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This study presents an overlapping-generations model with physical and human
capital accumulation and considers probabilistic voting over capital and labor taxes
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1 Introduction

How the government should distribute the tax burden between capital and labor income

has been a long-standing issue in the public finance literature since the seminal paper

of Ramsey (1927). A large part of the literature has tackled this issue by assuming

a benevolent planner who can commit to future policies. For example, Judd (1985),

Chamley (1986), and Atkeson, Chari, and Kehoe (1999) show that the optimal tax rate

on capital income is zero in the long run; expenditure should thus be financed solely by

labor income taxation. This conclusion is robust to whether the government can issue debt

or must run a balanced budget in each period (Ljungqvist and Sargent, 2012, Chapter

16); it is also robust in overlapping-generations models in which all households have finite

lifespans, whereas the planner has an infinite horizon (Erosa and Gervais, 2002; Garriga,

2017).

However, this so-called Ramsey approach has the following two limitations. Firstly,

politicians, as representatives of the current population, are short-lived and unable to

commit to complete sequences of future policies in practice (Acemoglu, Golosov, and

Tsyvinski , 2011). In particular, these policymakers try to meet the conflicting preferences

of different generations (Hassler et al., 2005; Bassetto, 2008). Secondly, older generations

are likely to pass the burden onto future generations by issuing public debt, a key source

of government revenue (Song, Storesletten, and Zilibotti, 2012; Müller, Storesletten, and

Zilibotti, 2016). To control excessive debt issues, many countries have formulated national

or supranational fiscal rules that ensure the sustainability of public finance (Schaechter

et al., 2012).

Given this background, the following questions arise: (i) how does the conflict between

generations influence fiscal policymaking, (ii) how does policymaking in turn affect growth

and welfare across generations, and (iii) does the introduction of a debt rule increase

growth and welfare? To answer these questions, we present an overlapping-generations

model with physical and human capital accumulation (e.g., Lambrecht, Michel, and Vidal,

2005; Kunze, 2014; Ono and Uchida, 2016, 2018b). Each generation comprises many iden-

tical individuals who live over three periods: young, middle, and old ages. Middle-aged

individuals (called parents) care about their children’s wage income. Public education

spending and parental human capital are inputs in the human capital production process,

thereby contributing to children’s human capital formation and economic growth. Gov-

ernments, as elected representatives, finance public education spending through taxes on

capital and labor income and public debt issues.

Under this framework, we consider the politics of fiscal policy formation. In particular,

we assume probabilistic voting à la Lindbeck andWeibull (1987) to demonstrate the extent

to which generations face conflict over such policies. In each period, middle-aged and old
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individuals vote.1 The government in power maximizes the political objective function of

the weighted sum of the utilities of the middle-aged and old populations. In this voting

environment, the current policy choice affects the decision on future policy via physical

and human capital accumulation. To demonstrate this intertemporal effect, we employ

the concept of a Markov-perfect equilibrium under which fiscal policy today depends on

the current payoff-relevant state variables, namely physical and human capital and public

debt. Given this process, we characterize the political equilibrium in the presence or

absence of a debt rule, which yields the following findings.

Firstly, the relative political power of the old is important for shaping tax rates. In

particular, the greater political power of the old incentivizes the government to shift the

tax burden from the old to the young. In addition, in the absence of any debt rule, the

education expenditure-to-GDP ratio and debt-to-GDP ratio decrease with the greater po-

litical power of the old. The effect on the education expenditure-to-GDP ratio is intuitive

since the old do not benefit from education expenditure. However, the effect on the debt-

to-GDP ratio, which is the opposite to that suggested by Song, Storesletten, and Zilibotti

(2012), is somewhat counterintuitive since the old may have an incentive to pass the fiscal

burden onto future generations by issuing public debt. This counterintuitive result arises

because the old want to lower the capital tax burden and public education expenditure as

their political weight increases. A decrease in capital tax revenue is compensated for by

an increase in debt issues, while a decrease in education expenditure is associated with a

decrease in public debt issues. The analysis shows that the latter negative effect on debt

outweighs the former positive effect in the present framework.

Secondly, we consider an alternative scenario, called tax financing, in which the gov-

ernment is prohibited from issuing public debt; hence, its expenditure is financed solely

through taxation. This scenario, while is an extreme one, enables us to investigate in a

tractable way the effect of controlling debt issues. We show that the labor (capital) tax

rate increases (decreases) if the government changes its instrument from debt financing

to tax financing. We then analyze the welfare consequences of this change and show a

trade-off in terms of utility across generations. The initial generation is worse off since its

labor tax burden increases to compensate for the loss of revenue from debt issues. How-

ever, tax financing removes the crowding-out effect of public debt on physical capital and

thus increases the growth rate. The initial generation cannot therefore benefit from this

positive effect of increased growth, whereas future generations do benefit as it outweighs

the negative effect of the increased tax burden.

1The young may also have an incentive to vote since they benefit from public education in the future.
However, for the tractability of the analysis, we assume that politicians do not care about the young’s
preferences following Saint-Paul and Verdier (1993), Bernasconi and Profeta (2012), and Lancia and
Russo (2016). This assumption is supported in part by the fact that a large number of the young are
below the voting age.
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Thirdly, we consider a more realistic fiscal rule that sets an explicit ceiling for public

debt as a percentage of GDP, which has been widely introduced in developed countries

(Schaechter et al., 2012). We investigate the effect of such a fiscal tightening rule (i.e.,

lowering the ceiling) based on a numerical analysis and obtain qualitatively similar growth

and welfare consequences as those obtained in the second analysis; in other words, this

fiscal tightening rule is growth-enhancing, but not Pareto-improving. We also find that

even if the rule is imposed only for limited periods, it has a long-lasting effect on utility

across generations since increased human capital is bequeathed from generation to gener-

ation. This long-lasting effect was absent from the study by Barseghyan and Battaglini

(2016), who consider a temporary austerity program in the absence of human capital.

Our result suggests the importance of connecting seemingly unrelated subjects, namely

public education and public debt, to consider the impact of debt rules over time and

across generations.

The present study contributes to the following two strands of the literature. The

first is the literature on the politics of capital taxation in the overlapping-generations

framework. Earlier studies assumed no production sector and said nothing about the effect

of capital income (i.e., interest rate income) taxation on economic growth (Renström,

1996; Huffman, 1996; Dolmas and Huffman, 1997). In addition, these studies dropped

the conflict of interest between generations from their analyses by assuming that either

the young or the old generation is decisive in voting. Notable exceptions are Razin, Sadka,

and Swagel (2004) and Mateos-Planas (2010), who assume majority voting, and Bassetto

(2008) and Ono and Uchida (2018a), who assume bargaining or competition between

generations. All these studies assume a balanced government budget and thus no budget

deficit. However, the current generation may have an incentive to pass the fiscal burden

onto future, unborn generations by issuing public debt. To address this issue, the present

study allows for deficit finance and investigates its impact on economic growth and welfare

across generations.

