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Abstract

The purpose of this paper is to show that the problem of computing minimum cost index (MCI),

which is proposed by Dean and Martin (2010, 2015) as a goodness-of-fit measure of GARP, is NP-

hard. We show the result by using a reduction from maximum acyclic subgraph problem (MASP)

which is a traditional decision problem known to be NP-complete.
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1 Introduction

Given a finite data set {(pk, xk)}nk=1 where pk ∈ Rℓ
++, xk ∈ Rℓ

+ (k = 1, . . . , n), the data can be supported

by some non-satiated utility function u : Rell+ → R as solutions of utility maximization problem if and

only if the data is consistent with the generalized axiom of revealed preference (GARP). This is a classical

result of Afriat (Afriat, 1962; Diewert, 1973; Varian, 1982). Based on this result, we can test an arbitrary

data set {(pk, xk)}nk=1 whether there is a utility function that rationalize the data or not. This test has

a form of a choice between two alternatives and hence, if we have some data with GARP violation, we

have no information about the violation severity.

There are several severity-measure proposed in the literature and sometimes these are called goodness-

of-fit measures. For example, Afriat (1972), Houtman and Maks (1985), Varian (1990), Echenique et al.

(2011), and Sumeulders et al. (2013) proposed some indices which are defined using the data and these

indices express, in various ways, how severely the data violate GARP. On the other hand, Smeulders

et al. (2013, 2014) shows that for many of those indices, computation is not so easy; the problem of

computing some indices are NP-hard.1 They show that the induces of Houtman and Maks (1985), Varian

(1990), and Echenique et al. (2011) are NP-hard. On the other hand, they propose an polynomial-time

algorithm for Afriat (1972)’s index and two new indexes which have polynomial-time algorithms and

behave in a compatible way with Echenique et al. (2011)’s index.

Recently, Dean and Martin (2010, 2015) also proposed a new index called minimum cost index (MCI).

They suggest that the computation of MCI is not so easy. In this paper, we show that the computa-

tion problem of MCI is actually in the class NP-hard and hence. Our argument is very simple using

a polynomial-time reduction from the maximum acyclic subgraph problem (MASP), a classical NP-

complete problem.

We conclude this paper by proposing a new index. The definition of the new index is similar to

MCI and Echenique et al. (2011)’s indices, but it has a polynomial-time exact algorithm and a natural

interpretation as a goodness-of-fit measure for GARP in view of the structure of GARP test.

2 Minimum Cost Index; Definition, Validity, and Complexity

The minimum cost index (MCI) is a goodness-of-fit measure for GARP which is proposed by Dean and

Martin (2010, 2015). MCI expresses the minimum cost of information we must ignore from the data so

that the data satisfies an equivalent condition of GARP. We first formalize “an equivalent condition of

GARP” using some graph theoretic apparatus.

Definition 1. For any data {(pk, xk)}nk=1 where pk ∈ Rℓ
++, xk ∈ Rℓ

+ (k = 1, . . . , n), we define the

1 A problem in the class of NP-hard is not so easy in the sense that if we have a polynomial-time algorithm for the

problem then every problem in the class of NP can be solved in polynomial-time through the problem. In other

wards, the problem is as hard to solve as every NP problems. Moreover, at the present time, no NP problem has

a polynomial-time exact algorithm and hence, we conclude that, probably, there is no polynomial-time algorithm

for the problem. For more detailed discussions, see, Karp (1972), Garey and Johnson (1979), and Korte and Vygen

(2008).
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following directed graph: G := (V,Enp) where

V := {x1, x2, . . . , xn} (1)

Enp := {(xk, xk′) | k, k′ = 1, . . . , n, k ̸= k′, and pk · (xk′ − pk) ≦ 0}. (2)

We call the graph G := (V,Enp) the associated graph.

As shown in Piaw and Vohra (2003), Fujishige and Yang (2012), and Talla Nobibon et al. (2014), we

can translate GARP condition into graph theoretic conditions as stated in the following proposition.2

Proposition 1. Given the data {(pk, xk)}nk=1, the following three conditions are equivalent.

(i) Cycrical consistency (GARP)：pk0 ·(xk1−xk0) ≦ 0, pk1 ·(xk2−xk1) ≦ 0, . . . , pkm ·(xkm+1−xkm) ≦ 0

implies pki
· (xk(i+1)

− xki
) = 0 for all i = 0, . . . ,m (where m+ 1 = 0).

(ii) The associated graph Gnp = (V,Enp) has no strongly connected component (SCC) which has a

negative edge.

