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1 Introduction
Privatization programs have been executed mainly in developed countries for the improvement of
public firms’ efficiency and reconstruction of public finances since the 1980s. However, mixed
oligopolies are still common, especially in developing countries. This gives the impression that the
maturation of an industry makes public firms appear to be troublemakers in the market. The aim of
this paper is to discuss the effects technology improvements of public firms have on the economy.

This paper presents a dynamic general equilibrium model of mixed oligopoly. Since De Fraja
and Delbono (1989), many studies investigated mixed oligopolies, where public firms maximize
social welfare and private firms maximize their profits. Among them, Nishimori and Ogawa (2002)
and Cato (2008) considered the mixed oligopoly market where only public firms invest in research
and development (R&D) activities. They have shown that investment in public monopolies is
higher than that in mixed oligopolies. Mixed oligopolies are common in the industries of education,
finance, infrastructure, and resource development. Managements of public firms in these industries
are required to have a long-term perspective. This implies that public firms should take the future
benefits of economic agents into account. Hence, public firms in the present study consider the
future benefits of economic agents.

This paper takes an intertemporal optimization approach when considering strategies of public
firms. Public firms determine their production and investments for cost reduction considering
social benefits. We apply Matsumura’s (1998) approach, the first research that examined partial
privatization, to our objective functions of public firms to consider mixture ownership.

Our main findings are as follows. First, the steady state is classified into two cases according
to the degree of differentiation between public firms and private firms, and the difficulty of cost
reduction. If public firms manufacture similar products to those of private firms and their R&D
activities are efficient, there are two kinds of steady state: one exhibits mixed oligopoly and the
other exhibits pure oligopoly. However, the steady states of the mixed oligopoly may not exist if
public firms manufacture different products from those of private firms, and their R&D activities
are inefficient. This means that, in the situation, the present value of the weighted sum of utility
and aggregate profits of a mixed oligopoly is smaller than that of a pure oligopoly.,since this result
is derived from the optimization problem of public firms.

Second, subsidies to public firms increase when they regard the representative household as
important, at least when mixed oligopoly and pure oligopoly always exist. This paper focuses on
steady state values of technology levels, a production cost over the economy, and subsidies in this
situation. The reason for the result is that the public firm undervalues costs generated by its own
activities because it is concerned about the household. This leads to lower prices of public firms
relative to that of private firms and larger R&D investments. As a result, increases in subsidies
occur. This brings about financial deficits that might be prevented by partial privatization or setting
an upper limit on the subsidy.

The first result follows De Fraja (1991) and other related literature: privatization in the suffi-
ciently competitive market improves social welfare. However, the present study is different from
that literature in that no comparative statics were utilized to obtain this result. The literature shows
that pure oligopoly is better that mixed oligopoly when the market is competitive. In the present
study, the steady state is pure oligopoly as a result of public firms solving optimization problems,
when the degree of differentiation is small. Since the small degree of differentiation implies that
the market is competitive, this result corresponds to the previous results.
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The second result follows Nishimori and Ogawa (2002) and Cato (2008). These studies show
that investment by a public firm in a public monopoly is larger than that in a mixed oligopoly.
Similarly, the present study shows that partial privatization has a negative effect on the amount
of investment. In addition, this study shows that technology improvement in public firms has a
negative effect on their mark-up.

The remainder of the paper is organized as follows. Section 2 sets up the model. We construct
the model by solving the optimization problem of the representative household and firms, and
obtaining equilibrium. The dynamics are presented in section 2 and comparative statics is presented
in section 3. Section 4 concludes. Appendices discuss details of derivations of formulas .

2 Model

2.1 Household
Suppose that there is an infinitely lived representative household whose instantaneous utility at
period t is

ln C(t), (1)
where C(t) is an aggregate consumption index at period t. This index is composed of m + n
differentiated goods, which can be divided into two groups according to elasticities of substitution,
which will be discussed later.

Let us denote one group as X and the other group as Y . We further denote X(Y ) group’s
consumption index as X(t) (Y (t)). Suppose the elasticity of substitution between the two group as

1
1−γ . Then, the aggregate consumption index is defined as

C(t) = [X(t)γ + Y (t)γ]
1
γ , γ ∈ [0, 1]. (2)

The household can consume goods of the group X on interval [0,m]. Supposing elasticities of
substitution between any two goods as constant 1

1−α , the consumption index of group X is defined
as

X(t) =
[∫ m

0
xi(t)αdi

] 1
α

, α ∈ [0, 1], (3)

where xi(t) is the consumption of firm i’s product in group X . Similarly, the household can consume
goods of group Y on interval [0, n] and that of group Y is defined as

Y (t) =
[∫ n

0
y j(t)βdj

] 1
β

, β ∈ [0, 1], (4)

where y j(t) is the consumption of firm j’s product in the group Y .
The budget constraint of the household is as follows. By denoting a price index of X(t) as PX(t)

which is defined later, total expenditure to group X is

PX(t)X(t) =
∫ m

0
pxi (t)xi(t)di, (5)

2



where pxi (t) is a price of xi(t). In a similar way, by denoting a price index of group Y as PY (t), total
expenditure to the group Y is

PY (t)Y (t) =
∫ n

0
pyj (t)y j(t)dj, (6)

where pyj (t) is a price of y j(t). Summing up, total expenditure of the household becomes

PC(t)C(t) = PX(t)X(t) + PY (t)Y (t), (7)

where PC(t) is an aggregate price index defined later.
Since the household maximizes utility under these budget constraints, the maximization problem

consists of two stages. In the first stage, the household maximizes (2) subject to (7) to obtain
allocation between goods of X group and that of Y group as follows:

X(t) = PX(t)
1

γ−1

PX(t)
γ

γ−1 + PY (t)
γ

γ−1
PC(t)C(t), (8)

and

Y (t) = PY (t)
1

γ−1

PX(t)
γ

γ−1 + PY (t)
γ

γ−1
PCC(t). (9)

Substituting these two demand functions into (2) and solving for PC(t) , we can obtain the aggregate
price index as

PC(t) = (PX(t)
γ

γ−1 + PY (t)
γ

γ−1 )
γ−1
γ . (10)

With this price index, (8) and (9) can be rewritten as

X(t) = PX(t)
1

γ−1

PC(t)
γ

γ−1
PC(t)C(t), (11)

and

Y (t) = PY (t)
1

γ−1

PC(t)
γ

γ−1
PC(t)C(t). (12)