The second strand includes studies of the political economy of public debt (Battaglini

and Coate, 2008; Barseghyan, Battaglini, and Coate, 2013; Debortoli and Nunes, 2013;

Azzimonti, Battaglini, and Coate, 2016; Barseghyan and Battaglini, 2016; Battaglini

and Coate, 2016; Cunha and Ornelas, 2018). In particular, the present study is closely

related to Song, Storesletten, and Zilibotti (2012), Röhrs (2016), Müller, Storesletten,

and Zilibotti (2016), Song, Storesletten, and Zilibotti (2016), and Arawatari and Ono

(2017), who demonstrate the conflict of interest between generations over public debt

policy. Arai, Naito, and Ono (2018), Ono (2018), and Ono and Uchida (2018b) extend

these analyses by including physical and/or human capital and present the effects of the

politics of public debt on economic growth and welfare across generations. However, all
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these studies have ignored capital taxation, which is an important policy instrument, and

said nothing about the conflict of interest between generations over the distribution of tax

burdens. The present study overcomes this limitation by introducing capital taxation.

The organization of the remainder of this paper is as follows. Section 2 presents the

model. Section 3 describes the political equilibrium and Section 4 characterizes the steady-

state equilibrium. Section 5 compares the debt- and tax-financing political equilibria; it

also investigates the effects of the debt ceiling rule. Section 6 presents concluding remarks.

2 Model

The discrete time economy starts in period 0 and consists of overlapping generations.

Individuals are identical within a generation and live for three periods: youth, middle,

and old ages. Each middle-aged individual gives birth to 1+n children. The middle-aged

population for period t is Nt and the population grows at a constant rate of n(> −1) :

Nt+1 = (1 + n)Nt.

2.1 Individuals

Individuals display the following economic behavior over their lifecycles. During youth,

they make no economic decisions and receive public education financed by the government.

In middle age, individuals work, receive market wages, and make tax payments. They

use after-tax income for consumption and savings. Individuals retire in their elderly years

and receive and consume returns from savings.

Consider an individual born in period t − 1. In period t, the individual is middle-

aged and endowed with ht units of human capital inherited from his or her parents. The

individual supplies them inelastically in the labor market and obtains labor income wtht,

where wt is the wage rate per efficient unit of labor in period t. After paying tax τtwtht,

where τt ∈ (0, 1) is the period t labor income tax rate, the individual distributes the after-

tax income between consumption ct and savings invested in physical capital st. Therefore,

the period t budget constraint for the middle age becomes

ct + st ≤ (1− τt)wtht.

The period t+ 1 budget constraint in elderly age is

dt+1 ≤
(
1− τ kt+1

)
Rt+1st,

where dt+1 is consumption, τ kt+1 is the period t + 1 capital income tax rate, Rt+1(> 0) is

the gross return from investment in capital, and Rt+1st is the return from savings. The

results are qualitatively unchanged if capital income tax is on the net return from saving

rather than the gross return from saving.
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Period t middle-aged individuals care about their children’s income , wt+1ht+1. Chil-

dren’s human capital in period t+1, ht+1, is a function of government spending on public

education, xt, and parents’ human capital, ht. In particular, ht+1 is formulated using the

following equation:

ht+1 = D (xt)
η (ht)

1−η , (1)

where D(> 0) is a scale factor and η ∈ (0, 1) denotes the elasticity of education technology

with respect to education spending.2

We assume that parents are altruistic toward their children and concerned about their

income in middle age, wt+1ht+1. The preferences of an individual born in period t− 1 are

specified by the following expected utility function in the logarithmic form:

Ut = ln ct + β [ln dt+1 + γ lnwt+1ht+1] ,

where β ∈ (0, 1) is a discount factor and γ(> 0) denotes the intergenerational degree of

altruism. We substitute the budget constraints and human capital production function

into the utility function to form the following unconstrained maximization problem:

max
{st}

ln [(1− τt)wtht − st] + β
[
lnRt+1st + γ lnwt+1D (xt)

η (ht)
1−η] .

By solving this problem, we obtain the following savings and consumption functions:

st =
β

1 + β
· (1− τt)wtht, (2)

ct =
1

1 + β
· (1− τt)wtht and dt+1 =

βRt+1

1 + β
· (1− τt)wtht.

2.2 Firms

Each period contains a continuum of identical firms that are perfectly competitive profit

maximizers. According to Cobb–Douglas technology, they produce a final good Yt us-

ing two inputs: aggregate physical capital Kt and aggregate human capital Ht ≡ Ntht.

Aggregate output is given by

Yt = A (Kt)
α (Ht)

1−α ,

where A(> 0) is a scale parameter and α ∈ (0, 1) denotes the capital share.

2Private investment in education may also contribute to human capital formation. For example,
parents’ time (Glomm and Ravikumar, 1995, 2001, 2003; Glomm and Kaganovich, 2008) or spending
(Glomm, 2004; Lambrecht, Michel, and Vidal, 2005; Kunze, 2014) devoted to education may complement
public education. In the present study, we abstract private education from the main analysis to simplify
the presentation of the model.
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Let kt ≡ Kt/Ht denote the ratio of physical to human capital. The first-order condi-

tions for profit maximization with respect to Ht and Kt are

wt = (1− α)A (kt)
α , (3)

ρt = αA (kt)
α−1 , (4)

where wt and ρt are labor wages and the rental price of capital, respectively. The con-

ditions state that firms hire human and physical capital until the marginal products are

equal to the factor prices. Capital is assumed to depreciate fully within each period.

2.3 Government Budget Constraint

Public education expenditure is financed by both taxes on capital and labor income and

public bond issues. Let Bt denote aggregate inherited debt. The government budget

constraint in period t is

Bt+1 + τ kt Rtst−1Nt−1 + τtwthtNt = Nt+1xt +RtBt,

where Bt+1 is newly issued public bonds, τ kt Rtst−1Nt−1 is aggregate capital tax revenue,

τtwthtNt is aggregate labor tax revenue, Nt+1xt is aggregate expenditure on public edu-

cation, and RtBt is debt repayment. We assume a one-period debt structure to derive

analytical solutions from the model as well as that the government in each period is

committed to not repudiating the debt.

By dividing both sides of the above expression, we obtain a per-capita form of the

constraint:

(1 + n)b̂t+1 + τ kt Rt
st−1

1 + n
+ τtwtht = (1 + n)xt +Rtb̂t, (5)

where b̂t ≡ Bt/Nt is per-capita public debt. We use the notation b̂t, rather than bt,

to distinguish per-capita public debt, b̂t ≡ Bt/Nt, from public debt per human capital,

bt ≡ Bt/Ht.

2.4 Economic Equilibrium

Public bonds are traded in the domestic capital market. The market-clearing condition

for capital is Bt+1 + Kt+1 = Ntst, which expresses the equality of total savings by the

middle-aged population in period t, Ntst, to the sum of the stocks of aggregate public

debt and aggregate physical capital at the beginning of period t+1, Bt+1+Kt+1. By using

kt+1 ≡ Kt+1/Ht+1, ht+1 = Ht+1/Nt+1, and the savings function in (2), we can rewrite the

condition as

(1 + n)
(
kt+1ht+1 + b̂t+1

)
=

β

1 + β
(1− τt)wtht. (6)

The following defines the economic equilibrium in the present model.
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Definition 1. Given a sequence of policies,
{
τ kt , τt, xt

}∞
t=0

, an economic equilibrium is

a sequence of allocations
{
ct, dt, st, kt+1, b̂t+1, ht+1

}∞

t=0
and prices {ρt, wt, Rt}∞t=0 with

the initial conditions k0(> 0), b̂0(≥ 0) and h0(> 0), such that (i) given
(
wt, Rt+1, τ

k
t , τt, xt

)
,(

cyt , c
o
t+1, st

)
solves the utility maximization problem; (ii) given (wt, ρt), kt solves a

firm’s profit maximization problem; (iii) given
(
wt, ht, Rt, b̂t

)
,
(
τ kt , τt, xt, b̂t+1

)
sat-

isfies the government budget constraint; (iv) an arbitrage condition ρt = Rt holds;

and (v) the capital market clears: (1 + n) ·
(
kt+1ht+1 + b̂t+1

)
= st.