(iii) The associated graph Gnp = (V,Enp) has no cycle which has a negative edge.

The first condition is the Cyclical consistency condition defined by Afriat (1967) and equivalent with

GARP (Varian, 1987). The second condition is proposed by Talla Nobibon et al. (2014) which is also

mentioned in Fujishige and Yang (2012). The third condition is a graph theoretic condition which is

related to the definition of MCI as we will see below. Now, we introduce the formal definition of the

MCI.

Definition 2. (Dean and Martin, 2010; 2015) For any data {(pk, xk)}nk=1 where pk ∈ Rℓ
++, xk ∈

Rℓ
+ (k = 1, . . . , n), we define the minimum cost index (MCI) as follows:

MCI := min{
∑

(xk,xk′ )∈E′

pk ·(xk−xk′) | E′ ⊂ Enp and G′ = (V,Enp \E′) contains no directed cycle} (3)

where Gnp = (V,Enp) is the graph associated with the data {(pk, xk)}nk=1 defined in definition 1.3

While the original definition of MCI we introduced above is based on the idea that “the minimum cost

of information we must ignore from the data so that the data satisfies an equivalent condition of GARP”,

it is defined by a slightly deferent condition from the equivalent condition of GARP (the condition (iii)

of Proposition 1). However, the equation

MCI := min{
∑

(xk,xk′ )∈E′

pk · (xk − xk′) | E′ ⊂ Enp and G′ = (V,Enp \ E′) contains no directed cycle}

= min{
∑

(xk,xk′ )∈E′

pk · (xk − xk′) | E′ ⊂ Enp and G′ = (V,Enp \ E′) contains no directed cycle with a negative edge}

(4)

holds and we can see the definition of MCI actually grasps the above mentioned idea. Therefore, we

2 Fujishige and Yang (2012) essntiallly shows this result in a indivisible goods setting (discrete setting).
3 Dean and Martin (2010, 2015) define the MCI normalizing by the total wealth level of the data. That is, they define

MCI dividing the value (3) by the value sumn
k=1pkẋk > 0. Here, we omit this normalization since our goal is to see

the computational complexity of MCI and this (omission of) normalization obviously does not change the argument.
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can also say, from Proposition 1, that the MCI has some validity as a goodness-of-fit measure. On the

other hand, the MCI is not so easy to compute. Actually, as we will see below, the problem to calculate

MCI for an arbitrarily given data {(pk, xk)}nk=1 is NP-hard, hence we say that, probably, there is no

polynomial-time algorithm for MCI.

We formally state the problem to compute MCI.

MCI Computation Problem� �
Instance: A data {(pk, xk)}nk=1 where pk ∈ Rℓ

++, xk ∈ Rℓ
+ (k = 1, . . . , n).

Task: Compute MCI defined by the equation (3).� �
Theorem 1. MCI computation problem is NP-hard.

Proof. We first note that the following equations hold:∑
(xk,xk′ )∈Enp

pk · (xk − xk′)−MCI

= max{
∑

(xk,xk′ )∈Enp

pk · (xk − xk′)−
∑

(xk,xk′ )∈E′

pk · (xk − xk′) | E′ ⊂ Enp and G′ := (V,Enp \ E′) contains no cycle}

= max{
∑

(xk,xk′ )∈E′

pk · (xk − xk′) | E′ ⊂ Enp and G′ := (V,E′) contains no cycle}. (5)

We can observe the right hand side of this equation is a problem which asks the value of the maximum

weight acyclic subgraph. This problem is called the maximum acyclic subgraph problem (MASP) and

known to be NP-complete (Garey and Johnson, 1979). Formally, MASP is formalized as follows:

MASP� �
Instance: A simple directed graph G = (U,E) and an integer k ≧ 0.

Question: Is there any subset A′ ⊂ E such that subgraph G′ = (U,A′) is acyclic and |A′| ≥ k.� �
We use a polynomial-time reduction from MASP. Given an arbitrary instance for MASP; a simple

directed graph G = (U,E) and an integer k ≧ 0, we construct an instance for MCI computation prob-

lem; a data {(pk, xk)}nk=1 where pk ∈ Rn
++, xk ∈ Rn

+ (k = 1, . . . , n) and n := |V |.4 First, we define

consumptions xk ∈ Rn
+ (k = 1, . . . , n) as

xk := (xk1, . . . , xk(k−1), xkk, xk(k+1), . . . , xkn) := (0, . . . , 0, 1, 0, . . . , 0). (6)