In the second step, we obtain quantities of consumption per firm. Maximizing (3) subject to (5)
leads to

xi(t) =
pxi (t)

1
α−1∫ m

0 pxi′ (t)
α

α−1 di′
PX(t)X(t). (13)
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Substituting this into (5) defines the price index of group X as

PX(t) =
[∫ m

0
pxi (t)

α
α−1 di

] α−1
α

. (14)

Combining (11), (13), and (14), we can obtain the demand function for the product of firm i as
follows:

xi(t) =
pxi (t)

1
α−1

PX(t)
α

α−1−
γ

γ−1 PC(t)
γ

γ−1
PC(t)C(t). (15)

In the same manner, we can obtain the price index of group Y as follows:

PY (t) =
[∫ n

0
pyj (t)

β
β−1 dj

] β−1
β

. (16)

and the demand function for the product of firm j as

y j(t) =
pyj (t)

1
β−1

PY (t)
β

β−1−
γ

γ−1 PC(t)
γ

γ−1

PC(t)C(t). (17)

We next turn to the intertemporal maximization problem of the representative household. We
assume that the intertemporal utility function of the household is

U(t) =
∫ ∞

t
e−ρ(s−t) ln C(s) ds, (18)

where ρ ∈ (0, 1) is a subjective discount rate. The household’s intertemporal budget constraint is

ÛA(t) = r(t)A(t) + (1 − τ(t))[wP(t)LP(t) + wR(t)LR(t)] − PC(t)C(t), (19)

where r(t) ∈ (0, 1) is an interest rate and τ(t) ∈ [0, 1) is an income tax rate. The household supplies
inelastic labour L̄ and firms employ LP(t) units of labor for production at wage rate wP(t) and
employ LR(t) units of labor for R&D investment at the wage rate wR(t). The household pays the
government an income tax τ(t)[wP(t)LP(t) + wR(t)LR(t)] and divides after-tax income and asset
income r A(t) into saving and consumption. We first construct the current value Hamiltonian as
follows:

H ≡ ln C(t) + ν(t) [r(t)A(t) + (1 − τ(t)) {wP(t)LP(t) + wR(t)LR(t)} − PC(t)C(t)] . (20)

From the necessary conditions of maximization, the following Euler equation obtains:

ÛC(t)
C(t) = r(t) − ρ −

ÛPC(t)
PC(t)

. (21)

Normalizing PC(t)C(t) to one, we can rewrite above equation as

r(t) = ρ. (22)

This means that the interest rate is constant over time.
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2.2 Firms
This section discusses production behaviors of firms. Suppose that monopolistic competition
prevails in the differentiated goods market and there are m firms belonging to group X and n firms
belonging to group Y . Let firms in group X be public firms engaging in production and R&D
investment. On the other hand, to keep matters simple, let firms in group Y be private firms who do
not undertake R&D investment but produce goods.

Suppose that production and R&D investment require labor input. We specify their production
and R&D technologies as follows. The public firm i produces a differentiated good with the
following technology

xi(t) = zi(t)εlxi (t), ε ∈ (0, 1), (23)

where lxi (t) is labor input for the production of the public firm i and zi(t) indicates the technology
level of the firm. The public firm i uses labor input lRi (t) to improve its technology level zi(t)
according to

Ûzi(t) = lRi (t)θ − δzi(t), θ ∈ (0, 1), δ ∈ (0, 1), (24)

where δ is an obsolescence rate of the technology level. This equation shows that technology
becomes obsolete at the rate δ.

We next consider the private firm j. The private firm j produces a differentiated good with the
following technology

y j(t) = lyj (t), (25)

where lyj (t) is labor input for production of the private firm j.
From (23) and (24), the profit of the public firm i becomes

πxi (t) = (pxi (t) − wP(t)zi(t)−ϵ )xi(t) − wR(t)lRi (t) + si(t), (26)

where si(t) is a subsidy to the public firm i. The government subsidies si(t) satisfy the public firm’s
budget loss because of taxation on the household. Similarly, (25) gives the profit of the private firm
j as follows:

πyj (t) = (pyj (t) − wP(t))y j(t). (27)

We now proceed to these firms’ optimization problems. The objective function of the private
firm j is

v(t) =
∫ ∞

t
e−r(s−t) πyj (s) ds. (28)

By using (17) and (27), we can obtain the price of the private firm j as

pyj (t) =
wP(t)
β

. (29)

We have assumed that private firms take price indices PX(t), PY (t) and PC(t) as given.
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Unlike private firms, the public firm i considers the household’s utility and other firms’ profits.
Hence, the objective function of the public firm i is defined as follows:∫ ∞

t
e−ρ(s−t)

[
ψ ln C(s) + (1 − ψ)

[∫ m

0
πxi (s)di +

∫ n

0
πyj (s)dj

] ]
ds, (30)

where ψ ∈ [0, 1]. The public firm i put weight ψ on the household’s utility and weight 1 − ψ on
the sum of all firms’ profits. We assume that the discount rate of the public firm i is ρ, since the
owner of the public firm i is the government, which takes care of the welfare of the household. We
construct the current value Hamiltonian of the public firm i as follows:

H ≡ ψ ln C(t) + (1 − ψ)
[∫ i−1

0
πxi′ (t)di′ + πxi (t) +

∫ m

i+1
πxi′ (t)di′ +

∫ n

0
πyj (t)dj

]
+µi(t)

[
lθRi
(t) − δzi(t)

]
, (31)

where µi(t) is the co-state variable of the technology level of the public firm i.
Before proceeding to the first order condition of the maximization problem, we consider deriva-

tives of demand functions. When determining its behavior, the public firm i considers the direct
effect of one unit of increase in pxi (t) on its profit and the indirect effect of that on other agents’
benefits through changes in the price indices. This indirect effect is generally ignored in the case of
differential monopoly. However, it is hard to ignore this effect in mixed differential monopoly, since
the scale of public firms are basically large in comparison with private firms. This is the reason we
differentiate PC(t) with respect to pxi (t) when deriving the first order conditions.