In the economic equilibrium, the indirect utility of the middle-aged population in

period t, V M
t , and that of the old population in period t, V o

t , can be expressed as functions

of fiscal policy, physical and human capital, and public debt as follows:

V M
t = (1 + β) ln(1− α)A (kt)

α ht (1− τt) + β [(α− 1) + γα] ln kt+1

+ β ln
(
1− τ kt+1

)
+ βγη lnxt + ϕM (ht) , (7)

V o
t = ln

(
1− τ kt

)
+ ϕO

(
kt, ht, b̂t

)
, (8)

where ϕM (ht) and ϕ
O
(
kt, ht, b̂t

)
include policy-irrelevant and constant terms, and they

are defined by

ϕM (ht) ≡ βγ lnD (ht)
1−η +

(
ln

1

1 + β
+ β ln

β

1 + β

)
+ β (lnαA+ γ ln (1− α)A) ,

ϕO
(
kt, ht, b̂t

)
≡ lnαA (kt)

α−1
(
b̂t + ktht

)
(1 + n) + γ ln(1− α)A (kt)

α ht,

respectively.

3 Political Equilibrium

In this section, we consider voting on fiscal policy. In particular, we employ probabilistic

voting à la Lindbeck and Weibull (1987). In this voting scheme, there is electoral com-

petition between two office-seeking candidates. Each candidate announces a set of fiscal

policies subject to the government budget constraint. As demonstrated in Persson and

Tabellini (2000), the two candidates’ platforms converge in the equilibrium to the same

fiscal policy that maximizes the weighted average utility of voters.

In the present framework, the young, middle-aged, and elderly have an incentive to

vote. While the young may benefit from current public education expenditure through

human capital accumulation, we assume that their preferences are not taken into account

by politicians. We impose this assumption, which is often used in the literature (e.g.,

Saint-Paul and Verdier, 1993; Bernasconi and Profeta, 2012; Lancia and Russo, 2016),

for tractability reasons. However, the assumption could be supported in part by the fact

that a large number of the young are below the voting age.
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Thus, the political objective is defined as the weighted sum of the utility of the middle-

aged and old, given by Ω̃t ≡ ωV o
t + (1 + n)(1− ω)V M

t , where ω ∈ [0, 1] and 1− ω are the

political weights placed on the old and middle-aged in period t, respectively. The weight

on the middle-aged is adjusted by the gross population growth rate, (1 + n), to reflect

their share of the population. To gain the intuition, we divide Ω̃t by (1 + n)(1− ω) and

redefine the objective function as follows:

Ωt =
ω

(1 + n)(1− ω)
V o
t + V M

t ,

where the coefficient ω/(1+n)(1−ω) of V o
t represents the relative political weight on the

old.

We substitute V M
t in (7) and V o

t in (8) into Ωt. By rearranging the terms, we obtain

Ωt ≃
ω

(1 + n)(1− ω)
ln
(
1− τ kt

)
+ (1 + β) ln (1− α)A (kt)

α ht (1− τt)

+ β [(α− 1) + γα] ln kt+1 + β ln
(
1− τ kt+1

)
+ βγη lnxt. (9)

We use the notation ≃ because irrelevant terms are omitted from the expression of Ωt.

We introduce the following notations to define the optimization problem with choices

from compact sets:

x̃t ≡
xt

A (kt)
α ht

, b̃t+1 ≡
b̂t+1

A (kt)
α ht

,

where x̃t and b̃t+1 denote the education expenditure-to-GDP ratio and government debt-

to-GDP ratio, respectively. The state and policy variables are assumed to be in compact

sets:

b̂t
ktht

∈ S ≡
[
0,
(
b̂/kh

)
upper

]
, x̃ ∈ Sx ≡ [0, x̃upper] , b̃ ∈ Sb ≡

[
0, b̃upper

]
,

τ k ∈ Sτk ≡
[
−τ klower, 1

]
, and τ ∈ Sτ ≡ [−τlower, 1] .

Note that
(
b̂/kh

)
upper

, x̃upper, and b̃upper are the upper limits of the corresponding vari-

ables, while −τ klower(< 0) and −τlower(< 0) are the lower limits of the corresponding

variables. These are exogenous and set sufficiently high or low to ensure interior solu-

tions. We allow for the possibility of negative tax rates, but will later derive the conditions

for τ k ≥ 0 and τ ≥ 0.

With the use of (3)–(6), we can reformulate the expression in (9) as follows:

8



Ωt ≃
ω

(1 + n)(1− ω)︸ ︷︷ ︸
(p.1)

ln
(
1− τ kt

)

+ (1 + β)︸ ︷︷ ︸
(p.2)

ln

[
1−

(
1− τ kt

)
α

(
b̂t
ktht

+ 1

)
− (1 + n)x̃t + (1 + n)b̃t+1

]

+ β [(α− 1) + γα]︸ ︷︷ ︸
(p.3)

ln

[
1−

(
1− τ kt

)
α

(
b̂t
ktht

+ 1

)
− (1 + n)x̃t −

1

β
(1 + n)b̃t+1

]

+ β︸︷︷︸
(p.4)

ln
(
1− τ kt+1

)
+ βη (1− α) (1 + γ)︸ ︷︷ ︸

(p.5)

ln x̃t. (10)

The terms (p.1)–(p.5) in (10) present the relative political weight on the old, the weight on

the young’s utility of lifetime consumption, the weight on the utility of interest rate income

plus the weight on the utility of children’s wage income, the weight on the marginal cost

of capital income taxation in terms of utility, and the weight on the utility of children’s

human capital, respectively. Appendix A.1 shows the derivation of (10).

The political objective function in (10) suggests that the current policy choice affects

the decision on future policy via physical and human capital accumulation. In particular,

the period t choices of τ kt , x̃t, and b̃t+1 (equivalently, τ
k
t , xt, and b̂t+1) affect the formation

of physical and human capital in period t+1. This in turn influences the decision making

on period-t+1 fiscal policy. To demonstrate such an intertemporal effect, we employ the

concept of a Markov-perfect equilibrium under which fiscal policy today depends on the

current payoff-relevant state variables.

In the present framework, the payoff-relevant state variables are the ratio of physical to

human capital, kt, human capital, ht, and public debt, b̂t. These are summarized as b̂/kh

as observed in the political objective function in (10). Thus, the expected rate of capital

income tax for the next period, τ kt+1, is given by the function of the next period stock of

government debt and physical and human capital, τ kt+1 = T k
(
b̂t+1/kt+1ht+1

)
. By using

recursive notation with z′ denoting the next period z, we can now define a Markov-perfect

political equilibrium in the present framework as follows.

