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Abstract

This study constructs a variety expansion growth model that integrates basic research

to analytically examine its effects on household welfare. In our approach, the research

sector consists of applied and basic research components. The former creates blueprints and

expands the variety of goods available for consumption, whereas the latter adds to the stock

of public knowledge. The two sectors interplay through knowledge spillovers. The analysis

reveals two key results. First, the steady-state welfare-maximizing level of basic research is

below the steady-state growth-maximizing level. Second, a reduction in the level of basic

research raises household welfare if the level of basic research is initially at the steady-state

welfare-maximizing level.
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1 Introduction

Basic research plays an essential role in the innovation process by discovering new knowledge

that is not immediately ready to be commercialized. Applied research then uses the results of

basic research to develop marketable new products or technologies, such as X-ray, penicillin,

nuclear fission, packet-switching theory, and methods for DNA sequencing and RNA interfer-

ence.1

The economic contribution of basic research has been examined in many empirical studies.

For instance, Griliches (1986), examining United States (U.S.) manufacturing firms in the 1970s,

finds that basic research has a more significant productivity effect than applied R&D. Jaffe

(1989) finds a significant effect of university research on corporate patent activity using state-

level time-series data on corporate patents, corporate R&D, and university research. Mansfield

(1998) finds that 15% of new products and 11% of new processes in the U.S. between 1986 and

1994 could not have been developed or would have developed with great delay without academic

research. Mansfield (1998) further finds that the shares of new products and processes that

benefited greatly from academic research are 8% and 7%, respectively. Cohen et al. (2002)

identify a set of very important channels that enable public research to have a positive effect

on industrial R&D: publication, reports, informal information exchange, public meetings or

conferences, and consultancy.

The present study examines theoretical policy implications of basic research, particularly on

the welfare of households. To do this, we incorporate basic research into a variety expansion

model, following the work of Grossman and Helpman (1991). In our model, the research sector

consists of applied and basic research streams. The former creates blueprints and develops the

varieties of available consumption goods, while the latter expands the public-knowledge stock.

The productivity of each research activity depends on the existing knowledge that has been

previously produced through applied and basic research. We also assume that basic research is

publicly funded—and thus that the government can control the level of basic research. According

to Table 2 in Gersbach et al. (2013), which summarizes 2009 data from a selection of 15

countries, the average share of basic research that was financed by governments and higher

educational institutions was 77.39%; that is, basic research is mainly funded by the government

and carried out at universities or other public research institutions. On the other hand, on

1See Table 3 in Gersbach et al. (2009) for further examples.
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average 76.62% of applied research was financed by business enterprises and private non-profit

institutions; that is, applied research is primarily performed by private firms motivated by their

own benefits.

The present analysis obtains two main results. First, the steady-state welfare-maximizing

level of basic research is lower than the steady-state growth-maximizing level.2 The steady-state

growth rate follows an inverted-U shape relationship with respect to the level of basic research.

However, a higher level of basic research increases wages for skilled labor; as a result, goods

prices increase, reducing household consumption. When the government increases the level of

basic research to maximize the growth rate, this harms household consumption, ensuring that

the steady-state welfare-maximizing level of basic research lies below the steady-state growth-

maximizing level.

Second, reducing the level of basic research increases household welfare if the economy is

initially in the steady state with basic research set at the steady-state welfare-maximizing level.

Although our model exhibits transitional dynamics, we can undertake a welfare analysis using

Judd’s (1982, 1985) method. In our model, an increase in basic research affects welfare through

two channels: reducing household consumption and enhancing long-run growth. First, when the

government increases the level of basic research, the wage rate initially jumps up and thereafter

monotonically increases to the new steady-state level. This raises the prices of goods, decreasing

household consumption. Turning to the second channel, the effects of increasing basic research

on the growth rate differ between the short and long terms. The short-run growth effect is

ambiguous, whereas the long-run growth effect is positive. Our analysis shows that the negative

welfare effect can outweigh the positive one, leading to the earlier-stated result.

The theoretical implications of basic research policy have been considered from various

macroeconomic perspectives. The present study is closely related to models in which the basic

research sector is seen as adding to the stock of public knowledge, which in turn raises the

productivity of applied research. Park (1998) considers the growth effect through the interplay

between basic and private research in closed and open economies. In a closed economy, basic re-

search has a positive effect on growth, but increasing basic research also crowds out labor input

into private R&D. In an open economy, the growth rate increases due to international knowl-

edge spillovers, reducing the growth-maximizing level of basic research within a given country.

2The model exhibits transitional dynamics because there are two state variables: the stocks of knowledge
produced by applied and basic research. We refer to the welfare level at which the economy is constantly in the
steady state as steady-state welfare.
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Gersbach et al. (2009) assume that basic research generates ideas whereas applied research

commercializes them by transforming them into blueprints for new varieties of goods—that is,

there is a one-to-one relationship between ideas and potential blueprints.3 In this set-up, there

exist two possible equilibria. One is the case in which the growth rate is bound by investments in

basic research. In the other, the growth rate is determined by both basic and applied research.

The prior studies mainly focus on the effects of basic research on the long-run growth rate but

do not examine another key topic: its welfare effects. In contrast, the present study examines

the welfare effects of basic research, taking into consideration transitional dynamics.4

This study is also related to the strand of literature on R&D-based growth models in which

innovation is characterized as a two-stage research activity, with basic research followed by

applied research. In Chu and Furukawa (2013), basic and applied research follow a variety

expansion framework. In Cozzi and Galli (2009, 2013, 2014), however, the two types of research

follow a quality ladder framework. In Chu et al. (2012), basic research is associated with

horizontal innovation whereas applied research is associated with vertical innovation. In these

models, the monopoly profit is divided between those undertaking basic and applied research.

Thus, basic research is motivated by private incentives and thus not funded by the government.