Using (26) and (27), the first order conditions of maximization are derived as

∂H
∂pxi (t)

= 0 ⇔ ψ

∂C(t)
∂pxi (t)

C(t) + (1 − ψ)
[∫ i−1

0

(
pxi′ (t) − wP(t)zi′(t)−ε

) ∂xi′(t)
∂pxi (t)

di′

+xi(t) +
(
pxi (t) − wP(t)zi(t)−ε

) ∂xi(t)
∂pxi (t)

+

∫ m

i+1

(
pxi′ (t) − wP(t)zi′(t)−ε

) ∂xi′(t)
∂pxi (t)

di′

+

∫ n

0

(
pyj (t) − wP(t)

) ∂y j(t)
∂pxi (t)

dj
]
= 0, (32)

∂H
∂lRi (t)

= 0 ⇔ (1 − ψ)wR(t) = θµi(t)lRi (t)θ−1, (33)

∂H
∂zi(t)

= ρµi(t) − Ûµi(t) ⇔ Ûµi(t) = (ρ − δ)µi(t) − ε(1 − ψ)wP(t)zi(t)−ε−1xi(t). (34)

The derivations of these derivatives in the equation (32) are explained in Appendix A.
To obtain the price of public firm i requires several steps. Taking derivatives of (13) and (17)

and substituting them into (32), we obtain

ψxi(t) = (1 − ψ)
{
1 − 1

1 − α

(
1 − wP(t)zi(t)−ε

pxi (t)

)
+

γ

1 − γΓ(t)
}

xi(t), (35)

where Γ(t) ≡
∫ m
0 (pxi (t) − wP(t)zi(t)−ε)xi(t)di +

∫ n
0 (pyj (t) − wP(t))y j(t)dj.
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The left-hand side of the above equation represents the weighted marginal benefit of the house-
hold. This is the increase in the household benefit caused by one additional unit of pxi . Similarly,
the right-hand side of the above equation represents the weighted marginal profit over all firms. This
is the change in the total profit over all firms caused by one additional unit of pxi . The price pxi (t) is
determined by the equality between the weighted marginal benefit and weighted aggregate marginal
profits. Furthermore, weighted aggregate marginal profits has two components. The component
1− 1

1−α (1−
wP(t)z(t)−ε

px(t) ) means the direct effect on the profit of the public firm i by one additional unit
of pxi (t). The other component γ

1−γΓ(t) means the indirect effect on the profit through the change
in the consumption by that amount.

Here, we check that Γ(t) represents aggregate profits of all firm except for public firms’ R&D
expenditures. Rearranging Γ(t) provides

Γ(t) =
[∫ m

0
pxi (t)xi(t)di +

∫ n

0
pyj (t)y j(t)dj

]
− wP(t)

[∫ m

0
zi(t)−εxi(t)di +

∫ n

0
y j(t)dj

]
. (36)

Substituting (5) and (6) into the above equation yields

Γ(t) =
[
PX(t)X(t) + PY (t)Y (t)

]
− wP(t)

[∫ m

0
lxi (t)di +

∫ n

0
lyj (t)dj

]
. (37)

By using (7)、(23) and (25), we can rewrite this equation as follows:

Γ(t) = PC(t)C(t) − wP(t)LP(t). (38)

Defining wP(t)LP(t) as aggregate production cost of all firms, that is, CP(t) and remembering that
total expenditure is one, we can obtain

Γ(t) = 1 − CP(t). (39)

Let us turn back to the first order condition with respect to pxi (t). Substituting (39) into (35)
results in

ψxi(t) = (1 − ψ)
{
1 − 1

1 − α

(
1 − wP(t)zi(t)−ε

pxi (t)

)
+

γ

1 − γ (1 − CP(t))
}

xi(t). (40)

For simplicity of notation, setting (1 − α) γ
1−γ as Q and setting (1 − α)1−2ψ

1−ψ as R, the price of the
public firm i can be expressed as

pxi (t) =
wP(t)zi(t)−ε

QCP(t) + 1 − Q − R
. (41)

The mark-up 1
QCP(t)+1−Q−R is an increasing function of CP(t).

7



2.3 Equilibrium
In this section, we examine equilibrium conditions of the goods market, the labor market and a
capital market. The aggregate production cost over firms will play an important role in these
equilibrium conditions.

2.3.1 Goods Market Equilibrium

Let us derive the aggregate production cost over m+ n firms to obtain the goods market equilibrium
condition. Because of symmetry across public firms and across private firms, combining (10), (14),
(15), (16), (17), (29), and (41) yields

x(t) = 1
m

QCP(t) + 1 − Q − R
wP(t)z(t)−ε

PX(t)
γ

γ−1

PX(t)
γ

γ−1 + PY (t)
γ

γ−1
, (42)

and

y(t) = 1
n

β

wP(t)
PY (t)

γ
γ−1

PX(t)
γ

γ−1 + PY (t)
γ

γ−1
. (43)

It is obvious that these output levels are functions of wP(t), z(t), CP(t), PX(t), and PY (t).
From (23) and (25), production of these differentiated goods requires the following labor inputs:

lx(t) =
1
m

QCP(t) + 1 − Q − R
wP(t)

PX(t)
γ

γ−1

PX(t)
γ

γ−1 + PY (t)
γ

γ−1
, (44)

and

ly(t) =
1
n

β

wP(t)
PY (t)

γ
γ−1

PX(t)
γ

γ−1 + PY (t)
γ

γ−1
. (45)

Because LP(t) = mlx(t)+nly(t) and CP(t) = wP(t)LP(t), (44) and (45) give the aggregate production
cost as

CP(t) =
(QCP(t) + 1 − Q − R)PX(t)

γ
γ−1 + βPY (t)

γ
γ−1

PX(t)
γ

γ−1 + PY (t)
γ

γ−1
. (46)

Rearranging this equation, we obtain

PX(t)
PY (t)

=

(
CP(t) − β

(1 − Q)(1 − CP(t)) − R

) γ−1
γ

. (47)

By using this ratio, we can rewrite (42) and (43) as follows:

x(t) = 1
m

1
wP(t)z(t)−ε

(QCP(t) + 1 − Q − R) (CP(t) − β)
QCP(t) + 1 − Q − R − β

, (48)

and
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y(t) = 1
n

1
wP(t)

((1 − Q)(1 − CP(t)) − R
(QCP(t) + 1 − Q − R − β) β−1 . (49)

2.3.2 Labor market equilibrium

Suppose that labor can freely move between production and R&D activities, the labor market
equilibrium condition becomes

wP(t) = wR(t) ≡ w(t), (50)

and

LP(t) + LR(t) = L̄. (51)

Utilizing CP(t) = w(t)LP(t) and LR(t) = mlR(t), (51) can be rewritten as

CP(t)
w(t) + mlR(t) = L̄. (52)

From (33) and (52), we can obtain the equilibrium wage rate as

CP(t) = w(t)
[
L̄ − m

(
θµ(t)