Definition 2. A Markov-perfect political equilibrium is a set of functions, ⟨T, T k, X,B⟩,
where T : S → Sτ is a labor income tax rule, τ = T (b̂/kh), T k : S → Sτk is a capital

income tax rule, τ k = T k(b̂/kh), X : S → Sx is a public education expenditure rule,

x̃ = X(b̂/kh), and B : S → Sb is a public debt rule, b̃′ = B(b̂/kh), such that the

following conditions are satisfied:

(i) The capital market clears,

(1 + n)

(
b̃′ +

k′h′

A (k)α h

)
=

β

1 + β
(1− τ) (1− α) ; (11)
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(ii) Given b̂/kh,
⟨
T (b̂/kh), T k(b̂/kh), X(b̂/kh), B(b̂/kh)

⟩
= argmaxΩ subject to τ k′ =

T k
(
b̂′/k′h′

)
, the capital market-clearing condition in (11), the government budget

constraint,

(1 + n)b̃′ + τ (1− α) + τ kα

(
1 +

b̂

kh

)
= (1 + n)x̃+ α

b̂

kh
, (12)

and the human capital formation function, h′ = D(h)1−η
(
X(b̂/kh)

)η
, where Ω is

defined by (10).

3.1 Characterization of the Political Equilibrium

To obtain the set of policy functions in Definition 2, we conjecture the following capital

tax rate in the next period:

τ k′ = 1− T kun
1

1 + b̂′

k′h′

, (13)

where T kun(> 0) is constant. The subscript “un” means that public bond issuance is

“unconstrained.” In the next section, we consider a case where public bond issuance is

“constrained” by a constitutional rule and compare it with the unconstrained case.

The conjecture in (13) is reformulated by using (11) and (12) as follows:

τ k′ = 1− T kun

1−
(
1− τ k

)
α
(
1 + b̂

kh

)
− (1 + n)x̃− 1

β
(1 + n)b̃′

1− (1− τ k)α
(
1 + b̂

kh

)
− (1 + n)x̃+ (1 + n)b̃′

. (14)

The substitution of (14) into the political objective function in (10) leads to

Ω ≃ ω

(1 + n)(1− ω)
ln
(
1− τ k

)
+ lnZ1 + αβ (1 + γ) lnZ2 + βη (1− α) (1 + γ) ln x̃, (15)

where

Z1 ≡ 1−
(
1− τ k

)
α

(
1 +

b̂

kh

)
− (1 + n)x̃+ (1 + n)b̃′,

Z2 ≡ 1−
(
1− τ k

)
α

(
1 +

b̂

kh

)
− (1 + n)x̃− 1

β
(1 + n)b̃′.

The first-order conditions with respect to τ k, b̃′, and x̃ are

τ k : − ω

(1 + n)(1− ω)

1

1− τ k
+
α
(
1 + b̂

kh

)
Z1

+
αβ (1 + γ)α

(
1 + b̂

kh

)
Z2

= 0, (16)

b̃′ :
1 + n

Z1
+
α (1 + γ) (1 + n)

Z2
≤ 0, (17)

x̃ :
βη (1− α) (1 + γ)

x̃
− 1 + n

Z1
− αβ (1 + γ) (1 + n)

Z2
= 0. (18)
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A strict inequality holds in (17) if b̃′ = 0. By using these conditions, we can verify the

conjecture in (13) and obtain the following result.

Proposition 1. There is a Markov-perfect political equilibrium distinguished by b̂′ = 0

if (1− α) /α ≤ γ, and b̂′ > 0 otherwise. The corresponding policy functions of τ k,

x, τ , and b̂′ are as follows:

τ k = 1− T kun
1

1 + b̂
kh

,

(1 + n)x = XunA (k)α h,

τ =

 1− 1
1−α

1+αβ(1+γ)
ω

(1+n)(1−ω)
+ψ

if 1−α
α

≤ γ,

1− 1+β
1−α

1
ω

(1+n)(1−ω)
+ψ

if 1−α
α

> γ,

(1 + n)b̂′ =

{
0 if 1−α

α
≤ γ,

BunA (k)α h if 1−α
α

> γ,

where ψ, T kun, Xun, and Bun are defined by

ψ ≡ 1 + β (1 + γ) (α + η (1− α)) ,

T kun ≡ 1

α

ω
(1+n)(1−ω)
ω

(1+n)(1−ω) + ψ
,

Xun ≡ βη (1− α) (1 + γ)
ω

(1+n)(1−ω) + ψ
,

Bun ≡ β [1− α (1 + γ)]
ω

(1+n)(1−ω) + ψ
.

Proof. See Appendix A.2 .

The result in Proposition 1 suggests that the tax rates, τ k and τ , and public education

expenditure, x, are affected by the weights, (p.1)–(p.3) and (p.5), of the political objective

function in (10). To understand the effects, we reformulate the policy functions of τ k, τ ,

and x in Proposition 1 to clearly specify the effects of the weights on the policy functions

as follows:

τ k = 1− 1

α

{
1 +

(1 + β) + [β (α− 1) + βγα] + βη (1− α) (1 + γ)
ω

(1+n)(1−ω)

}−1

× 1

1 + b̂
kh

,

τ =

 1− 1
1−α

{
1 +

ω
(1+n)(1−ω)

+βη(1−α)(1+γ)
(1+β)+[β(α−1)+βγα]

}−1

if 1−α
α

≤ γ,

1− 1
1−α

{
1 +

ω
(1+n)(1−ω)

+[β(α−1)+βγα]+βη(1−α)(1+γ)
(1+β)

}−1

if 1−α
α

> γ,

(1 + n)x

A (k)α h
=

{
1 +

ω
(1+n)(1−ω) + (1 + β) + [β (α− 1) + βγα]

βη (1− α) (1 + γ)

}−1

.
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The terms (p.1)–(p.3) and (p.5) in (10), which appear in the above equations, affect

the tax rates and public education expenditure in the following ways. First, the term

(p.1), representing the political weight on the old, implies that the greater political power

of the old leads to a larger weight on the utility of their consumption. This incentivizes the

government to shift the tax burden from the old to the young as well as to reduce public

education expenditure. Second, the term (p.2), representing the weight on the young’s

utility of lifetime consumption, implies that a larger weight on this utility provides the

government with an incentive to shift the tax burden from the young to the old as well as

to reduce the tax burden on the young by cutting public education expenditure. Third,

the term (p.5), representing the weight on the utility of children’s human capital, indicates

that a larger weight on this utility implies greater altruism toward children. This in turn

provides the government with an incentive to increase public education expenditure by

raising the capital and labor tax rates.

The term (p.3) includes the weight on the utility of the interest rate, represented by

β (α− 1), and the weight on the utility of children’s wage income, represented by βγα.

These two weights have opposing effects on the tax rate and public education expenditure.

The first weight induces the government to reduce saving and capital to raise interest rate

income. For this purpose, the government shifts the tax burden from the old to the young;

it also increases public education expenditure to raise the tax burden on the young. The

second weight has the opposite effect since the young want to increase capital and thus

the wage income of their children. The net effect depends on their relative magnitudes.

The policy function of b̂′ when b̂′ > 0 is reformulated as follows:

(1 + n)b̂′

A (k)α h
=

(p.2)︷︸︸︷
β −

(p.3)︷ ︸︸ ︷
[β (α− 1) + βγα]−

(p.4)︷︸︸︷
β

ω
(1+n)(1−ω) + ψ

.

This indicates that the weights (p.2)–(p.4) are crucial to the government’s financial stance.

