreover, it would be interesting to introduce technical change and human capital as

disaster-proof capital. These modifications would lead to many endogenous variables, and this would

be difficult to solve by hand; hence, we would have to resort to a numerical calculation. Finally, as

briefly discussed in Subsection 5.4, the optimal policy in the disaster insurance market should also be
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considered. These research directions are left to future studies.

Appendices

A.1 Derivation of equation (10) from (9)

Equation (9) is rewritten as

V(s) = max
ã

{
(Rs− ã)1−γ

1− γ + βpV((1− D(h))ã) + β(1− p)V(ã)

}
. (A.1)

Guess thatV(s) = 1
1−γ (α1s)1−γ, whereα1 is an undermined variable. By substituting this into (A.1),

we obtain

(α1s)1−γ

1− γ = max
ã

{
(Rs− ã)1−γ

1− γ + βp
(α1(1− D(h))ã)1−γ

1− γ + β(1− p)
(α1ã)1−γ

1− γ

}
. (A.2)

The first-order condition with respect to ˜a is

(Rs− ã)−γ = βα1−γ
1 (p(1− D(h))1−γ + 1− p)ã−γ ≡ α1−γ

1 ρ(h)ã−γ,

whereρ(h) ≡ β(p(1− D(h))1−γ + 1− p) is a risk-adjusted discount rate. Hence,

ã = (β1 + 1)−1Rs, (A.3)

whereβ1 ≡ α−(1−γ)/γ
1 ρ(h)−1/γ. Substituting (A.3) into (A.2) and multiplying (1−γ) on both sides lead

to

(α1s)1−γ =
{
(Rs− (β1 + 1)−1Rs)1−γ + βp[α1(1− D(h))(β1 + 1)−1Rs]1−γ + β(1− p)[α1(β1 + 1)−1Rs]1−γ} .

The RHS of this equation can be simplified toR1−γβ−γ1 (β1+ 1)γs1−γ, and by equating the coefficients,

α
1−γ
1 = R1−γβ−γ1 (β1 + 1)γ.

By solving this equation with respect toα1, we can obtain

α1 = R
(
1− R(1−γ)/γρ(h)1/γ

)−γ/(1−γ)
.

Under this value,β1 becomes

β1 = R−(1−γ)/γρ(h)−1/γ − 1.

Therefore, by substituting this value into (A.3), savings function (10) is derived, that is,

ã = (Rρ(h))1/γs.
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A.2 The derivation of equations (19)–(20) from (16)

Equation (16) is, when we consider an expectation,

Vg(K) = max
π

{
c̄

1− γK1−γ + βpVg((1− D)ã) + β(1− p)Vg(ã)

}
,

subject to ˜a = σK, g = τ − h, givenK0.

By substituting the second constraintg = τ−h into B(g), this problem has only two endogenous vari-

ablesτ andh. Then, the first-order conditions with respect toτ andh are obtained by differentiating

(16), setting it to be equal to zero, and dividing both sides byK,

1
1− γK−γ

∂c̄
∂τ
+ βpV′g((1− D)ã)(1− D)

∂σ

∂τ
+ β(1− p)V′g(ã)

∂σ

∂τ
= 0,

1
1− γK−γ

∂c̄
∂h
+ βpV′g((1− D)ã)

[
(1− D)

∂σ

∂h

]
− βpV′g((1− D)ã)D′(h)σ + β(1− p)V′g(ã)

∂σ

∂h
= 0.

which are the same as (17) and (18). To obtain more tractable forms of these equations, we must

obtain a closed-form of the value function ofVg(K). Here, we guess thatVg(K) = α2
1−γK

1−γ + α3

for some undetermined variablesα2 andα3. Then, at the optimal policy, the derivatives of the value

function with respect to capital are given by

∂Vg(K)
∂K

= α2K−γ = c̄K−γ + β[p(1− D)1−γ + 1− p]α2σ
1−γK−γ = c̄K−γ + βρα2σ

1−γK−γ.