(1 − ψ)w(t)

) 1
1−θ

]
. (53)

This implicitly defines w(t) as a function of the aggregate production function cost and the co-state
variable. We denote the equilibrium wage rate as w(CP(t), µ(t)). In addition, (52) and (53) give the
equilibrium labor input for R&D activities as

lR(t) =
[

θµ(t)
(1 − ψ)w(CP(t), µ(t))

] 1
1−θ
. (54)

2.3.3 Capital market equilibrium

Private firms pay their profit to the household as dividends. From (27), (28), (29), and (49), we can
obtain the non-arbitrage condition as

Ûv(t) = rv(t) − 1 − β

n
(1 − Q)(1 − CP(t)) − R

QCP(t) + 1 − Q − R − β
, (55)

where v(t) is a stock price of the private firm.
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2.3.4 Constraints for the aggregate production cost over all firms

Let us discuss conditions guaranteeing the existence of firms. To prove concavity of objective
functions of public firms, we must check that the second order condition of (31) is negative. This
imposes the following constraint on the aggregate production cost over firms:

CP(t) > β, (56)

when m >
1−γ
γ . Its proof is given in Appendix B.

The equilibrium profits of private firms give the free entry condition of private firms as

CP(t) ≤
1 − Q − R

1 − Q
. (57)

Accordingly, (56) and (57) conclude that the mixed oligopoly exists if the aggregate production cost
over firms satisfies the following inequality.

β < CP(t) ≤
1 − Q − R

1 − Q
. (58)

Moreover, it is easy to check that the market is a pure oligopoly when CP(t) is β. 1 Now, we have
completed the discussion of equilibrium conditions.

3 Dynamics
3.0.1 The structure of dynamics

We now examine the dynamics of the system. Substituting (52) into (24) yields

Ûz(t) =
[

1
m

(
L̄ − CP(t)

w(CP(t), µ(t))

)] θ
− δz(t), (59)

Substituting (48) into (34) yields the following:

ρ = δ +
Ûµ(t)
µ(t) +

ε(1 − ψ)
m

1
z(t)

(QCP(t) + 1 − Q − R)(CP(t) − β)
QCP(t) + 1 − Q − R − β

1
µ(t) . (60)

The left-hand side of this equation is the cost incurred by giving up a unit of consumption for
investment and the right-hand side represents the return on R&D investment. The right-hand side
is composed for three terms: compensation for technological obsolescence, the rate of the marginal
value change of the technology, and cost-reducing effects of R&D investment.

We next explore the relationship between z(t) and CP(t). Equilibrium price indices can be
derived by (14), (16), (29) and (41). Substituting these indices into (47) and solving this for z(t)
gives

z(t) = ϕ 1
ε

[
CP(t) − β

(1 − Q)(1 − CP(t)) − R

] 1−γ
εγ

(QCP(t) + 1 − Q − R)− 1
ε , (61)

1See Appendix.B
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where ϕ ≡
(

m
α−1
α

n
β−1
β

β

)
. This equation indicates that CP(t) is a function of z(t). Let us denote the

function as CP(z(t)). Equation (61) reveals that the differential equations (59) and (60) have two
endogenous variables z(t) and µ(t).

Consequently, we can summarize the structure of dynamics as follows. The dynamics is
comprised of three differential equations (55), (59) and (60) and two equations (53) and (61). These
equations involve three endogenous variables z(t), µ(t), and v(t).

3.0.2 Steady states

Before proceeding to the phase diagram analysis, we solve for the steady states value of the dynamics.
At the steady state, Ûz(t) = Ûµ(t) = 0 must be satisfied. Thus, the following holds at the steady state.

z∗ =
1
δ

(
L̄
m

)θ [ εθδ(QC∗
P + 1 − Q − R)(C∗

P − β)
(ρ − δ)(QC∗

P + 1 − Q − R − β) + εθδ(QC∗
P + 1 − Q − R)(C∗

P − β)

] θ
. (62)

Using (61), we can obtain the following equation for the steady state value of C∗
P,

ϕ
1
ε

(C∗
P − β)

1−γ
εγ −θ{

(1 − Q)(1 − C∗
P) − R

} 1−γ
εγ (QC∗

P + 1 − Q − R) 1
ε+θ

=
1
δ

(
L̄
m

)δ [
ρ − δ
εθδ

(QC∗
P + 1 − Q − R − β)C∗

P + (QC∗
P + 1 − Q − R)(C∗

P − β)
]−θ

. (63)

The existence of the steady state can be proved by graphical investigation of (63) in β ≤ 1−Q−R
1−Q .

Differentiating the right-hand side of (63) with respect to C∗
P shows that it is a downward sloping

curve and takes non-negative values in the domain of CP. In the same way, we can find that the
left-hand side of (63) is an increasing function of CP if γ < 1

1+εθ and U-shaped curve if γ ≥ 1
1+εθ .

These results provide figure 1(a) which proves the existence of C∗
P in the case of γ < 1

1+εθ and figure
1(b) which shows the case of γ ≥ 1

1+εθ .
Figure 1(a) depicts the case of γ < 1

1+εθ . In this case, there is one intersection in the interval,
β < C∗

P < 1−Q−R
1−Q . However, this graph implies that there are two steady states. It is clear that the

left-hand side of (61) and the right-hand side of (62) are zero when CP is β. It follows that β is also
the steady state value of CP. Hence the number of steady points is the number of intersections on
the figures plus one.

Similar arguments can be applied to the case of γ ≥ 1
1+εθ . Figure 1(b) shows that the number of

steady points for this case can be zero, one or two, depending on parameters. When L̄ is sufficiently
large, there exits two steady states.

Using implicit function theorem, we can find that the Ûzi(t) = 0 locus goes through the origin
and has a positive slope. Similarly, we can find characters of the Ûµi(t) = 0 locus. If γ < 1

1+ε , the
Ûµi(t) = 0 locus has a negative slope and asymptotically approaches the horizontal and vertical axes,
respectively. If γ ≥ 1

1+ε , the Ûµi(t) = 0 locus is an inverted U-shape and goes through the origin and
asymptotically approaches the horizontal axis. The characters are explained in Appendix E .
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Figure 1: (a) The number of steady state in γ < 1
1+εθ

(b) The number of steady state in γ ≥ 1
1+εθ
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Figure 2(a) shows the phrase diagram of γ < 1
1+ε . There are two steady points which are E0,

the origin and E1, an intersection of two loci. The value of z∗ is zero at E0 which means that public
firms do not exist in this steady point. Then the market is a pure oligopoly market, where only
private firms operate. Even if this steady point has no transition path, once a sufficient upward
jump of µ occurred, public firms would begin to operate and the economy would reach steady point
E1. At the steady point E1, z∗ is no longer zero, that is, C∗

P is greater than β. This implies that the
market is a mixed oligopoly in E1.