These models are more concerned with the patentability of basic research (i.e., profit division

rules) than its level.5,6

The rest of this paper is organized as follows. Section 2 establishes the model used in this

study. Section 3 derives the equilibrium dynamics of the economy and proves the uniqueness of

the transitional dynamics. Section 4 analyzes how the policy affects the long-run growth rate

and the transitional dynamics. Section 5 examines the policy effect on steady-state welfare as

well as the welfare effect of marginal changes in basic research. Finally, Section 6 concludes the

paper.

3This setting is similar to those of the below-mentioned models (Cozzi and Galli, 2009, 2013, 2014; Chu et
al., 2012; Chu and Furukawa, 2013). However, the reduced form is analogous to Park’s (1998) model.

4The more simplified models of Arnold (1997) and Konishi (2013) assume that an increase in the number of
public researchers immediately raises the productivity of applied research. In reality, however, it takes time to
affect applied research when the government increases investment in basic research. These studies do not consider
the short-run effects of changes in the basic research policy.

5These studies consider the fact that the U.S. and the European Union gradually extend the patentability of
basic research. For example, the Bayh-Dole Act, enacted by the U.S. Congress in 1980, permits a university, small
business, or non-profit institution to elect to pursue ownership of an invention in preference to the government.
The European Research Council (ERC) was launched in 2007 to support and promote fundamental research
through ensuring the patentability of basic research.

6See also Gersbach et al. (2013) and Gersbach and Schneider (2015) on the interaction between investment
in basic research and open economy issues.
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2 Model

The model assumes a unit continuum of identical households, each of which inelastically supplies

one unit of skilled labor and L units of unskilled labor. The factor market is perfectly compet-

itive, and the goods market is monopolistically competitive, as explained below. Households

have perfect foresight.

2.1 Households

Households maximize the following lifetime utility:

Ut ≡
∫ ∞

t
e−ρ(τ−t) logCτdτ, (1)

where Ct represents instantaneous utility derived from consumption of a composite good and

ρ > 0 is the time preference rate. Ct is given by

Ct =

[∫ Nt

0
ct(j)

ε−1
ε dj

] ε
ε−1

, (2)

where ct(j) denotes the consumption of good j and Nt denotes the number of available varieties.

ε is the elasticity of substitution between any two products, and we assume that ε > 1. Denoting

the consumption expenditure of households as Et =
∫ Nt

0 pt(j)ct(j)dj, we obtain the demand

function for good j as follows:

ct(j) =
pt(j)

−εEt∫ Nt

0 pt(i)
1−εdi

, (3)

where pt(j) is the price of good j and PD,t is the price index, defined as

PD,t =

(∫ Nt

0
pt(i)

1−εdi

) 1
1−ε

.

Substituting (3) into (2), we obtain the indirect sub-utility function as follows:

Ct =
Et

PD,t
. (4)

Maximizing subject to the intertemporal budget constraint yields the following Euler equation:

Ėt

Et
= rt − ρ, (5)

where rt represents the rate of return on assets. Following Grossman and Helpman (1991), we

normalize household consumption expenditures at unity, and thus, Et = 1. As a result, we

obtain rt = ρ.
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2.2 Firms

Turning to producer behavior, we assume that each differentiated good that has been created

by applied research is produced by a single firm because the good is infinitely protected by a

patent. We further assume that the production function of good j is a Cobb-Douglas form as

follows:

xt(j) = ax
[
lst (j)

]θ[
lut (j)

]1−θ
, ax > 0 and θ ∈ (0, 1),

where xt(j) is the output of good j, ax is the productivity of production, θ is the intensity of

skilled labor in production, and lst (j) and lut (j) respectively denote the amount of skilled and

unskilled labor devoted to producing good j. With cost minimization, the unit cost function

z(wt, w
u
t ) is

z(wt, w
u
t ) = a−1

x θ−θ(1− θ)θ−1
(
wt

)θ(
wu
t

)1−θ
, (6)

where wt and wu
t represent the wage rates for skilled and unskilled labor, respectively. Applying

Shephard’s lemma, we obtain demand functions for skilled and unskilled labor as follows:

lst (j) =
θz(wt, w

u
t )

wt
xt(j), (7)

lut (j) =
(1− θ)z(wt, w

u
t )

wu
t

xt(j). (8)

The firm manufacturing good j (firm j) maximizes its profit: πt(j) = pt(j)xt(j)−z(wt, w
u
t )xt(j).

Then firm j charges the following price:

pt(j) = pt =
ε

ε− 1
z(wt, w

u
t ). (9)

Therefore, all goods are priced equally. Pricing rules (9) and (3) yield

xt(j) = xt =
ε− 1

ε

1

z(wt, wu
t )Nt

. (10)

Then, the brand-specific operating profits are given by

πt(j) = πt =
1

εNt
. (11)

2.3 Basic and applied research

Next, we consider the technology involved in developing a new good. Following Park (1998), we

assume that the research sector consists of applied and basic research segments, with applied

research creating blueprints and expanding the variety of goods available for consumption and
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basic research adding to the stock of public knowledge, Bt. Each research activity requires

skilled labor input. We assume the following applied and basic research technologies:

Ṅt = aNNα
t B

1−α
t LR,t, 0 < α < 1, (12)

Ḃt = aBN
β
t B

1−β
t Gt, 0 < β < 1, (13)

where aN , aB, LR,t, and Gt represent the productivity of applied research, the productivity of

basic research, the amount of skilled labor devoted to applied research, and the amount of skilled

labor devoted to basic research, respectively. Each research activity’s productivity depends on

existing knowledge that has been produced through prior applied and basic research. For

simplicity, the knowledge spillover function is assumed to follow a Cobb-Douglas form.7

Basic research is financed by a lump-sum tax Tt on households because we do not want to

have to consider the distortionary effects of taxes. That is, the government budget constraint

becomes Tt = wtGt.
8 We assume that applied research firms freely enter into the R&D race.