The term (p.2) implies that a greater weight on the young’s utility of consumption in-

centivizes the government to issue more public debt to finance the young’s increased

consumption. The term (p.3) implies that an increase in public bond issues crowds out

physical capital accumulation and thus increases the interest rate. However, at the same

time, it decreases children’s wage income, thereby giving the government an incentive to

cut public bond issues. The term (p.4) indicates that an increase in public bond issues

raises the capital tax burden on the young in their old-age period. This also incentivizes

the government to cut public bond issues. In sum, the government chooses b̂′ > 0 and,

therefore, borrows in the capital market if the effect of (p.2) outweighs the sum of the

effects of (p.3) and (p.4), that is, if γ < (1− α)/α.
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3.2 Education Expenditure and Government Debt

The result established in Proposition 1 indicates that public education expenditure and

government debt are affected by the two population factors, ω and n. To investigate these

effects appropriately, we focus on the education expenditure-to-GDP ratio, Nt+1xt/Yt, and

debt-to-GDP ratio, Bt+1/Yt, and analyze the effects of an increase in ω and a decrease in

n on these ratios.

Proposition 2. Consider the Markov-perfect political equilibrium demonstrated in Propo-

sition 1.

(i) The education expenditure-to-GDP ratio, Nt+1xt/Yt, decreases with the greater politi-

cal power of the old and a lower population growth rate: ∂ (Nt+1xt/Yt) /∂ω < 0 and

∂ (Nt+1xt/Yt) /∂n > 0.

(ii) The government debt-to-GDP ratio, Bt+1/Yt, decreases with the greater political

power of the old and a lower population growth rate: ∂ (Bt+1/Yt) /∂ω < 0 and

∂ (Bt+1/Yt) /∂n > 0.

To confirm the statement in Proposition 2, we compute the public education expenditure-

to-GDP ratio and debt-to-GDP ratio as follows:

Nt+1xt
Yt

=
βη (1− α) (1 + γ)

ω
(1+n)(1−ω) + ψ

;

Bt+1

Yt
=
β [1− α (1 + γ)]

ω
(1+n)(1−ω) + ψ

.

These ratios depend on the two population factors, ω and n, through the term ω/(1+

n)(1 − ω), representing the relative political weight on the old. Higher ω and lower n

imply a larger political weight on the old in the political objective function. A larger

weight on the old in turn provides the government with an incentive to reduce public

education expenditure since the old benefit nothing from it. Therefore, the education

expenditure-to-GDP ratio decreases as ω increases and n decreases.

The debt-to-GDP ratio also decreases as ω increases and n decreases. This is somewhat

counterintuitive since the old may have an incentive to pass the fiscal burden onto future

generations. This incentive arises in the framework of Song, Storesletten, and Zilibotti

(2012) in which the old are assumed to owe no tax burden but benefit from public good

provision. However, in the present framework, the old receive no benefit from public

expenditure, but owe a capital tax burden. This implies that the old want to lower the

capital tax rate and public education expenditure as their political weight increases. A

decrease in the capital tax rate is associated with increased public debt, whereas a decrease

13



in public education expenditure is associated with decreased public debt. That is, there

are two opposing effects on public debt, but the negative effect outweighs the positive one

in the present framework. Thus, the debt-to-GDP ratio decreases as the political weight

on the old increases.

4 Steady State

Having established the policy functions, we are now ready to demonstrate the accumula-

tion of physical and human capital. We substitute the policy functions in Proposition 1

into the capital market-clearing condition in (11) and human capital formation function

in (1), and obtain

k′ = ΨK [A (k)α]
1−η

, (19)

h′

h
= DΨH [A (k)α]

η
, (20)

where ΨK and ΨH are defined by

ΨK ≡

 ΨK,b′=0 ≡ β
1+β

1+αβ(1+γ)
ω

(1+n)(1−ω)
+ψ

{
(1 + n)D

[
Xun

1+n

]η}−1
if 1−α

α
≤ γ,

ΨK,b′>0 ≡ αβ(1+γ)
ω

(1+n)(1−ω)
+ψ

{
(1 + n)D

[
Xun

1+n

]η}−1
if 1−α

α
> γ,

(21)

and

ΨH ≡
[
Xun

1 + n

]η
, (22)

respectively. Appendix A.3 shows the derivation of (19) and (20).

Given {k0, h0}, the sequence {kt, ht} is distinguished by the above two equations in

(19) and (20). A steady state is defined as a political equilibrium with kt = kt+1. In other

words, the ratio of physical to human capital is constant in a steady state. Equation

(19) implies that there is a unique, stable steady state. Human capital increases along

the steady-state path, as suggested in (20). The following proposition summarizes the

argument thus far and identifies conditions for which tax rates are set within a range

[0, 1).

Proposition 3. There is a unique, stable steady-state equilibrium distinguished by (i)

b′ = 0, τ k ∈ [0, 1), and τ ∈ [0, 1) if (1− α)/α ≤ γ and

α

1− α
ψ − βη

1− α
(1 + γ) (1− α) ≤ ω

(1 + n)(1− ω)
≤ α

1− α
ψ, (23)

and (ii) b′ > 0, τ k ∈ [0, 1), and τ ∈ [0, 1) if γ < (1− α)/α and

1 + β

1− α
− ψ ≤ ω

(1 + n)(1− ω)
≤ ψ

γ
. (24)
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Proof. See Appendix A.4.

The result in Proposition 3 suggests that the relative political weight on the old,

represented by ω/(1 + n)(1 − ω), plays a crucial role in shaping the tax rates. When

ω/(1 + n)(1 − ω) is above the upper bound (below the lower bound) in (23) and (24),

the relative political weight on the old is too high (low) to incentivize the government to

tax the old (young). The government would rather subsidize the old (young) by choosing

τ k < 0 (τ < 0). We rule out this possibility by imposing the upper (lower) bound of

ω/(1 + n)(1− ω).

Based on the result established thus far, we can define the growth rate of the economy

and investigate how it is affected by the two population factors, ω and n. Consider the

output-to-human capital ratio defined by y ≡ Y/H = A (k)α h. Then, the growth rate of

y is
y′

y
=
A (k′)α h′

A (k)α h
,

where x′ denotes the next period x(= k, h, y). In the steady state with k′ = k, the growth

rate of y is equal to the growth rate of human capital, h′/h. Therefore, in what follows,

we focus on the steady-state growth rate of human capital.

Recall the growth rate of human capital given by (20). From (19), the term (A (k)α)
η

in the steady state becomes (A (k)α)
η
= (ΨK)

αη
1−α(1−η) (A)

η
1−α(1−η) . Thus, the steady-state

growth rate becomes
h′

h
= DΨH (ΨK)

αη
1−α(1−η) (A)

η
1−α(1−η) . (25)

The following proposition establishes the effects of changes in ω and n on the growth rate

via the terms ΨH and ΨK .

Proposition 4. The steady-state growth rate increases as the population growth rate

decreases, but it decreases as the political weight on the old increases: ∂ (h′/h) /∂n <

0 and ∂ (h′/h) /∂ω < 0.