The phase diagram of 1
1+ε ≤ γ < 1

1+εθ is represented as figure 2(b). This figure is also the phase
diagram of one intersection case on figure 1(b). If there are two intersection points on figure 1(b),
the two loci have three intersections on the phase diagram. Figure 2(c) shows this situation. A
similar argument as before can be applied to these cases. The steady points E0 of these two figures
exhibit the pure oligopoly and the steady points E1 of these figures exhibit the mixed oligopoly,
respectively. 2

However, the steady state E1 disappears if there is no intersection on the figure 1(b). When two
loci have no intersection on figure 1(b), the phase diagram is shown as figure 2(d). It is obvious
that there is only one steady point E0 corresponding to the pure oligopoly. This implies that mixed
oligopoly does not always exist when γ ≥ 1

1+εθ .
Hence, we conclude that the steady state differs from γ as follows.

Proposition 1 In this economy, the market can be either a mixed oligopoly or a pure oligopoly,
depending on the initial variables z(0) and µ(0). However, there is a set of parameters which make
the market never be the mixed oligopoly market when γ ≤ 1

1+εθ .

As mentioned before, γ is the parameter referring to the elasticity of substitution between X(t) and
Y (t). It is obvious that the larger γ indicates the more competitive market. Moreover, larger ε and
θ imply that one unit of labor input has a bigger effect on cost reduction. Therefore, the market
is more competitive and R&D activities are more productive when parameters γ, ε, and θ satisfy
γ ≥ 1

1+εθ .

4 Welfare
In the previous section, we have clarified that there always exists the steady point of the mixed
oligopoly when γ < 1

1+εθ . We now proceed to the steady state effects of increasing ψ under the
condition γ < 1

1+εθ .
By (63), we define

Φ(C∗E1
P , ψ) ≡ ϕ

1
ε

(C∗E1
P − β)

1−γ
εγ −θ

{(1 − Q)(1 − C∗E1
P ) − R}

1−γ
εγ

(QC∗E1
P + 1 − Q − R)− 1

ε−θ

− 1
δ

(
L̄
m

)δ [
ρ − δ
εθδ

(QC∗E1
P + 1 − Q − R − β)C∗E1

P

+ (QC∗E1
P + 1 − Q − R)(C∗E1

P − β)
]−θ

, (64)

2We suppose that midpoint of three intersections is unstable point.
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Figure 2: (a) The phase diagram in γ < 1
1+ε

(b) The phase diagram in 1
1+ε ≤ γ < 1

1+εθ or in γ ≥ 1
1+εθ with one intersection case on figure 1(b)

(c) The phase diagram in γ ≥ 1
1+εθ with two intersections case on figure 1(b)

(d) The phase diagram in γ ≥ 1
1+εθ with no intersection case on figure 1(b)
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Figure 3: The sign of ∂Φ(C∗E1
P ,ψ)
∂R

where C∗E1
P refers to the sate value of aggregate production cost at steady state E1. Using the implicit

function theorem to the above equation yields

dC∗E1
P

dψ
= −

∂Φ(C∗E1
P ,ψ)
∂ψ

∂Φ(C∗E1
P ,ψ)

∂C∗E1
P

. (65)

We can see at once that the molecule ∂Φ(C∗E1
P ,ψ)
∂ψ can be rewritten as ∂Φ(C∗E1

P ,ψ)
∂R

∂R
∂ψ by the chain rule and

that the sign of ∂R
∂ψ is negative by the definition of R. The task is now to find the sign of ∂Φ(C∗E1

P ,ψ)
∂R .

Differentiating (64) with respect to R, we can find that the sign is negative if C∗E1
P satisfies the

following inequality.

βγ
ρ − δ
δ

{(1 − Q)(1 − C∗E1
P ) − R} C∗E1

P

>

[
(1 − γ)(QC∗E1

P + 1 − Q − R) + γ{(1 − Q)(1 − C∗E1
P ) − R}

]
[
{( ρ − δ
δεθ

+ 1)C∗E1
P − β}(QC∗E1

P + 1 − Q − R) − ρ − δ
δεθ

βC∗E1
P

]
. (66)

To check that C∗E1
P satisfies the inequality, we draw the left-hand side and the right-hand side of

(66). The left-hand side has a negative coefficient of C∗E12
P and is zero when C∗E1

P are 0 or 1−Q−R
1−Q .

The right-hand side of (66) has a positive coefficient of C∗E13
P and three icon points: two of them

are smaller than β and one of them is larger than 1−Q−R
1−Q . Depicting the graphs of these equations,

we can find that these two curvatures have three intersections, A, B, and C as shown in figure 3.
Since A is smaller than 0 and C is larger than 1−Q−R

1−Q , (66) is not satisfied when C∗E1
P is between 0

and B and is not satisfied when C∗E1
P is between B and 1−Q−R

1−Q . Substituting β into (66) shows that
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(66) is obtained only if (1 − Q)(1 − β) − R + (1 − γ − γεθ)β > 0. Hence, B is smaller than β when
(1 − Q)(1 − β) − R + (1 − γ − γεθ)β > 0. This condition is satisfied at least when γ < 1

1+εθ , since
we set R less than (1 − Q)(1 − β). In conclusion, (66) is satisfied only if γ < 1

1+εθ .

Now, we turn to the denominator of (65). Figure 1(b) indicates the sign of ∂Φ(C∗E1
P ,ψ)

∂C∗E1
P

is positive.
Because of (63) and (64), we can find that the difference of gradients of each curve at the steady

point E1 on figure 1(b) correspond to the sign of the denominator. Therefore, ∂Φ(C
∗E1
P ,ψ)

∂C∗E1
P

has positive

sign when γ < 1
1+εθ .

These results reveal that increases in ψ have positive effects on C∗E1
P when γ < 1

1+εθ . Moreover,
Appendix C shows that increase in CP(t) has a positive effects on z(t). Hence, we establish the
following proposition.

Proposition 2 Increase in ψ has positive effect on z∗1 and C∗E1
P under the condition γ < 1

1+εθ .