The instantaneous profit of these firms is given by vtṄt − wtLR,t, where vt denotes the patent

value. Consequently, the free entry condition yields

vt =
wt

aNNα
t B

1−α
t

⇔ Ṅt > 0. (14)

The shareholders of these firms’ equities earn dividends and capital gains or losses. Hence, the

return on equity is given by

rt = ρ =
πt
vt

+
v̇t
vt
. (15)

3 Equilibrium

3.1 Dynamic system

For simplicity, we assume that the government keeps the number of public researchers constant

(i.e., Gt = G). Skilled labor is used for production, applied research, and basic research. The

market-clearing condition for skilled labor becomes

Ntl
s
t + LR,t +G = 1. (16)

7As noted earlier, Gersbach et al. (2009) assumes a one-to-one relationship between ideas and potential
blueprints. In this set-up, the applied research sector is distinguished in two cases. When Nt < Bt, the production
function for applied research coincides with (12). When Nt = Bt, Ṅt = Ḃt holds and Nt cannot exceed Bt. If
we impose the condition that restricts Nt < Bt, our main results do not change.

8This study focuses on the effects of basic research spending in terms of the number of public researchers.
According to National Science Foundation (2011) analysis of U.S. R&D spending, 46.7% goes to wages for R&D
personnel, 10.1% to employer-sponsored benefits for R&D personnel, 11.7% to materials and supplies, 3.9% to
depreciation, and 27.6% to other costs. Therefore, the majority of R&D spending is connected to personnel.
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The market-clearing condition for unskilled labor is

Ntl
u
t = L.

Using (8) and (10), this condition becomes

wu
t = wu =

(1− θ)(ε− 1)

εL
. (17)

Therefore, the wage rate for unskilled labor becomes constant. Let us define λt ≡ Nt
Bt

. In

addition, (7) and (10) yield Ntl
s
t = θ ε−1

ε
1
wt
. (11), (12), (13), (14), (15), and (16) yield

ẇt

wt
= αaNλα−1

t

(
1−G− θ

ε− 1

ε

1

wt

)
+(1− α)aBGλβ

t − aN
ε

λα−1
t

wt
+ ρ. (18)

By using (12), (13), and (16), we obtain

λ̇t

λt
= aNλα−1

t

(
1−G− θ

ε− 1

ε

1

wt

)
−aBGλβ

t . (19)

Equations (18) and (19) thus form an autonomous dynamic system with respect to wt and λt.

3.2 Steady state and stability

The steady state is defined by the condition wherein wt, λt, and the growth rates of Nt and Bt

are constant. The equation for ẇt = 0 can be represented by

wt =
aN{1 + α(ε− 1)θ}

εαaN (1−G) + ε(1− α)aBGλ1−α+β
t + ερλ1−α

t

, (20)

while the equation for λ̇t = 0 can be represented by

wt =
(ε− 1)θ

ε

1

1−G− aB
aN

Gλ1−α+β
t

. (21)

By eliminating wt from equations (20) and (21), the equation that determines the steady-state

value is as follows:

Γ(λ∗) ≡
{
1 + (ε− 1)θ

}
aBG(λ∗)1−α+β + (ε− 1)θρ(λ∗)1−α − aN (1−G) = 0. (22)

Asterisks represent variables in the steady state. To investigate whether there is a value of λ∗

that satisfies Γ(λ∗) = 0, we differentiate Γ(λ∗) with respect to λ∗ to yield

Γ′(λ∗) = (1− α+ β)
{
1 + (ε− 1)θ

}
aBG(λ∗)−α+β + (1− α)(ε− 1)θρ(λ∗)−α > 0.
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By using Γ(0) = −aN (1 − G) < 0, it is easy to confirm that Γ(λ∗) < 0 when λ∗ is sufficiently

small and Γ(λ∗) > 0 when λ∗ is sufficiently large. There is thus a unique positive value of λ∗

that satisfies Γ(λ∗) = 0. The steady-state value w∗ is obtained from (21) as follows:

w∗ =
(ε− 1)θ

ε

1

1−G− aB
aN

G(λ∗)1−α+β
. (23)

From (12) and (16), the growth rate under the steady state is given by

γ∗ ≡
(
Ṅt

Nt

)∗
=

(
Ḃt

Bt

)∗
= aN (λ∗)α−1

(
1−G− θ

ε− 1

ε

1

w∗

)
. (24)

We confirm that w∗ and γ∗ are surely positive. Using (22), we can rewrite (23) and (24) as

follows:

w∗ =
1 + (ε− 1)θ

ε

1

1−G+ ρ
aN

(λ∗)1−α
> 0,

γ∗ = aBG(λ∗)β > 0.

(25)

Next, we examine the stability of the steady state. First, we show in Appendix A that the

steady state is a locally stable saddle point. Second, we investigate the phase diagram of the

dynamic system. Figure 1, depicted in (λt, wt) space by using (20) and (21), shows that the

only equilibrium is the saddle path that approaches the stable steady state. At the end of this

subsection, we consider the region in which applied research is conducted (i.e., Ṅt > 0). From

(16), we obtain

Ṅt > 0 if wt >
(ε− 1)θ

ε(1−G)
,

Ṅt = 0 if wt ≤
(ε− 1)θ

ε(1−G)
.

Note that the line wt =
(ε−1)θ
ε(1−G) lies above the line λ̇ = 0. As shown in Figure 1, a sufficiently

large λt implies that the economy is in the region in which Ṅt = 0. By using (7), (10), (16),

and Ṅt = 0, we obtain

wt =
(ε− 1)θ

ε(1−G)
.

Hence, if λt is sufficiently large, wt is constant and λ̇t < 0 holds. Because Bt is relatively small

compared with Nt, there is no incentive to conduct applied research and the remainder of the

skilled labor force, 1 − G, is allocated to production. When λt decreases sufficiently, applied

research is conducted and the economy converges to the steady state.9

9The case where G = 0 corresponds to Grossman and Helpman (1991), Subsection 3.1. If the initial number
of varieties, N0, is sufficiently small, the economy is stable at the saddle point. In the transitional dynamics,
applied research is conducted (Ṅt > 0). However, in the long run, growth in the number of differentiated goods
stops (Ṅt = 0). On the other hand, if the initial number of varieties, N0, is sufficiently large, the economy initially
jumps to the steady state. In this case, applied research is never conducted.