Therefore, by dividing both sides byK−γ and solving this equation with respect toα2,

α2 =
c̄

1− ρσ1−γ = c̄
R

R− σ > 0. (A.4)

Hence, we obtain the value function asVg(K) = α2
1−γK

1−γ + α3, whereα2 is defined as (A.6). By

substituting this value function into the first-order conditions (17) and (18) and dividing both sides by

K−γ, we can obtain such equations as

1
1− γ

∂c̄
∂τ
+

c̄
R− σ

∂σ

∂τ
= 0, (A.5)

1
1− γ

∂c̄
∂h
+

c̄
R− σ

∂σ

∂h
+

c̄σ
R− σ

F(h)
ρ
= 0, (A.6)
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where we useα2ρσ
−γ = c̄/(R−σ) andF(h) defined as (21). Next, we calculate a derivative of saving

rateσ andc̄ with respect toτ andh. Each derivative is derived as follows:

∂σ

∂τ
=
σ

γ

∂R
∂τ

1
R
=
ασ

γR
[(1 − τ)B′ − B],

∂σ

∂h
=
σ

γ

[
∂R
∂h

1
R
+
∂ρ

∂h
1
ρ

]
=
σ

γ

[
−(1− τ)αB′

R
+ (1− γ)F(h)

ρ

]
,

∂c̄
∂τ
=

[
(1− α)1−γ ∂

∂τ
[(1 − τ)B]1−γ +

∂

∂τ
(R− σ)1−γ

]

= (1− γ)
[
(1− α)1−γ[(1 − τ)B]−γ[(1 − τ)B′ − B] + (R− σ)−γ

[
∂R
∂τ
− ∂σ
∂τ

]]

= (1− γ)
[
(1− α)1−γ[(1 − τ)B]−γ + (R− σ)−γα

(
γR− σ
γR

)]
[(1 − τ)B′ − B],

∂c̄
∂h
=

[
−[(1 − τ)(1− α)]1−γ ∂

∂h
B1−γ +

∂

∂h
(R− σ)1−γ

]

= (1− γ)
[
−[(1 − τ)(1− α)]1−γB−γB′ + (R− σ)−γ

[
∂R
∂h
− ∂σ
∂h

]]

= (1− γ)
[
−[(1 − τ)(1− α)]1−γB−γB′ + (R− σ)−γ

[
(1− τ)αB′

(
σ − γR
γR

)
− 1− γ
γ
σ

F(h)
ρ

]]
,

where note that∂R/∂τ = α[(1−τ)B′−B], ∂R/∂h = −(1−τ)αB′, and∂ρ/∂h = (1−γ)F(h). Furthermore,

if we assumeδ = 1 as in the latter half of Subsection 4.4,R= (1−τ)αB andB′/B = (1−α)/[α(τ−h)]

from B ≡ (A(τ − h)1−α)1/α. Then, we obtain

∂c̄
∂h
= (1− γ)

[
−[(1 − τ)(1− α)B]1−γ 1− α

α(τ − h)
+ (R− σ)−γ

[
1− α
γα(τ − h)

(σ − γR) − 1− γ
γ
σ

F(h)
ρ

]]
By substituting the derivatives with respect to the tax rate into (A.5), we obtain[

(1− α)1−γ[(1 − τ)B]−γ + (R− σ)−γα

(
γR− σ
γR

)]
[(1 − τ)B′ − B] +

c̄
R− σ

ασ

γR
[(1 − τ)B′ − B]

=

[
(1− α)1−γ[(1 − τ)B]−γ + (R− σ)−γα

(
γR− σ
γR

)
+

c̄
R− σ

ασ

γR

]
[(1 − τ)B′ − B] = 0.

This is the same as (19). Similarly, by substituting∂σ/∂h and∂c̄/∂h into (A.6),

− [(1 − τ)(1− α)B]1−γ 1− α
α(τ − h)

+ (R− σ)−γ
1
γ

[
1− α
α(τ − h)

(σ − γR) − (1− γ)σF(h)
ρ

]

+
c̄

R− σ
σ

γ

[
− 1− α
α(τ − h)

+ (1− γ)F(h)
ρ

]
+

c̄σ
R− σ

F(h)
ρ
= 0,
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Figure 3: The positional relationship betweenR(h)γ−1 andρ(h)

where note that−(1 − τ)αB′/R = −(1 − α)/(α(τ − h)) in the first term in the bracket of the second

term. Rearranging these terms and multiplying byγ on both sides lead to[
−γ[(1 − τ)(1− α)B]1−γ + (R− σ)−γ(σ − γR) − c̄σ

R− σ

] 1− α
α(τ − h)

−
[
(1− γ)(R− σ)−γ − c̄

R− σ

]
σ

F(h)
ρ
= 0.