This result mainly comes from the fact that public firms undervalue their costs of production and
R&D investment compared to the household’s utility as ψ is increasing. This underestimation of
cost leads to larger R&D investments and lower prices relative to private firms’ prices. Since the
negative effect on C∗E1

P by technology improvement is smaller than the positive effect on C∗E1
P due

to cheaper prices of the public firms, an increase of ψ has a positive effect on aggregate production
cost.

Last, we discuss the subsidy to public firms. Substituting (41), (48) and (54) into (26) gives

π∗x =
1
m

[
(−QC∗E1

P +Q + R)(C∗E1
P − β)

QC∗E1
P + 1 − Q − R − β

− m(δz∗)−θ

L̄ − m(δz∗)−θ
C∗E1

P

]
+ s∗. (67)

The government sets the subsidy to compensate the public firms’ budget losses as follows:

(sum o f subsidies) = m(δz∗)−θ

L̄ − m(δz∗)−θ
C∗E1

P −
(−QC∗E1

P +Q + R)(C∗E1
P − β)

QC∗E1
P + 1 − Q − R − β

. (68)

which is derived by (67) It is obvious that this equation is an increasing function in C∗E1
P . Considering

proposition 2 and this result gives following proposition.

Proposition 3 An increase in ψ leads to larger subsidies if γ > 1
1+εθ

That is, an increase in ψ leads to an increase in the technology level and the aggregate production
cost, and then, the amount of subsidy increases. The public firm that assigns more importance the
household’s utility is more aggressive in investing and sets lower prices compared to private firms.
Consequently, the existence of such public firms leads to financial pressure.

5 Conclusion
This paper proposes a dynamic general equilibrium model of the mixed oligopoly with public firms’
R&D activities. We formulate public firms’ intertemporal optimization problem.
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We find that the steady state of the mixed oligopoly may not exist if public firms manufacture
similar products to those of private firms and R&D activities are efficient. This result follows De
Fraja (1991) and other related literatures. However, we obtain this result without comaparative
statistics.

We show that investments increase as public firms regard the household as important. This
follows Nishimori and Ogawa (2002) and Cato (2008). However, we also show that this leads to
lower prices of public firms relative to that of private firms and larger subsidies to public firms.

In this paper, we ignore R&D activities of private firms. The model with both kinds of firms’
R&D activities would yield very different results. It is important to examine how the results change.

6 Appendix

A Derivatives of demand functions
Let us obtain derivatives in the first order condition (32). Differentiating pxi (t)

1
1−α in the numerator

of (15) and PC(t) in its denominator provides the derivative of the public firm i’s demand function
as

∂xi(t)
∂pxi (t)

=
1

PX(t)
α

α−1−
γ

γ−1 PC(t)
γ

γ−1

∂pxi (t)
1

α−1

∂pxi (t)
+

pxi (t)
1

α−1

PX(t)
α

α−1−
γ

γ−1

∂PC(t)−
γ

γ−1

∂pxi (t)
,

=

(
− 1

1 − α pxi (t)−1 +
γ

1 − γ
∂PC(t)
∂pxi (t)

PC(t)−1
)

xi(t). (69)

Differentiating PC(t) in (15) obtains the derivatives of other public firms’ demand functions as

∂xi′(t)
∂pxi (t)

=
pxi′ (t)

1
α−1

PX(t)
α

α−1−
γ

γ−1

∂PC(t)−
γ

γ−1

∂pxi (t)
,

=
γ

1 − γ
∂PC(t)
∂pxi (t)

PC(t)−1xi′(t). (70)

Differentiating private firm j’s demand function (17), we obtain

∂y j(t)
∂pxi (t)

=
pyj (t)

1
β−1

PY (t)
β

β−1−
γ

γ−1

∂PC(t)−
γ

γ−1

∂pxi (t)
,

=
γ

1 − γ
∂PC(t)
∂pxi (t)

PC(t)−1y j(t). (71)

The partial derivative of PC(t) with respect to pxi (t) becomes

∂PC(t)
∂pxi (t)

= xi(t)PC(t), (72)
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from (10) and (14).
The derivatives of the household’s utility function with respect to pxi (t) in (32) can be derived

as follows. Totally differentiating PC(t)C(t) = 1 by pxi (t), we obtain

∂PC(t)
∂pxi (t)

C(t) + PC(t)
∂C(t)
∂pxi (t)

= 0. (73)

Combining this and (72) yields

∂C(t)
∂pxi (t)

C(t)−1 = −xi(t). (74)

Substituting these derivatives into (32) yields

∂H
∂pxi (t)

=

[
−ψ + (1 − ψ)

{
1 − 1

1 − α

(
1 − wP(t)zi(t)−ε

pxi (t)

)
+

γ

1 − γΓ(t)
}]

xi(t). (75)

B Second order conditions
In this appendix, we derive second order conditions to check concavity. Using (1), (2), and (3), the
household’s first order derivative with respect to xi(t) is

∂ ln C(t)
∂xi(t)

=
1

C(t)
∂C(t)
∂X(t)

∂X(t)
∂xi(t)

= C(t)−γX(t)γ−αxi(t)α−1, (76)

and then the second order derivative becomes

∂2 ln C(t)
∂xi(t)2

= −∂ ln C(t)
∂xi(t)

[
γ
∂C(t)
∂xi(t)

C(t)−1 + (α − γ)∂X(t)
∂xi(t)

X(t)−1 + (1 − α)xi(t)−1
]
. (77)

Hence, the following condition is sufficient for concavity.