9



Figure 1: Phase diagram of the dynamics of wt and λt.

4 Effects of policy changes

4.1 Long-run effects

We examine effects of changes in G on the steady-state values. Taking the total differentials of

(22) yields

dλ∗

dG
= − aN (λ∗)α + {1 + (ε− 1)θ}aB(λ∗)1+β

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
< 0. (26)

Thus, λ∗ is decreasing in G. When the government raises G, public knowledge accumulates at

an accelerated rate. As a result, the steady-state ratio of private to public knowledge, λ∗, falls.

By using (26), we differentiate (23) with respect to G as follows:

dw∗

dG
=

ε(w∗)2

aN

[
(1− α+ β)aNaBG(λ∗)β + (1− α)ρaN + (1− α)ρaB(λ

∗)1−α+β

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ

]
> 0. (27)

w∗ is increasing in G. To identify the effects of G on w∗, we differentiate w∗ with respect to G

in (25) as follows:

dw∗

dG
=

ε(w∗)2

1 + (ε− 1)θ

{
1− (1− α)

ρ

aN
(λ∗)−αdλ

∗

dG

}
.

There are two effects that increase w∗. First, an increase in G decreases the amount of skilled

labor devoted to production and applied research. This raises skilled labor demand, and, as
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a result, the wage rate for skilled labor also increases. Second, a rise in G promotes the

accumulation of public knowledge, and the productivity of applied research increases. This

raises the demand for skilled labor for applied research as well as the wage rate for skilled labor.

We then investigate the effects of G on the steady-state growth rate γ∗. Using (26) and

(27), we differentiate (24) with respect to G as follows:

dγ∗

dG
= aNaB(λ

∗)α+β−1 (1− α)(1−G)− βG

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
. (28)

Equation (28) implies that

dγ∗

dG
R 0 ⇔ G Q Gg ≡ 1− α

1− α+ β
. (29)

Analogous to Park (1998) and Gersbach et al. (2009), the relationship between the steady-

state growth rate and G follows an inverted-U shape and there exists a steady-state growth-

maximizing level of G. We now study in detail the relationship between the growth rate and G

in the steady state. From (12), the steady-state growth rate, γ∗ = aN (λ∗)α−1L∗
R, is determined

by λ∗ and L∗
R. Differentiating γ∗ with respect to G yields

dγ∗

dG
= −(1− α)aN (λ∗)α−2L∗

R

dλ∗

dG
+ aN (λ∗)α−1dL

∗
R

dG
. (30)

The first term represents the growth-enhancing effect and is positive: an increase in G enhances

the accumulation of public knowledge, increasing applied research productivity and thereby the

growth rate. The second term represents the effect of labor input into applied research; the

sign on
dL∗

R
dG is ambiguous. From the skilled labor market-clearing condition, labor input into

applied research in the steady state is given by L∗
R = 1−G− θ ε−1

ε
1
w∗ . Differentiating L∗

R with

respect to G yields

dL∗
R

dG
= −1 + θ

ε− 1

ε

1

(w∗)2
dw∗

dG
. (31)

The first term represents a crowding-out effect on labor input into applied research. The second

term is positive. From (9), an increase in w∗ raises good prices, reducing their demand and

reallocating skilled labor from production of goods to applied research. Thus, there is a trade-off

between these two effects. As shown in Appendix B, we obtain the following relation:

dL∗
R

dG
R 0 ⇔ G Q G̃,

11



where G̃ is defined as
dL∗

R
dG

∣∣∣
G=G̃

= 0. When 0 < G < G̃, the production labor demand effect

exceeds the crowding-out effect and
dL∗

R
dG > 0 holds. In contrast, when G̃ < G < 1, the crowding-

out effect is sufficiently large and
dL∗

R
dG < 0 holds.10

Next, we compare Gg with G̃. Substituting G = G̃ into (30) yields

dγ∗

dG

∣∣∣∣
G=G̃

= −(1− α)aN (λ∗)α−2L∗
R

dλ∗

dG

∣∣∣∣
G=G̃

> 0.

Therefore, from (29), we have G̃ < Gg. These results can be summarized as follows. If 0 <

G < G̃, basic research complements applied research, and an increase in G thus increases the

growth rate. If G̃ < G < Gg, basic research is a substitute for applied research. However, the

growth-enhancing effect exceeds the crowding-out effect, and an increase in G raises the growth

rate. If Gg < G < 1, in contrast, the crowding-out effect exceeds the growth-enhancing effect,

so an increase in G reduces the growth rate.

4.2 Short-run effects

In this subsection, we investigate the transitional dynamics after changes in G. Suppose that the

economy is initially in the steady state. The phase diagram can then be used to understand the

dynamic paths after an increase in G at time 0. When G rises, the locus λ̇t = 0 shifts upward.11

The shift of the locus ẇt = 0 depends on a value of λt.
12 The results of differentiating the right-

hand side of (20) with respect to G imply that the graph of (20) shifts upward (downward)

when λt < (>)
[

αaN
(1−α)aB

] 1
1−α+β . We illustrate the two cases in Figure 2: in the first case,

λ∗ >
[

αaN
(1−α)aB

] 1
1−α+β , whereas in the second λ∗ <

[
αaN

(1−α)aB

] 1
1−α+β . Note that wt is a jump

variable and λt is a predetermined variable. In both cases, the level of wt jumps up initially

and thereafter monotonically increases to the new steady-state level, and λt decreases and

approaches the new steady state. These results allow us to create Figure 3.

10Many empirical studies find that public research can complement or substitute private R&D. See David et
al. (2000) for an extensive survey.

11The shift of locus λ̇t = 0 due to an increase in G is obtained from (21) as follows:

dwt

dG

∣∣∣∣
λ̇t=0,dλt=0

=
(ε− 1)θ

ε

1 + aB
aN

λ1−α+β
t(

1−G− aB
aN

Gλ1−α+β
t

)2 > 0.