By using the definition of ¯c ≡ [(1 − α)(1− τ)B]1−γ + (R− σ)1−γ, each term is simplified to

−
[(
γ +

σ

R− σ

)
[(1 − α)(1− τ)B]1−γ + (R− σ)−γγR

] 1− α
α(τ − h)

+
[
γ(R− σ)−γ + [(1 − α)(1− τ)B]1−γ(R− σ)−1

]
σ

F(h)
ρ
= 0.

This equation corresponds to (20).

A.3 Proof of Proposition 3

First, we show that under Assumption 2,R(h)γ−1 andρ(h) intersect only once inh ∈ (0, 1). When we

evaluate them ath = 1, we obtainR(1)γ−1 = 0 andρ(1) = β(p(1− D(1))1−γ + 1− p) > 0. Then, the

first and second derivative ofρ with respect toh are given by

ρ′(h) = βp(1− D(h))−γ(−D′(h)) < 0,

ρ′′(h) = ρ′(h)

[
γD′(h)

1− D(h)
+

D′′(h)
D′(h)

]
> 0.
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Hence,ρ(h) is a decreasing and concave function. On the contrary, the first and second derivatives of

R(h)γ−1 ≡ G(h) are given by

G′(h) =
1− γ
α

G(h)
1− h

< 0,

G′′(h) =

(
1+ α − γ
α

G′(h)
1− h

)
R 0⇔ 1+ α Q γ.

Thus,R(h)γ−1 is a decreasing function and whether it is convex or concave depends on the parameter.

Figure 3 shows thatR(h)γ−1 andρ(h) cross only once regardless of the concavity ofG(h) and hence,

we can show that there must be one intersection. Next, we show that there is at least one root of (24)

that is less than̂h, which satisfiesR(ĥ)γ−1 = ρ(ĥ). Equation (24) is written as

γ(R− σ)−γ
[
σ

F
ρ
− αB

]
=

[
(γ + z)

1
α(1− h)

− z
F
ρ

]
[(1 − α)α(1− h)B]1−γ, (A.7)

where note that 1− τ = α(1 − h) andR/(α(1 − h)) = αB. In (A.7), we show that limh→0 LHS >

limh→0 RHS from Assumption 1. Hereafter, to see the values of the LHS and RHS ath → ĥ, we

check the properties ofĥ. At h = ĥ, the followings is true:

1. R= σ,⇔ z→ ∞,

2.
∣∣∣ ∂
∂hRγ−1

∣∣∣ > ∣∣∣∣∂ρ∂h ∣∣∣∣ ,⇔ αB > RF
ρ .

See Figure 3 for the second statement, in which the slope ofRγ−1 is steeper than that ofρ at h = ĥ.

Considering these facts, we see what the LHS and RHS of (A.7) become ath → ĥ. At h = ĥ, the

following holds:

lim
h→ĥ

LHS = γ lim
h→ĥ

(R− σ)−γ ∗ lim
h→ĥ

[
σ

F
ρ
− αB

]
.

The first term becomes infinity since (R− σ)→ 0 from the first property of̂h andγ > 0. The second

term becomes negative constant ath→ ĥ since

lim
h→ĥ

[
σ

F
ρ
− αB

]
= lim

h→ĥ
σ lim

h→ĥ

F
ρ
− α lim

h→ĥ
B = lim

h→ĥ

RF
ρ
− α lim

h→ĥ
B < 0,

where the second equality holds from the first property ofĥ and the first inequality holds from the

second property of̂h. Therefore, ath = ĥ, the LHS is negative infinity, that is, limh→ĥ LHS→ −∞.
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The limit of the RHS is derived as follows. First, we use the following expression:

z
1

α(1− h)
− z

F
ρ
= z

(
1

α(1− h)
− F
ρ

)
=

z
R

(
R

α(1− h)
− RF
ρ

)
=

z
R

(
αB− RF

ρ

)
.

Second, we rewrite the RHS of (A.7) as[
γ

α(1− h)
+

z
R

(
αB− RF

ρ

)]
[(1 − α)α(1− h)B]1−γ.