α > γ. (78)

Similar arguments can be applied to the case of y j(t). We can obtain the condition

β > γ, (79)

to ensure that the second order condition of y j(t) is a concave function.
We next turn to public firm i. Its first order condition has been derived in Appendix A. With

the envelope theorem, the second order condition of pxi (t) becomes

∂2H
∂pxi (t)2

= −1 − ψ
1 − α

[
wP(t)zi(t)−ε

pxi (t)2
− Q

∂Γ(t)
∂pxi (t)

)
]
xi(t). (80)
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Using Γ(t), (15), (17), (23) and (25), the partial of Γ(t) with respect to pxi (t) in the above equation
can be derived. Substituting this into (80) can be rewritten as

∂2H
∂pxi (t)2

= −1 − ψ
1 − α

[
wP(t)zi(t)−ε

pxi (t)2
− Q

1 − α

(
wP(t)zi(t)−ε

pxi (t)
− QCP(t)

)
xi(t)

]
xi(t). (81)

Substituting (41) and (48) and Q ≡ (1 − α) γ
1−γ into (81), we can obtain

∂2H
∂pxi (t)2

= −1 − ψ
1 − α

[(
1

pxi (t)
− γ

1 − γ xi(t)
)

+
1
m

Q2

1 − α
1

wP(t)z(t)−ε
CP(t)(CP(t) − β)

QCP(t) + 1 − Q − R − β

]
(QCP(t) + 1 − Q − R)xi(t). (82)

The task is now to find conditions which make (82) negative. Assuming xi(t) is a positive value,
we must show the signs of terms in the parentheses. It follows that

1 − Q > 0, (83)

because of (78). This inequality and the fact that the maximum value of R is 1 − α brings

1 − Q − R > 0. (84)

These conditions show that the mark-up of public firms is non-negative as follows:

QCP(t) + 1 − Q − R ≥ 0. (85)

It is natural to assume the mark-up of the private firm i is larger than that of the public firm. Thus,
（29) and (41) give

QCP(t) + 1 − Q − R − β ≥ 0. (86)

Consequently, the parentheses in (82) would be negative only if

CP(t) > β. (87)

under the conditions (84), (85), (86), and m >
1−γ
γ 3.

C The relation of z(t) and CP(t)
Differentiating (61) with respect to CP(t) provides

(1 − Q)(1 − β) − R
(1 − Q)(1 − CP(t)) − R

≥
(

γ

1 − γ

)
Q(CP(t) − β)

QCP(t) + 1 − Q − R
. (88)

3This condition can be derived by (41), (42), (47), and (57).

19



Figure 4: ∂z(t)
∂CP(t) > 0 Figure 5: z(t) = z(CP(t))

We will prove that this inequality is established under β ≤ CP(t) < 1−Q−R
1−Q by depicting a graph of

these equations. Both sides of (88) have positive slopes in the constraint. Introducing β into CP(t),
we can obtain that the left hand-side is 1 and the right hand side is 0. Hence, the left hand-side
is larger than the right hand-side when CP(t) = β. Introducing 1−Q−R

1−Q into CP(t), we can obtain
that the left hand-side is infinity but the right hand-side is finite in the neighborhood of 1−Q−R

1−Q .
These results enable us to depict both sides of (88) as figure 4 and then the graph of (61) can be
represented as figure 5. 4 Since the graphs intersect the horizontal line at β and increase to infinity
in the domain, it follows that an increase in z(t) leads to an increase in CP(t).

D CP(t) of a pure oligopoly
We prove that aggregate production cost over all firms of the pure oligopoly where only private
firms exist is β. Since there are no public firms, (2) and (4) can be rewritten as

C(t) = Y (t) =
[∫ n

0
y j(t)βdj

] 1
β

. (89)

Lack of R&D activities provides the intertemporal budget constraint as

ÛA(t) = r A(t) + wP(t)L̄ − PY (t)Y (t), (90)

by (7) and (19). Therefore, a demand function for private firm j is

y j(t) =
pyj (t)

1
β−1∫ ∞

0 pyj (t)
β

β−1 dj .
. (91)

4For simplicity, we ignore that two graphs never cross under β ≤ CP(t) < 1−Q−R
1−Q on figure 4.
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From (27) and (91), we can obtain

pyj (t) =
wP(t)
β

. (92)

Assuming a symmetric equilibrium , we obtain the following goods market equilibrium condition.

Y (t) = wP(t)
β

, (93)

from (89), (91), and (92). The labor market equilibrium condition becomes

CP(t) = wP(t)ny(t) = β, (94)
from（25 and (93). Hence, we complete the derivation.

E Preparation for phase diagrams
In this appendix, we discuss loci of (59) and (60). Setting Ûz(t) = 0, (59) can be rewritten as[

1
m

(
L̄ − CP(z(t))

w(CP(z(t)), µ(t))

)] θ
− δz(t) = 0. (95)

Here, we define

Θ(z(t), µ(t)) ≡
[

1
m

(
L̄ − CP(t)

w(CP(t), µ(t))

)] θ
− δz(t), (96)

and apply the implicit function theorem to this equation as follows:

dµ(t)
dz(t) = −

∂Θ(z(t),µ(t))
∂z(t)

∂Θ(z(t),µ(t))
∂µ(t)

. (97)

Differentiating (96) with respect to z(t) yields

∂Θ(z(t), µ(t))
∂z(t) = −θ

[
1
m

(
L̄ − CP(z(t))

w(CP(t), µ(t))

)] θ−1

(
w(CP(z(t)), µ(t)) − CP(z(t)) ∂w(CP(z(t)),µ(t))

∂CP(z(t))

)
dCP(z(t))

dz(t)

w(CP(z(t)), µ(t))2
− δ, (98)

where 1
m

(
L̄ − CP(t)

w(t)

)
equals lR(t). The derivative of (53) with respect to w(t) and (54) become

∂CP(z(t))
∂w(CP(z(t)), µ(t))

− CP(z(t))
w(CP(z(t), µ(t))

,

=

(
L̄ +

θ

1 − θmlR(t)
)
−
(
L̄ − mlR(t)

)
,

=
1

1 − θmlR(t) ≥ 0. (99)
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Rearranging this inequality leads to w(CP(z(t)), µ(t)) −CP(z(t)) ∂w(CP(z(t)),µ(t))
∂CP(z(t)) > 0. Hence, (98) and

(99) show

∂Θ(z(t), µ(t))
∂z(t) ≤ 0. (100)

Turing to the denominator of (97), differentiating (96) with respect to µ(t) leads to

∂Θ(z(t), µ(t))
∂µ(t) =

θ

m

[
1
m

(
L̄ − CP(z(t))

w(CP(z(t)), µ(t))

)] θ−1

CP(z(t))
w(CP(z(t)), µ(t))2

∂w(CP(z(t)), µ(t))
∂µ(t) . (101)

It is obvious that L̄ − CP(z(t))
w(CP(z(t)),µ(t)) is positive from (52). We must examine the partial of

w(Cp(z(t)), µ(t)) with respect to µ(t). Solving (53) for µ(t) gives

µ(t) = (1 − ψ)
θm

w(CP(z(t)), µ(t))
[
L̄ − CP(z(t))

w(CP(z(t)), µ(t))

]1−θ
. (102)

The derivative of (102) with respect to w(CP(z(t)), µ(t)) is

∂µ(t)
∂w(CP(z(t)), µ(t))

=
(1 − ψ)

mθ

[
L̄ − CP(z(t))

w(CP(z(t)), µ(t))

]−θ
[
L̄ − θ CP(z(t))

w(CP(z(t)), µ(t))

]
. (103)

Using (54), it is easy to see that (103) is non-negative. Therefore, the following inequality is
established.