The proof and interpretation of Proposition 4 is as follows. The steady-state growth

rate in (25) is reformulated as follows:

h′

h
=

{
1

1 + n

1
ω

(1+n)(1−ω) + ψ

} η
1−α(1−η)

× UR,

where UR includes the terms unrelated to n and ω. A decrease in ω leads to a larger

relative political weight on the old, as observed by the term ω/(1 + n)(1 − ω). This

provides the government with an incentive to cut public education expenditure, which

in turn reduces human capital accumulation. Thus, a greater political weight on the old

results in a lower steady-state growth rate.
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A decrease in n has two opposing effects on the steady-state growth rate. On the

one hand, it leads to a larger political weight on the old, as observed by the term ω/(1 +

n)(1−ω). As in the case of increased ω, this provides the government with an incentive to

cut public education expenditure, which negatively affects human capital accumulation.

On the other hand, a decrease in n results in an increase in per-capita public education

expenditure, as observed by the term 1/(1 + n). This works to enhance human capital

accumulation, and this positive effect outweighs the negative effect. Therefore, a lower

population growth rate results in a higher steady-state growth rate.

5 Fiscal Rules

In the previous section, we considered fiscal policy and economic growth in the absence of

constraints on public bond issues except for the flow budget constraint. In other words,

we assumed no rule on public bond issues. However, in the real world, many countries

have introduced fiscal rules that control public bond issuance (Schaechter et al., 2012).

This brings us to the question of how fiscal rules shape the choice of fiscal policy and

affect economic growth over time.

To answer this question, in Section 5.1 we first consider the following alternative

scenario in which the government is prohibited from issuing public bonds and thus its

expenditure is financed solely through taxation. In this tax-financing case, we assume

γ < α/(1−α), which implies that in the absence of the tax-financing rule, the government

borrows in the capital market and issues public bonds. In other words, the government

wants to issue public bonds to finance its expenditure, but their issuance is prohibited

when the tax-financing rule is introduced. We then compare the tax rates, expenditure,

and economic growth in the debt-financing case in the previous section with the tax-

financing case. We also investigate the welfare consequences of shifting from debt financing

to tax financing.

The requirement for tax financing is somewhat extreme because in reality the govern-

ment is allowed to issue public bonds as long as their issuance is below some debt ceiling.

Hence, in Section 5.2, we overcome this shortcoming by considering an alternative fis-

cal rule for managing the debt issuance-to-GDP ratio widely introduced in developed

countries.

5.1 Tax Financing versus Debt Financing

The policy functions in the tax-financing case are those associated with b̂′ = 0 in Propo-

sition 1. The corresponding steady-state growth rate is computed by setting b̂′ = 0 in

(25). To investigate the differences between the tax-financing and debt-financing cases, we
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compare their tax rates, τ k and τ , public education expenditure-to-GDP ratio, (1+n)x/y,

and economic growth, h′/h. the variables in the tax-financing and debt-financing cases

are denoted by the subscripts “tax” and “debt,”respectively.

Proposition 5. Suppose that γ < α/(1− α) holds. Given the initial conditions k0 and

b0, tax financing and debt financing are compared as follows:

τ k0
∣∣
tax

= τ k0
∣∣
debt

; τ kt
∣∣
tax

< τ kt
∣∣
debt

for t ≥ 1; τ |tax > τ |debt ;

(1 + n)x/y|tax = (1 + n)x/y|debt ; and h′/h|tax > h′/h|debt .

Proof. See Appendix A.5.

In the initial period, the government needs to finance the repayment of outstanding

public debt, b0, regardless of the financing method. Thus, the capital tax rates are equal

in the two financing cases in the initial period. However, from period 1 onward, the

government incurs no repayment costs in the tax-financing case, while it still incurs such

costs in the debt-financing case. Because of this difference, the capital tax rate is lower

in the tax-financing case than in the debt-financing case from period 1.

By contrast, the labor tax rate is higher in the tax-financing case than in the debt-

financing case. When the tax-financing rule is introduced, the government needs to com-

pensate for the loss of revenue from bond issues by raising the labor income tax rate.

An increase in revenue from the labor tax is offset by a decrease in revenue from the

capital tax and public bond issues. Thus, the education expenditure-to-GDP ratio re-

mains unchanged. However, the introduction of tax financing removes the crowding-out

effect of public bonds. This positive effect on physical capital enhances human capital

accumulation and economic growth.

The result in Proposition 6 suggests that the shift from debt financing to tax financing

increases the growth rate and benefits future generations, but may worsen the current

middle-aged population because of the increased labor tax burden. We investigate this

welfare implication and obtain the following result.

Proposition 6. Suppose that γ < α/(1− α) holds.

(i) The welfare of the initial old population is unaffected; generation 0 is made worse off

by shifting from debt financing to tax financing.

(ii) There is a critical period, denoted by t̂(> 1), such that generation t ≤ t̂ is made worse

off, whereas generation t > t̂ is made better off by shifting from debt financing to

tax financing.

Proof. See Appendix A.6.
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The welfare of the initial old population is unaffected by shifting to tax financing since

their tax burden is unchanged. However, the choice of tax financing has two opposing

effects on current and future generations. Tax financing raises the tax burden of the

middle-aged population as demonstrated in Proposition 5. This lowers the lifetime income

of the middle-aged and thus lowers their lifetime utility of consumption. This is the

negative effect of tax financing. However, tax financing removes the crowding-out effect

of public bonds on capital and thus enhances human capital accumulation. This positive

effect appears from generation 1 onward and accumulates over time, but generation 0

cannot enjoy this benefit. Therefore, generation 0 suffers from a negative effect, whereas

distant future generations benefit from a positive effect that outweighs the negative one.

5.2 Debt Rule

This section extends the analysis of the previous section by considering the following debt

rule:
Bt+1

Yt
≤ ū.

This rule resembles the debt rule that sets an explicit ceiling for public debt as a percentage

of GDP (Schaechter et al., 2012). This is reformulated as

(1 + n)b̂t+1 ≤ ūA (kt)
α ht ⇔ (1 + n)b̃′ ≤ ū, (26)

where ū is defined by

ū ≡ εBun, ε ∈ [0, 1) .

The rule resembles the tax-financing case in Section 5.1 when ε→ 0 and the unconstrained

debt-financing case in Section 3 when ε→ 1.

We retain the assumption of γ < (1 − α)/α, implying that the government chooses

debt financing in the absence of any debt rule. Debt issuance in the absence of the rule

in (26) is given by (1 + n)b̂′ = BunA (k)α h as demonstrated in Proposition 1. When the

debt rule in (26) is introduced, it is always binding since ε < 1. Thus, the issue of public

bonds in the absence of the rule in (26) is (1 + n)b̂′ = εBunA (k)α h, or

(1 + n)b̃′ = εBunA.

With the use of (1 + n)b̃′ = εBunA, the government budget constraint in (12) is

reformulated as

εBun + τ (1− α) + τ kα

(
1 +

b̂

kh

)
= (1 + n)x̃+ α

b̂

kh
, (27)

and the capital market-clearing condition in (11) is rewritten as

εBun + (1 + n)
k′h′

A (k)α h
=

β

1 + β
(1− τ) (1− α) . (28)
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The political objective function in (10) is reformulated as

Ω ≃ ω

(1 + n)(1− ω)
ln
(
1− τ k

)
+ (1 + β) ln

[
1−

(
1− τ k

)
α

(
b̂

kh
+ 1

)
− (1 + n)x̃+ εBun

]

+ β [(α− 1) + γα] ln

[
1−

(
1− τ k

)
α

(
b̂

kh
+ 1

)
− (1 + n)x̃− 1

β
εBun

]
+ β ln

(
1− τ k′

)
+ βη (1− α) (1 + γ) ln x̃. (29)

Following the procedure described in Section 3, we conjecture the following capital tax

rate in the next period:

τ k′ = 1− T kcon
1

1 + b̂′/k′h′
,

where the subscript “con” of T kcon implies that public bond issuance is “constrained” by

the rule in (26). From (26), (27), and (28), we can rewrite the above conjecture as follows:

τ k′ = 1− T kcon

εBun + (1− α) + τ kα
(
1 + b̂

kh

)
− (1 + n)x̃− α b̂

kh
− 1+β

β
εBun

εBun + (1− α) + τ kα
(
1 + b̂

kh

)
− (1 + n)x̃− α b̂

kh

. (30)

Appendix A.7 shows the derivation of (30).