Then, ash convergeŝh, the RHS of (A.7) becomes[
lim
h→ĥ

γ

α(1− h)
+ lim

h→ĥ

[
z
R

(
αB− RF

ρ

)]]
lim
h→ĥ

[(1 − α)α(1− h)B]1−γ.

Since limh→ĥ
γ

α(1−h) and limh→ĥ[(1 − α)α(1 − h)B]1−γ converge to some positive constant, we have

only to check the value of limh→ĥ

[
z
R

(
αB− RF

ρ

)]
. Its limit is

lim
h→ĥ

z
R︸︷︷︸

→ ∞

∗ lim
h→ĥ

(
αB− RF

ρ

)
︸             ︷︷             ︸

positive constant

→ ∞,

where we use the fact that the second term converges to a positive constant with the second property

of ĥ. These limits imply that the LHS is larger than the RHS ath = 0, while the RHS is larger than

the LHS ath = ĥ. Since the LHS and RHS are continuous inh ∈ (0, ĥ), then there must be at least

one intersection with domainh ∈ (0, ĥ). �

A.4 Sign of the derivative of the optimal preventive expenditure with respect to disaster
probability

We use equation (24) when we conduct the comparative statics. First, we can obtain the following

derivatives under fixed preventive expenditure.

∂ρ

∂p
= β[(1 − D)1−γ − 1] > 0,

∂σ

∂p
=
σ

γρ

∂ρ

∂p
> 0,

∂

∂p
F
ρ
=
βF

pρ2
> 0,

∂z
∂p
= (1+ z)z

1
γρ

∂ρ

∂p
> 0,

∂

∂p
(R− σ)−γ = (R− σ)−γ

z
ρ

∂ρ

∂p
> 0.

Then, the effect of p rising on each term of equation (24) is obtained as follows:γ (R− σ)1−γ︸       ︷︷       ︸
⊕

+[(1 − α)(1− τ)B]1−γ

 z
F
ρ︸︷︷︸
⊕

=

(γ + z︸︷︷︸
⊕

)[(1 − α)(1− τ)B]1−γ + (R− σ)−γ︸     ︷︷     ︸
⊕

γR

 1
α(1− h)

,
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where⊕ means thatp rising increases the corresponding term. The above-mentioned five derivatives

imply that whenp increases, the LHS of (24) must rise. To establish why the LHS shifts upward,

recall that the LHS represents the marginal utility of raising preventive expenditure and that it consists

of a precautionary effect and a net direct effect. Each effect increases withp rising. On the contrary,

the effect of a rise inp on the RHS is also positive. Since the RHS indicates the marginal cost of

raising preventive expenditure, that is, a crowding out effect, a higher RHS indicates less preventive

expenditure. Note thatp rising does not affect the worker’s consumption at all since there is no

precautionary effect or income effect for the worker. The first (second) effect on the RHS reflects a

crowding out effect that decreases the investor’s consumption (savings). Thus, seemingly, there is an

ambiguous relationship between the optimal preventive expenditureh∗ and disaster probabilityp. In

what follows, by integrating these effects, we check whether∂h∗/∂p is positive or negative. After

some calculations, the sign of optimal preventive expenditure with respect top is obtained as follows.

19

∂h∗

∂p
R 0⇔[(

(γ − 1)σ
F
ρ
+
αB
σ

(R− γσ)

)
(R− σ)−γ +

αB
σ

[(1 − α)α(1− h)B]1−γ
]
∂ρ

∂p
z
ρ
+ c̄z
βF

pρ2
R 0.

(A.8)

Recall that∂ρ/∂p is positive. At first glance, the term
(
(γ − 1)σF

ρ +
αB
σ (R− γσ)

)
could be negative

since the first term is positive, while the second term could be negative. However, under the optimal

policy, we can show that this term is also positive. To show this, sinceR> σ, the following holds:

(γ − 1)σ
F
ρ
+
αB
σ

(R− γσ) > (γ − 1)σ
F
ρ
+
αB
σ

(σ − γσ) = (γ − 1)

[
σ

F
ρ
− αB

]
.

By multiplying both sides of (24) byRand solving this equation forσF/ρ, we obtain

σ
F
ρ
=

(γ + z)[(1 − α)(1− τ)B]1−γ + (R− σ)−γγR
[γ(R− σ)1−γ + [(1 − α)(1− τ)B]1−γ](1 + z)

αB ≡ XαB.