∂Θ(z(t), µ(t))
∂µ(t) ≥ 0. (104)

From (100) and (104), the locus of z(t) has positive slope. Incidentally, (59) and (61) show that
the locus goes through the point (z(t), µ(t)) = (0, 0).

We now turn to the locus of µ(t) which is defined as

(ρ − δ)µ(t) − ε(1 − ψ)
m

1
z(t)

(QCP(z(t)) + 1 − Q − R)(CP(z(t)) − β)
QCP(z(t)) + 1 − Q − R − β

= 0. (105)

from (60). Denoting the left-hand side of (105) as

Ω(z(t), µ(t)) ≡

(ρ − δ)µ(t) ε(1−ψ)
m

1
z(t)

(QCP(z(t)) + 1 − Q − R)(CP(z(t)) − β)
QCP(z(t)) + 1 − Q − R − β

, (106)

and applying the similar method as in the case of z(t), we can obtain
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∂µ(t)
∂z(t) = −

∂Ω(z(t),µ(t))
∂z(t)

∂Ω(z(t),µ(t))
∂µ(t)

. (107)

The derivative of (106) with respect to z(t) shows that CP(t) satisfies

d ln z(t)
dCP(z(t))

>
d

dCP(z(t))

[
ln

(QCP(z(t)) + 1 − Q − R)(CP(z(t)) − β)
QCP(z(t)) + 1 − Q − R − β

]
, (108)

if the condition, ∂Ω(z(t),µ(t))
∂z(t) > 0 holds. Let us calculate both sides of the above inequality, respec-

tively. Here, (61) provides the left-hand side of this inequality as

1
ε

[(
1 − γ
γ

)
(1 − Q)(1 − β) − R

{(1 − Q)(1 − CP(z(t))) − R}(CP(z(t)) − β) −
Q

QCP(z(t)) + 1 − Q − R

]
, (109)

and that of the right-hand side as

Q
QCP(z(t)) + 1 − Q − R

+
(1 − Q)(1 − β) − R

(QCP(z(t)) + 1 − Q − R − β)(CP(z(t)) − β) . (110)

Therefore, by rearranging these, we obtain

{(1 − Q)(1 − β) − R} (QCP(z(t)) + 1 − Q − R)
[
(1 − γ)(QCP(z(t))

+1 − Q − R − β) − γε {(1 − Q)(1 − CP(z(t)) − R}
]
> γ(1 + ε)Q

(CP(z(t)) − β)(QCP(z(t)) + 1 − Q − R − β)
{(1 − Q)(1 − CP(z(t))) − R} . (111)

Let us define the left-hand side of (111) as the function f (CP) and the right-hand side as the
function g(CP) . The function f can be depicted as a graph on figure 6, since its coefficient of CP(t)2
is positive and −1−Q−R

Q and −(1−γ−εγ)(1−Q−R)+(1−γ)β
(1−γ−εγ)Q+εγ satisfies f (CP) = 0. Similarly, the function g

can be depicted as a graph on figure 7. The coefficient of CP(t)3 is negative and g equals zero when
CP(t) is −1−Q−R−β

Q , β, or 1−Q−R
1−Q .

Let us compare five values of CP that make f = 0 or g = 0. It is obvious that

−1 − Q − R
Q

< −1 − Q − R − β

Q
. (112)

Since (58) provides (1 − Q)(1 − β) − R > 0, we can get

−1 − Q − R − β

Q
< β <

1 − Q − R
1 − Q

, (113)

and

−1 − Q − R − β

Q
<

−(1 − γ − γε)(1 − Q − R) + (1 − γ)β
(1 − γ − γε)Q + γε <

1 − Q − R
1 − Q

. (114)
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Figure 6: Function f Figure 7: Function g

Moreover, we can get

β >
−(1 − γ − γε)(1 − Q − R) + (1 − γ)β

(1 − γ − γε)Q + γε i f γ <
1

1 + ε
, (115)

β ≤ −(1 − γ − γε)(1 − Q − R) + (1 − γ)β
(1 − γ − γε)Q + γε i f γ ≥ 1

1 + ε
. (116)

With this result, figure 6 and figure 7 show that f > g under the condition γ > 1
1+ε , that is,

∂Ω(z(t), µ(t))
∂z(t) > 0, (117)

if γ ≥ 1
1+ε . Now, we turn to the case of γ ≥ 1

1+ε . Assuming ĈP as the variable satisfies f = g

in β ≤ Cp(t) ≤ 1−Q−R
1−Q , figure 6 and figure 7 shows that f < g if β ≤ CP(t) ≤ ĈP and f > g if

ĈP < CP(t) < 1−Q−R
1−Q . 5 This implies that

∂Ω(z(t), µ(t))
∂z(t)

{
< 0 i f β < CP(t) < ĈP,

> 0 i f ĈP ≤ CP(t) < 1−Q−R
1−Q .

(118)

By the way, it is obvious that

∂Ω(µ(t), z(t))
∂µ(t) = ρ − δ > 0. (119)

Therefore, (107), (117) and (119) give the following results. If γ < 1
1+ε ,

5We eliminate the case that f unction f and f unction g have more than three intersections.
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dµ(t)
dz(t) < 0. (120)

If γ ≥ 1
1+ε ,

dµ(t)
dz(t)

{
> 0 i f β < CP(t) < ĈP,

≤ 0 i f ĈP ≤ CP(t) ≤ 1−Q−R
1−Q .

(121)

Having discussed the slope of the locus of µ(t), we now turn to its intercept. Introducing (61)
into Ω(µ(t), z(t)) = 0 and setting µ(t) as 0 yield

CP(z(t)) =
{

1−Q−R
1−Q i f γ < 1

1+ε,

β, 1−Q−R
1−Q , i f γ ≥ 1

1+ε .
(122)

In conclusion, (120), (121) and (122) show that 6

• If γ < 1
1+ε , the Ûµ(t) = 0 locus has a negative slope and asymptotically approaches the

horizontal and vertical axes.

• If γ ≥ 1
1+ε , the Ûµ(t) = 0 locus is an inverted-U shape going through the origin and asymptot-

ically approaching the horizontal axis.
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