4 The idea for this construction is the same with Smeulders et al. (2014)’s one which they used to show NP-hardness

of Houtman-Maks index (Houtman and Maks, 1985) and Varian’s index (Varian, 1990).
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Next, we define prices pk ∈ Rn
++ (k = 1, . . . , n)

pkk′ :=


1 if (uk, uk′) ∈ E

2 if k = k′

3 if (uk, uk′) /∈ E

(7)

where pkk′ is the k′-th coordinate of price pk ∈ Rn
++ and uk, uk′ ∈ U . Then, we have

pk · (xk′ − xk) = pkk′ − pkk =

{
−1 < 0 if (uk, uk′) ∈ E

1 > 0 if (uk, uk′) /∈ E
(8)

for all k, k′ = 1, . . . , n where k ̸= k′. Therefore, if we construct the associated graph Gnp for this data

{(pk, xk)}nk=1 then it is evident from equation (8) and the definition of associated graph Gnp that there

is a one-to-one correspondence between the edges in E and edges in Enp. Moreover, from equation (8),

the equation (5) becomes∑
(xk,xk′ )∈Enp

pk · (xk − xk′)−MCI

= max{
∑

(xk,xk′ )∈E′

pk · (xk − xk′) | E′ ⊂ Enp and G′ := (V,E′) contains no cycle}

= max{
∑

(uk,uk′ )∈E′

1 | E′ ⊂ E and G′ := (U,E′) contains no cycle}

= max{
∑

(uk,uk′ )∈E′

1 | E′ ⊂ E and G′ := (U,E′) contains no cycle}. (9)

Therefore, the following equation also holds:

|E| −MCI

= max{|E′| | E′ ⊂ E and G′ := (U,E′) contains no cycle}. (10)

Summing up, we can have a polynomial-time algorithm for MASP using MCI computation problem as

a subroutine. Step 1: Constitute the instance for MCI computation from the given instance of MASP

instance by (6) and (7). Step 2: Constitute the associated graph Gnp for the data constructed in step

1. Step 3: Compute the the MCI which is defined by (3). Step 4: Compute the LHS of (10) and

compare that value with the given integer k. If LHS of (10) ≧ k then the answer for the MASP is yes,

and otherwise, the answer is no.

The computational time for these steps can obviously be bounded by polynomial time and hence, MCI

computation problem is NP-hard.

3 Concluding Remark

As we show, the problem of computing MCI is NP-hard and as shown by Smeulders et al. (2013, 2014)

many of indices proposed are also NP-hard problems. On the other hand, Smeulders et al. (2014) show

that Afriat (1973)’s index has a polynomial-time algorithm and Smeulders et al. (2013) proposed an
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index which has a polynomial-time algorithm and behave nicely with money-pump measure of Echenique

et al. (2011). (Smeulders et al. (2013) also show that the problem of computing the money-pump

measure is also NP-hard.) We propose a new index which has a polynomial-time algorithm and a

natural interpretation as a goodness-of-fit measure for GARP.

All indices proposed by Echenique et al. (2011)’s money pump measure, Smeulders et al. (2013)’s

measure, and MCI of Dean and Martin (2015), are defined focusing on negative cycles in Gnp. From

proposition 1, we know that each negative cycle in Gnp creates a violation of GARP. However, also

shown in proposition 1, if there is a data with a violation of GARP, the associated graph Gnp has a

negative cycle and these cycles are in a SCC of Gnp. In other words, all the relevant informations of the

data which are related to GARP violations is in SCCs of Gnp. This observation lead us another natural

goodness-of-fit measure for GARP.

SCCI :=

∑m
h=1(

∑
(xk,xk′ )∈Ch

pk · (pk − pk′))∑
(xk,xk′ )∈Enp

pk · (pk − pk′)
, (11)

where Ch(h = 1, . . . ,m) are subgraphs of Gnp which are induced by SCC of Gnp and (xk, xk′) ∈ Ch

expresses that the edge (xk, xk′) in contained the edge of Ch.
5 Note that SCCI ∈ [0, 1] for any data.

This index has a natural interpretation: the ratio of the weight of GARP violation part of the data over

the entire weight of revealed preference relation. Moreover, it has a polynomial-time algorithm: Step 1:

Construct the related graph Gnp. Step 2: Compute all of the SCC by the SCCD algorithm. Step 3:

Compute the SCCI.

Theorem 1. The SCCI has an O(n2) algorithm.

The computational complexity of this algorithm actually can be bounded by polynomial-time. Hence,

we can compute SCCI in a reasonable time for an arbitrary data {(pk, xk)}nk=1.
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