Since we can show thatX ≥ 1, under the optimal policyh = h∗,

σ
F
ρ
> αB.

19To obtain (A.8), we move the RHS of (24) to the LHS of (24) and differentiate the LHS with respect to disaster
probability p. Now that the resultant LHS indicates the difference between the marginal utility and marginal disutility from
preventive expenditureh, if this term increases asp increases, greater preventive expenditure must increase in response to
p. Inequality (A.8) is such a condition.
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Therefore, the first term of (A.8) is positive and this means that the LHS of (A.8) must be positive.

Consequently, we can show that
∂h∗

∂p
> 0. �

A.5. The proof of Proposition 5

To obtain the results of Proposition 5, we must solve the following dynamic optimization problem:

V(s) = max
θ∈[0,ϕθ̂],ã

{
cI1−γ

1− γ + βpV
[
((1− D)(1− qθ) + θ)ã

]
+ β(1− p)V((1− qθ)ã)

}
, (A.9)

s.t. (1− qθ)ã = Rs− cI , givens0.

By following a similar procedure to that described in Appendix A.1, givenθ, we can obtain an equa-

tion corresponding to (A.3) as

(1− qθ)ã = (1+ β1)−1Rs, (A.10)

whereβ1 ≡ ρ−1/γα
−(1−γ)/γ
1 , ρ ≡ β[p(1−D+θ(1−qθ)−1)1−γ+1−p], andα1 is an undetermined variable.

Again, by following a similar procedure to that described in Appendix A.1, the undetermined variable

becomesR(1− R(1−γ)/γρ1/γ)−γ/(1−γ) and the optimal savings become

ã =
(Rρ)1/γ

1− qθ
≡ σϕs.

On the contrary, the derivative of (A.9) with respect toθ becomes

q
[
(Rs− (1− qθ)ã)−γã− (1− qθ)−γΘ(α1ã)1−γ] ,

whereΘ ≡ β
[
p[1 − D + θ(1− qθ)−1]−γ(1− D − q−1) + 1− p

]
. Hence,

dRHS of (A.9)
dθ

R 0⇔ (1− qθ)ã R (1+ β2)−1Rs,

whereβ2 ≡ Θ−1/γα
−(1−γ)/γ
1 . Since (1) in equilibriumqt = p < 1 and (2) the investor’s savings ˜a

must not become zero,ρ > Θ from definitions and henceβ2 > β1. Then, the derivative of (A.9) with

respect toθ must be positive when (A.10) is satisfied. Thus, an investor demands the upper limit of

coverage, that is,θ = ϕθ̂. Finally, by evaluatingρ at θ = ϕθ̂ andqt = p, we obtain equation (31) in

Proposition 5. �
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In what follows, we show the derivatives ofρϕ and pθ̂ with respect top andh for the comparative

statics of savings rateσϕ. First, we obtain the following derivatives:

d
dp

(
1+ (1− ϕ)D[p(1− D) − 1]

1+ (1− ϕ)pD

)
= −(1− ϕ)D

(
1

1+ (1− ϕ)pD

)2

ϕD < 0,

d
dh

(
1+ (1− ϕ)D[p(1− D) − 1]

1+ (1− ϕ)pD

)
= −(1− ϕ)D′

(
1

1+ (1− ϕ)pD

)2 [
1+ 2pD+ (1− ϕ)p2D2

]
> 0.

Then, the derivatives ofρϕ with respect top andh can be calculated as follows:

1
β

dρϕ
dp
= A1−γ − 1+ p(1− γ)A−γdA

dp
= A1−γ

[
1+ p(1− γ)A−1dA

dp

]
− 1 > 0,

dρϕ
dh
= βp(1− γ)A−γdA

dh
< 0,

whereA ≡
(

1+(1−ϕ)D[p(1−D)−1]
1+(1−ϕ)pD

)
< 1. The derivatives ofpθ̂ with respect top andh are simply given by

dpθ̂
dp
=

d
dp

pD
1+ pD

=

(
1

1+ pD

)2

D > 0,

dpθ̂
dh
= p

d
dh

D
1+ pD

= pϕ

(
1

1+ pD

)2

D′ < 0.

Thus, the comparative statics ofσϕ in the latter half of Subsection 5.4 hold.
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