12The shift of locus ẇt = 0 due to an increase in G is obtained from (20) as follows:

dwt

dG

∣∣∣∣∣
ẇt=0,dλt=0

=
aN{1 + α(ε− 1)θ}

ε

αaN − (1− α)aBλ
1−α+β
t{

αaN (1−G) + (1− α)aBGλ1−α+β
t + ρλ1−α

t

}2 .

Hence, the shift depends on the value of λt.
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Figure 2: The effects of an increase in G.

Figure 3: Dynamic paths of wt and λt after an increase in G.

13



Next, we examine the effects of changes in G on the growth in the number of differentiated

goods, γNt ≡ Ṅt
Nt

, considering the transitional dynamics to the new steady state by following

Judd’s (1982, 1985) method. Using linearized versions of the differential equations (18) and (19)

around their steady-state values, we calculate effects of marginal changes in G on the values of

wt and λt within the transitional dynamics to the new steady state. Taking into account the

initial condition, w0 = w∗ and λ0 = λ∗, we show in Appendix A that

dwt

dG
=

dw∗

dG
+

dλ∗

dG
νe−ϕt,

dλt

dG
=

(
1− e−ϕt

)dλ∗

dG
,

(32)

where ν and ϕ are positive. From (12), (16), and (32), the effect of changes in G on the value

of γNt within the transitional dynamics to the new steady state is as follows:

dγNt
dG

= aN (λ∗)α−1

{
−1 + θ

ε− 1

ε

1

(w∗)2

(dw∗

dG
+ ν

dλ∗

dG
e−ϕt

)}
−(1− α)aN (λ∗)α−2

(
1−G− θ

ε− 1

ε

1

w∗

)(
1− e−ϕt

)dλ∗

dG
.

(33)

In this analysis, we focus on the case in which 0 < G < Gg; that is,
dγN

∞
dG > 0 holds. The initial

effect of G on the growth in the number of the differentiated goods,
dγN

0
dG , is as follows:

dγN0
dG

= aN (λ∗)α−1

{
−1 + θ

ε− 1

ε

1

(w∗)2
dw0

dG

}
.

The first term represents a crowding-out effect on the labor devoted to applied research, and

the second represents the effect of the demand for skilled labor on production. Because dw0
dG is

positive, the sign of
dγN

0
dG is not obvious. By using (32), we rearrange

dγN
0

dG as follows:

dγN0
dG

= aN (λ∗)α−1

[
−1 + θ

ε− 1

ε

1

(w∗)2
dw∗

dG

]
︸ ︷︷ ︸

dL∗
R

dG

+aN (λ∗)α−1θ
ε− 1

ε

ν

(w∗)2
dλ∗

dG
.

Equation (26) and ν > 0 imply that the final term is negative. The expression in square brackets

is equivalent to
dL∗

R
dG . As discussed in the previous subsection,

dL∗
R

dG < 0 holds when G̃ ≤ G < 1;

in this case,
dγN

0
dG < 0 holds. However, when 0 < G < G̃, the sign of

dγN
0

dG is ambiguous because

dL∗
R

dG > 0.

In Figure 4, we illustrate the case in which
dγN

0
dG is positive and that in which it is negative. As

shown, when the government increases G at time 0, the growth in the number of differentiated

goods, γNt , initially jumps down or up and thereafter monotonically increases to the new steady-

state level. Although the short-run growth effect is ambiguous, the long-run effect is certainly

positive because we focus on analyzing a specific range of the policy variable, 0 < G < Gg.
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Figure 4: Dynamic paths of γNt after an increase in G.

5 Welfare effects

5.1 Steady-state welfare

The main purpose of this paper’s analysis is to examine the implications of basic research on

household welfare. We first investigate the welfare level in the steady state. Equations (4) and

(6) yield

Ct =
N

1
ε−1

t

pt
=

ε− 1

ε

N
1

ε−1

t

z(wt, wu
t )

. (34)

Substituting (9) and (17) into (34), we obtain

logCt = θ log

(
1

wt

)
+

1

ε− 1

∫ t

0
γNτ dτ + log

[
ax

(ε− 1

ε
θ
)θ

L1−θN
1

ε−1

0

]
. (35)

Without any loss of generality, we set ax
(
ε−1
ε θ

)θ
L1−θN

1
ε−1

0 = 1. In order to restrict our attention

to welfare in the steady state, we assume that the economy is initially in the steady state. Hence,

wt = w∗ and
∫ t
0 γ

N
τ dτ = γ∗t hold. By using (1) and (35), the steady-state welfare level, U∗, can

be calculated by

U∗ =
θ

ρ
log

(
1

w∗

)
+

1

ρ2(ε− 1)
γ∗. (36)

We examine the relationship between U∗ and G. Differentiating U∗ with respect to G, we obtain

dU∗

dG
= − θ

ρw∗
dw∗

dG
+

1

ρ2(ε− 1)

dγ∗

dG
. (37)

Here, (27), (29), and (37) jointly imply

dU∗

dG

∣∣∣∣
G=Ĝ

< 0, for all Ĝ ∈
[
Gg, 1

)
. (38)

15



When 0 < G < Gg, the sign of dU∗

dG is ambiguous. To investigate this sign as G → 0, we use

(22), (23), (27), and (28) to obtain

lim
G→0

λ∗ =

[
aN

(ε− 1)θρ

] 1
1−α

, lim
G→0

w∗ =
(ε− 1)θ

ε
,

lim
G→0

dw∗

dG
=

(ε− 1)θ
{
aN + aB(λ

∗)1−α+β
}

εaN
, lim

G→0

dγ∗

dG
=

aNaB
(ε− 1)θρ

(λ∗)α+β−1.

(39)

By using these results and (37), we can show that

lim
G→0

dU∗

dG
= −θ

ρ
< 0. (40)

Equation (40) implies that the growth effect of the second term in (37) is smaller than the first

term’s wage effect when G is sufficiently small.

Next, we consider whether there exists a steady-state welfare-maximizing level of G. Note

that the relationship between γ∗ and G follows an inverted-U curve and w∗ is increasing in G.