We substitute (30) into the political objective function in (29) and rearrange the terms

to obtain

Ω ≃ ω

(1 + n)(1− ω)
ln
(
1− τ k

)
+ ln Z̃1 + αβ (1 + γ) ln Z̃2 + βη (1− α) (1 + γ) ln x̃, (31)

where

Z̃1 ≡ 1−
(
1− τ k

)
α

(
1 +

b̂

kh

)
− (1 + n)x̃+ εBun, (32)

Z̃2 ≡ 1−
(
1− τ k

)
α

(
1 +

b̂

kh

)
− (1 + n)x̃− 1

β
εBun. (33)

The first-order conditions with respect to τ k and x̃ are

τ k : − ω

(1 + n)(1− ω)

1

1− τ k
+ α

(
1 +

b̂

kh

)[
1

Z̃1
+
αβ (1 + γ)

Z̃2

]
= 0, (34)

x̃ :
βη (1− α) (1 + γ)

(1 + n)x̃
−
[
1

Z̃1
+
αβ (1 + γ)

Z̃2

]
= 0. (35)

By solving (34) and (35) for τ k and x̃, we obtain the following result.
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Proposition 7. Suppose that γ < (1 − α)/α holds. In the presence of the debt rule in

(26), a Markov-perfect political equilibrium is distinguished by the following policy

functions:

τ k = 1− T kcon
1

1 + b̂/kh
,

(1 + n)x = XconA (k)α h,

τ = 1− 1

1− α

[
(1 + εBun)−

(
1 +

ω

(1 + n)(1− ω)

1

βη (1− α) (1 + γ)

)
Xcon

]
,

where T kcon and Xcon are defined as

T kcon ≡ 1

α

ω

(1 + n)(1− ω)

1

βη (1− α) (1 + γ)

H −
√
(H)2 − 4GI

2G
,

Xcon ≡
H −

√
(H)2 − 4GI

2G
,

G ≡
[
1 +

ω

(1 + n)(1− ω)

1

βη (1− α) (1 + γ)

] [
ω

(1 + n)(1− ω)
+ ψ

]
> 0,

H ≡ βη (1− α) (1 + γ)

[
1 +

ω

(1 + n)(1− ω)

1

βη (1− α) (1 + γ)

] [
(1 + εBun) +

(
1− εBun

β

)]
+ αβ (1 + γ) (1 + εBun) +

(
1− εBun

β

)
> 0,

I ≡ βη (1− α) (1 + γ) (1 + εBun)

(
1− εBun

β

)
> 0.

Proof. See Appendix A.8.

Following the procedure described in Section 3, we show the existence and uniqueness

of steady-state capital. Recall the capital market-clearing condition in (28), which is

rewritten as follows:

k′ =

β
1+β

(1− τ) (1− α)− εBun

(1 + n)D(h)1−η(x)η
A(k)αh

=

β
1+β

(1− τ) (1− α)− εBun

(1 + n)D
(
Xcon

1+n

)η [A(k)α]1−η , (36)

where the first equality comes from the human capital formation function given by h′ =

D(h)1−η(x)η and the second equality comes from the policy function of x presented in

Proposition 7. Equation (36) indicates that there is unique, stable steady-state capital.

In the next section, we focus on steady states and compare cases in the presence and

absence of the debt rule in (26) in terms of the education expenditure-to-GDP ratio,

capital and labor taxes, and growth rates. We also compare the cases in terms of utility

across generations.
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5.3 Numerical Analysis

Our task here is to compare cases in the absence and presence of the debt rule in (26)

based on numerical methods. Our strategy is to calibrate the model economy such that

the steady-state equilibrium with b > 0 matches some key statistics of average OECD

countries during 1995–2014.3 We fix the share of capital at α = 1/3 following Song,

Storesletten, and Zilibotti (2012) and Lancia and Russo (2016). Each period lasts 30

years; this assumption is standard in quantitative analyses of the two- or three-period

overlapping-generations model (e.g., Gonzalez-Eiras and Niepelt, 2008; Lancia and Russo,

2016). Our selection of β is 0.99 per quarter, which is also standard in the literature (e.g.,

Kydland and Prescott, 1982; De la Croix and Doepke, 2002). Since agents in the present

model plan over generations that span 30 years, we discount the future by (0.99)120.

We assume an annual population growth rate of 1.0059, which was the OECD average

during 1995–2014. This assumption implies that the net population growth rate for 30

years is (1.0059)30 − 1. For η, the estimate in Cardak (2004) implies that the elasticity of

school quality is in the range of 0.1−−0.3. Based on this estimation, we set η = 0.2. We

also set ω to 0.45 to attain interior solutions for the capital and labor taxes.

For γ, we focus on the education expenditure-to-GDP ratio in the steady state:

Nt+1xt
Yt

= Xun =
βη (1− α) (1 + γ)

ω
(1+n)(1−ω) + ψ

.

Given α = 1/3, β = (0.99)120, 1 + n = (1.0059)30, η = 0.2, and ω = 0.45, we can solve

this expression for γ by using the average ratio observed in OECD countries of 0.051 and

obtain γ = 1.62.

To determine the two productivity parameters, A andD, we normalize the steady-state

wage, w, to unity. Thus, we have w = (1− α)A(k)α = 1, or

(1− α)

[
β

1+β
(1− τ) (1− α)−Bun

(1 + n)
(
Xun

1+n

)η
]α/(1−α(1−η))

(D)−α/(1−α(1−η)) (A)1/(1−α(1−η)) = 1. (37)

We also use the data on the per-capita GDP gross growth rate of 1.02, which was the

OECD average during 1995–2014. We substitute these data and the values of α, β, n, η,

γ, and ω into the following equation expressing the per-capita GDP gross growth rate:

h′

h
=

(
Xun

1 + n

)η [ β
1+β

(1− τ) (1− α)−Bun

(1 + n)
(
Xun

1+n

)η
]αη/(1−α(1−η))

(D)(1−α)/(1−α(1−η)) (A)η/(1−α(1−η))

= (1.02)30. (38)

3Source: World Development Indicators, https://data.worldbank.org/products/wdi (Accessed on
March 3, 2018).
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We solve the two equations, (37) and (38), for A and D, and obtain A = 3.37 and

D = 3.14.

The economy is assumed to be in a steady state in period 0. The initial capital

k0 is computed by solving equation (36) for k. The initial value of human capital, h0,

is set at h0 = 2 to allow logarithmic utility to be positive for the tractability of the

analysis. From the result in Section 3, in the absence of any fiscal rule, the ratio b̂/kh

in the steady state is given by b̂/kh = [1− α(1 + γ)] /α(1 + γ). Thus, we set b̂0 at

b̂0 = {[1− α(1 + γ)] /α(1 + γ)} k0h0 and compare the cases with and without a debt rule

for the same initial conditions.