Thus, from (36), (38), and (40), there is a steady-state welfare-maximizing level of G if the

absolute value of the first term in (36) is sufficiently small and the value of the second term

in (36) is sufficiently large at an intermediate level of G. To derive this condition, we use the

following lemma (see Appendix C):

Lemma 1

The steady-state wage rate for skilled labor, w∗, and the steady-state growth rate, γ∗, are both

increasing in aN , aB and decreasing in ρ.

Lemma 1 states that the steady-state skilled labor wage rate and growth rate (w∗ and γ∗)

are high for all G ∈ (0, 1) if aN and aB are large and ρ is small. Note that log( 1
w∗ ) can become

negative if G is sufficiently high.13 Therefore, if we impose the condition that log( 1
w∗ ) > 0 for

G ∈ (0, Gg), sufficiently large aN and aB and small ρ imply that
∣∣log( 1

w∗ )
∣∣ is sufficiently small

and γ∗ is sufficiently large at an intermediate level of G. As shown in Appendix D, the condition

that log( 1
w∗ ) > 0 for G ∈ (0, Gg) is as follows:

14

{
1 + (ε− 1)θ

}
aBGg(λ̃)

1−α+β + (ε− 1)θρ(λ̃)1−α − aN (1−Gg) < 0, (41)

13From (22), we obtain limG→1 λ
∗ = 0. This and (23) yield limG→1 w

∗ = +∞. Because w∗ is increasing in G
and limG→0 w

∗ = (ε− 1)θ/ε < 1, w∗ > 1 holds if G is sufficiently large.
14The wage rate for skilled labor might be lower than that for unskilled labor. From the above discussion, the

condition for wt > wu is limG→0 w
∗ > wu. By using (17) and (39), we impose the following condition: L > 1−θ

θ
.
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where

λ̃ ≡
[
aN
ρ

{
1 + (ε− 1)θ

ε
− (1−Gg)

}] 1
1−α

.

Under condition (41), sufficiently large aN and aB and small ρ imply that there is a steady-

state welfare-maximizing level of G.15 To demonstrate this clearly, we employ some numerical

examples. The upper-left panel of Figure 5 corresponds to the case in which aN is sufficiently

large; this shows that there is a steady-state welfare-maximizing level of G. The upper-right

panel of Figure 5 corresponds to the case in which aN is not large. In this case, U∗ is increasing

in G at the intermediate level of G, but, as the value of the second term in (36) is small, G = 0

maximizes steady-state welfare. The lower panel of Figure 5 corresponds to the case in which

aN is sufficiently small, indicating that U∗ is decreasing in G. That is, G = 0 maximizes steady-

state welfare.16 In addition, as shown in Appendix E, we obtain similar results when we vary

the values of aB and ρ while holding the other values fixed.

Let us define Gw by the steady-state welfare-maximizing level of G and use this to compare

the steady-state welfare-maximizing level of G with its steady-state growth-maximizing level.

From the definition ofGw and (38), it is easy to confirm that the steady-state welfare-maximizing

level of G is lower than the steady-state growth-maximizing level, as summarized in the following

proposition.

Proposition 1

Suppose that aN and aB are sufficiently large and ρ is sufficiently small. Setting G = Gw

maximizes steady-state welfare. In addition, the steady-state welfare-maximizing level of G is

below the steady-state growth-maximizing level.

As mentioned above, an increase in G raises the wage rate for skilled labor; as a result,

the price of goods increases, reducing household consumption. Therefore, there is a trade-

off between the negative effect on household consumption and the positive growth effect if

0 < G < Gg. When the government increases G to maximize the growth rate, this depresses

household consumption; the steady-state welfare-maximizing level of G is thus below the steady-

state growth-maximizing level.

15The effects of ε and θ on U∗ are ambiguous because w∗ is increasing in ε and θ while γ∗ is decreasing in ε
and θ. This derivation is shown in Appendix C.

16In the cases in which aN = 0.057 and aN = 0.055, U∗ is decreasing in G for G > 0.15. To clearly demonstrate
the relationship between U∗ and G, we omit the range in which G > 0.15.

17



Figure 5: The relationship between U∗ and G. The parameter values are
aB = 0.2, ρ = 0.05, ε = 4, α = 0.4, β = 0.6, and θ = 0.3.

5.2 Welfare effects of policy changes

In this subsection, we examine the welfare effects of marginal changes in G using Judd’s (1982,

1985) method. Suppose that the economy is initially in the steady state. When the government

increases G at time 0, the economy undergoes transitional dynamics, eventually converging to

the new steady state. From (1) and (35), the overall effects of marginal changes in G on the

welfare are given by

dU0

dG
= −

∫ ∞

0
e−ρt θ

w∗
dwt

dG
dt+

1

ε− 1

∫ ∞

0
e−ρt

∫ t

0

dγNτ
dG

dτdt. (42)
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Equations (32), (33), and (42) imply

dU0

dG
= − θ

ρw∗
dw∗

dG
− θν

(ρ+ ϕ)w∗
dλ∗

dG

+
aN (λ∗)α−1

(ε− 1)ρ

[
1

ρ

{
−1 + θ

ε− 1

ε

1

(w∗)2
dw∗

dG

}
+ θ

ε− 1

ε

1

(w∗)2
ν

ρ+ ϕ

dλ∗

dG

]
(43)

−(1− α)aNϕ(λ∗)α−2

ρ2(ε− 1)(ρ+ ϕ)

(
1−G− θ

ε− 1

ε

1

w∗

)
dλ∗

dG
.

By using (43), we evaluate dU0
dG when the government initially sets G to Gw. As shown in

Appendix F, we obtain

dU0

dG

∣∣∣∣
G=Gw

< 0.

In summary, we can state the following proposition:

Proposition 2

Suppose that aN and aB are sufficiently large, ρ is sufficiently small, and the economy is initially

in the steady state. If G is set to Gw, a decrease in G marginally increases the welfare of

households.

From the discussion in subsection 4.2, when the government increases G at time 0, the wage

rate for skilled labor, wt, initially jumps up and thereafter monotonically increases to the new

steady-state level. Meanwhile, growth in the number of differentiated goods, γNt , jumps down or

up initially and thereafter monotonically increases to the new steady-state level.17 As discussed

above, an increase in the wage rate for skilled labor reduces household consumption. Thus,

there is a trade-off between the negative effect on household consumption and the positive long-

run growth effect. Proposition 2 states that if G is equal to its steady-state welfare-maximizing

level, the former effect overwhelms the latter effect. Proposition 2 also states that the optimal

constant level of G is lower than the level that maximizes steady-state welfare.

17We compare Gw to G̃ using the above example numerical values (aN = 0.1, aB = 0.2, ρ = 0.05, ε = 4,
α = 0.4, β = 0.6, and θ = 0.3). With these parameter values, Gw ≈ 0.193 and G̃ ≈ 0.182; thus, Gw > G̃ holds.
When the government increases G at time 0, the growth in the number of differentiated goods, γN

t , jumps down
initially and thereafter monotonically increases to the new steady-state level.
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6 Conclusion

In this study, we developed a variety expansion growth model that integrated applied and basic

research sectors, seeking chiefly to examine the effects of basic research on household welfare.

The analysis derived two key results. First, the steady-state welfare-maximizing level of basic

research is below the steady-state growth-maximizing level. Second, a reduction in the level

of basic research raises welfare if the level of basic research is set to the steady-state welfare-

maximizing level.

We see several interesting directions for future research. First, this study used a first-

generation R&D-based growth model that exhibits scale effects; that is, an increase in the size

of the labor force raises the growth rate. However, Jones (1995) finds that scale effects are

not supported by empirical evidence.18 In future research, it would be interesting to consider

non-scale growth models. Second, the assumption that the supply of skilled and that of un-

skilled labor are exogenous seems unrealistic. To address this, future research could incorporate

endogenous skill acquisition following Dinopoulos and Segerstrom (1999).

Appendix

A. Local stability

We examine the local stability at the steady state. Approximating (18) and (19) linearly in the

neighborhood of the steady state, we obtain(
ẇt

λ̇t

)
=

(
Jww Jwλ

Jλw Jλλ

)(
wt − w∗

λt − λ∗

)
. (A.1)

Here, Jij (i, j = w, λ) denotes entities in the Jacobian matrix of this system:

Jww =
aN
ε

{
1 + α(ε− 1)θ

}(λ∗)α−1

w∗ > 0,

Jwλ = (1− α)
{
ρ+ (1− α+ β)aBG(λ∗)β

} λ∗

w∗ > 0,

Jλw = θ
ε− 1

ε
aN

(λ∗)α

(w∗)2
> 0,

Jλλ = −(1− α+ β)aN

(
1−G− θ

ε− 1

ε

1

w∗

)
(λ∗)α−1 < 0.

The eigenvalues of the Jacobian matrix, J , are defined as χi (i = 1, 2). Here, χ1 and χ2 are the

roots of the characteristic equation, χ2 − (Jww + Jλλ)χ+ JwwJλλ − JwλJλw = 0. From the sign
18See Jones (1995) for a more detailed discussion of scale effects in R&D-based growth models.
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of Jij , we obtain JwwJλλ − JwλJλw < 0. We then have

χ1 =
Jww + Jλλ +

√
(Jww + Jλλ)2 − 4(JwwJλλ − JwλJλw)

2
> 0,

χ2 =
Jww + Jλλ −

√
(Jww + Jλλ)2 − 4(JwwJλλ − JwλJλw)

2
< 0.

Note that wt is a jump variable and λt is a predetermined variable. Thus, the steady state is

locally saddle-point stable.

Next, in order to calculate the effects of marginal changes in G on the values of wt and

λt within the transitional dynamics to the new steady state, we solve the linear differential

equations (A.1) as follows:

wt = w∗ − (λ0 − λ∗)νe−ϕt,

λt = λ∗ + (λ0 − λ∗)e−ϕt,

where ν ≡ −(χ2 − Jλλ)/Jλw and ϕ ≡ −χ2. Differentiating wt and λt with respect to G yields

dwt

dG
=

dw∗

dG
+

dλ∗

dG
νe−ϕt − (λ0 − λ∗)

d

dG

(
νe−ϕt

)
, (A.2)

dλt

dG
=

(
1− e−ϕt

)dλ∗

dG
+ (λ0 − λ∗)

d

dG

(
e−ϕt

)
. (A.3)

Here, we assume that the economy is initially in the steady state (i.e., λ0 = λ∗). As a result,

the third term in (A.2) and the second term in (A.3) become zero.

Finally, we examine the sign of ν. From the definitions of ν and χ2, we obtain

ν = −
Jww − Jλλ −

√
(Jww + Jλλ)2 − 4(JwwJλλ − JwλJλw)

2Jλw
.

Jww > 0 and Jλλ < 0 imply that Jww − Jλλ > 0. Hence, we calculate the following difference:

(Jww − Jλλ)
2 −

{
(Jww + Jλλ)

2 − 4(JwwJλλ − JwλJλw)
}
= −4JwλJλw < 0.

Thus, ν > 0 holds.

B. Relation between dL∗
R/dG and G

Using (27), we obtain

dL∗
R

dG
=

aB
aN

(λ∗)β
−(1− α+ β)aNG+ (1− α)(ε− 1)θρ(λ∗)1−α

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
.
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Note that λ∗ depends on G
(
see equation (22)

)
. Hence, we define a function as Λ(G) =

−(1−α+β)aNG+(1−α)(ε− 1)θρ(λ∗)1−α. The sign of
dL∗

R
dG determines the sign of Λ(G). (22)

implies that limG→0 λ
∗ =

[
aN

(ε−1)θρ

] 1
1−α and limG→1 λ

∗ = 0. By using these results, we obtain

lim
G→0

Λ(G) = (1− α)aN > 0 and lim
G→1

Λ(G) = −(1− α+ β)aN < 0.

From (26), Λ(G) is decreasing in G. Thus, Λ(G) is positive (negative) when G is small (large).

Here, G̃ is defined as Λ(G̃) = 0. As a result, we obtain the following relation:

dL∗
R

dG
R 0 ⇔ G Q G̃.

C. Proof of Lemma 1

By using (22), (23), (24), and (25), we differentiate λ∗, w∗, and γ∗ with respect to ρ as follows:

dλ∗

dρ
= − (ε− 1)θλ∗

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
< 0,

dw∗

dρ
=

εaBG(w∗)2

(ε− 1)θaN
(1− α+ β)(λ∗)−α+β dλ

∗

dρ
< 0,

dγ∗

dρ
= βaBG(λ∗)β−1dλ

∗

dρ
< 0,

With regard to aN , aB, ε, and θ, we obtain the following results in a similar way:

dλ∗

daN
=

(1−G)(λ∗)α

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
> 0,

dw∗

daN
=

εaB(w
∗)2(λ∗)β

(ε− 1)θa2N

β(ε− 1)θρ(λ∗)1−α

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
> 0,

dγ∗

daN
= βaBG(λ∗)β−1 dλ

∗

daN
> 0,

dλ∗

daB
= − {1 + (ε− 1)θ}G(λ∗)1+β

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
< 0,

dw∗

daB
=

εG(w∗)2(λ∗)1−α+β

(ε− 1)θaN

(1− α)(ε− 1)θρ

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
> 0,

dγ∗

daB
= G(λ∗)β

(1− α){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
< 0,

dλ∗

dε
= − θaBG(λ∗)1+β + θρλ∗

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
< 0,

dw∗

dε
=

(w∗)2(λ∗)1−α

(ε− 1)θaN

{
aBG(λ∗)β + ρ

}[
(1− α+ β)(1− θ)aBG(λ∗)β + (1− α)(ε− 1)θρ

]
(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ

> 0,

dγ∗

dε
= βaBG(λ∗)β−1dλ

∗

dε
< 0.
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dλ∗

dθ
= − (ε− 1)aBG(λ∗)1+β + (ε− 1)ρλ∗

(1− α+ β){1 + (ε− 1)θ}aBG(λ∗)β + (1− α)(ε− 1)θρ
< 0,

dw∗

dθ
=

ε(ε− 1)(w∗)2

{1 + (ε− 1)θ}2
(
1−G+

ρ

aN
(λ∗)1−α

)
− (1− α)ερ(w∗)2

{1 + (ε− 1)θ}aN
(λ∗)−αdλ

∗

dθ
> 0,

dγ∗

dθ
= βaBG(λ∗)β−1dλ

∗

dθ
< 0.

Therefore, the wage rate for skilled labor, w∗, is increasing in aN , aB, ε, and θ but decreasing

in ρ. The growth rate, γ∗, is decreasing in ρ, ε, and θ but increasing in aN and aB.

D. Derivation of condition (41)

log( 1
w∗ ) is positive if w∗ < 1 holds. By using (25), the condition w∗ < 1 is as follows:

λ∗ >

[
aN
ρ

{
1 + (ε− 1)θ

ε
− (1−G)

}] 1
1−α

. (D.1)

From (26), the left-hand side of (D.1) is decreasing in G and the right-hand side of (D.1) is

increasing in G. Thus, to ensure that log( 1
w∗ ) is positive for G ∈ (0, Gg), it is sufficient that

(D.1) holds at G = Gg, that is,

λ∗∣∣
G=Gg

>

[
aN
ρ

{
1 + (ε− 1)θ

ε
− (1−Gg)

}] 1
1−α

≡ λ̃. (D.2)

By using (22), the condition (D.2) is as follows:

{
1 + (ε− 1)θ

}
aBGg(λ̃)

1−α+β + (ε− 1)θρ(λ̃)1−α − aN (1−Gg) < 0.

E. Numerical examples (steady-state welfare)

For the baseline parameter values, we choose aN = 0.1, aB = 0.2, ρ = 0.05, ε = 4, α = 0.4,

β = 0.6, and θ = 0.3 (this corresponds to the upper-left panel of Figure 5). To demonstrate

the relationship between U∗ and G, we vary the value of aB (ρ) while holding the others fixed

in Figure E.1 (E.2). In both figures, properties of the relation between U∗ and G are the same

as in Figure 5. From these results, we confirm that there is a steady-state welfare-maximizing

level of G if aN and aB are sufficiently large and ρ is sufficiently small.
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Figure E.1: The parameter values are aN = 0.1, ρ = 0.05, ε = 4,
α = 0.4, β = 0.6, and θ = 0.3.

Figure E.2: The parameter values are aN = 0.1, aB = 0.2, ε = 4,
α = 0.4, β = 0.6, and θ = 0.3.
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F. Proof of Proposition 2

The definition of Gw implies that dU∗

dG

∣∣
G=Gw

= 0 holds. By using (30), (31), and (37), we obtain

− θ

ρw∗
dw∗

dG

∣∣∣∣
G=Gw

+
aN (λ∗)α−1

ρ2(ε− 1)

{
−1 + θ

ε− 1

ε

1

(w∗)2
dw∗

dG

}∣∣∣∣
G=Gw

=
(1− α)aN (λ∗)α−2

ρ2(ε− 1)

(
1−G− θ

ε− 1

ε

1

w∗

)
dλ∗

dG

∣∣∣∣
G=Gw

. (F.1)

Substituting (F.1) into (43) yields

dU0

dG

∣∣∣∣
G=Gw

=
θν

ερ(ρ+ ϕ)w∗

{
−ερ+ aN

(λ∗)α−1

w∗

}
dλ∗

dG

∣∣∣∣
G=Gw

+
(1− α)aN (λ∗)α−2

ρ(ε− 1)(ρ+ ϕ)

(
1−G− θ

ε− 1

ε

1

w∗

)
dλ∗

dG

∣∣∣∣
G=Gw

. (F.2)

From (21) and (22), we obtain

−ερ+ aN
(λ∗)α−1

w∗ = εaBG(λ∗)β. (F.3)

By using (26), (F.3), ϕ > 0, and ν > 0, (F.2) becomes

dU0

dG

∣∣∣∣
G=Gw

< 0.
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