5.3.1 Comparative Statics

We study how the steady-state equilibrium responds to changes in the debt rule in (26). In

particular, we focus on ε. When ε = 1, the equilibrium policy functions and corresponding

economic growth rate coincide with those in the absence of the debt rule as in Section

3. When ε = 0, they coincide with those in the tax-financing case as in Section 5.1.

In the following, we consider a decrease in ε that aims to tighten fiscal discipline and

investigate its impact on fiscal policy, economic growth, and welfare across generations.

Figure 1 plots the education expenditure-to-GDP ratio, capital and labor tax rates, ratio

of physical to human capital, and per-capita growth rate in the steady state, taking ε on

the horizontal axis from 0 to 1.

[Figure 1 here.]

Fiscal tightening (i.e., a decrease in ε) has the following effects on the education

expenditure-to-GDP ratio. Firstly, the government raises the labor tax rate to compensate

for the loss of revenue from public bond issues, as depicted in Panel (a). This lowers the

disposable income of the middle-aged population and thus their lifetime consumption,

which in turn raises the marginal costs of public education expenditure in terms of utility.

This is a negative effect of fiscal discipline that works through the term Z̃1 in (35).

Secondly, a decrease in the disposable income of the middle-aged population leads to less

saving and thus a lower ratio of physical to human capital. However, at the same time,

fiscal tightening reduces the crowding-out effect of public debt. The net effect on the

ratio of physical to human capital is positive as shown in Panel (b). This effect works

through the term Z̃2 in (35). In sum, the two opposing effects on the choice of public

education expenditure produce an initial increase in the education expenditure-to-GDP

ratio followed by a decrease, as depicted in Panel (c).

Next, consider the effect of fiscal tightening on the choice of the capital tax rate.

Firstly, this affects the marginal benefit of capital taxation as shown by the term 1/Z̃1 +
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αβ (1 + γ) /Z̃2. This effect parallels the effect on the choice of public education expen-

diture as described above. However, an additional effect on the marginal benefit arises

through the term b̂/kh in (34). Fiscal tightening lowers the ratio b̂/kh and thus produces

a negative effect on the marginal benefit. This negative effect outweighs the effect via the

term 1/Z̃1 + αβ (1 + γ) /Z̃2. Therefore, the government chooses a lower capital tax rate

to balance the marginal cost and benefit as ε decreases, as depicted in Panel (d). Finally,

fiscal tightening raises the per-capita growth rate as shown in Panel (e) because the posi-

tive effects through the increased ratio of physical to human capital and decreased capital

tax rate outweigh the negative effect through the increased labor tax and non-monotone

effect through public education expenditure.

5.3.2 Comparative Dynamics

The comparative static analysis shows that the physical-to-human capital ratio and steady-

state growth rate increase as ε decreases. This finding suggests that future generations

benefit from increased physical and human capital. However, are all generations made

better off by fiscal tightening? To answer this question, Figure 2 plots the utility of gen-

erations from the initial old population for three scenarios, ε = 0.2, 0.5, and 0.8. Table

1 summarizes the results of the first four generations, indicating that the initial old pop-

ulation as well as generation 1 onward are made better off by the introduction of the

debt rule in (26), whereas generation 0 is made worse off (see also Figure 2). Thus, fiscal

tightening is not Pareto-improving.

[Figure 2 here.]

[Table 1 here.]

The mechanism behind the result is straightforward. Under the present assumption,

the government’s optimal choice of the debt-to-GDP ratio is Bun; however, its choice is

limited up to εBun(< Bun) by the rule in (26). Because of this constraint, the government

in period 0 is unable to attain an “interior optimum.” In particular, the constraint hits the

middle-aged population in generation 0. Governments from period 1 are also constrained

by the rule, but they benefit from the higher levels of physical and human capital be-

queathed from past generations. This benefit outweighs the cost of the constraint in (26).

Therefore, the introduction of the debt rule creates a trade-off between generations in

terms of utility.

The effects of decreased ε on utility is monotone from generation 0 onward, as shown

in Figure 2 and Table 1. However, the effect is non-monotone as for the initial old

population. In particular, a decrease in ε from 1.0 to 0.5 improves their utility, but a

further decrease worsens it. This non-monotone effect stems from the initial decrease
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followed by an increase in the period 0 capital tax rate as depicted in Figure 3. The

U-shaped pattern of the period 0 capital tax rate parallels the hump-shaped pattern of

public education expenditure described above.

[Figure 3 here.]

Finally, we consider the case where the debt rule is imposed only for limited periods.

In particular, the debt rule in (26) is introduced in period 2, but terminated at the

end of period 2, 3, or 4, meaning that successive governments from the termination

period onward are free to choose policies with no rule. Figure 4 illustrates the effect of

this temporary implementation of the fiscal rule on fiscal policies, the ratio of physical

to human capital, the growth rate over time, and utility across generations when ε =

0.5. As might be expected, the rule produces a temporary effect on fiscal policies, the

physical-to-human capital ratio, and economic growth. However, it has a long-lasting

effect on utility across generations owing to the increased human capital bequeathed from

generation to generation. This long-lasting effect of the temporary rule, which was not

shown in Barseghyan and Battaglini (2016), is caused by human capital accumulation

stimulated by debt-financed public education expenditure. Therefore, this result suggests

the importance of connecting seemingly unrelated subjects, public education and public

debt, to consider the impact of a debt rule over time and across generations.

[Figure 4 here.]

6 Conclusion

In this study, we developed an overlapping-generations model with physical and human

capital accumulation. In the model, public education and parental human capital were

used as inputs in the process of human capital formation. Public education spending

was financed through taxes on capital and labor income and public debt issues. Under

this framework, we demonstrated the endogenous policy formation and showed that the

greater political power of the old incentivizes the government to shift the tax burden from

the old to the young, thereby resulting in a lower capital tax rate and a higher labor tax

rate. We also showed that the greater political power of the old leads to a lower debt-

to-GDP ratio. Moreover, we considered the role of a debt ceiling rule and found that

fiscal tightening increases the growth rate, but lowers the welfare of the currently working

generation. However, the growth effect of the rule lasts for long periods via human capital

accumulation and benefits future generations even if it is imposed only for a limited time.

The presented model can be extended in several directions. For instance, one could

allow for the participation of the young in voting. Given that the young prefer more pub-

lic education expenditure to allow their human capital to form, it would be reasonable
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to expect that their participation incentivizes the government to spend more on public

education by raising tax rates. One could also consider public good provision as an alter-

native mode of spending and investigate the conflict over the composition of expenditure.

One could go further and study alternative fiscal rules such as balanced budget rules,

expenditure rules, and revenue rules. Such extensions are left to future research.
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A Proofs

A.1 Derivation of (10)

Recall equation (9) in the main text:

Ωt ≃
ω

(1 + n)(1− ω)
ln
(
1− τ kt

)
+ (1 + β) ln (1− α)A (kt)

α ht (1− τt)︸ ︷︷ ︸
(∗1)

+ β [(α− 1) + γα] ln kt+1︸︷︷︸
(∗2)

+ β ln
(
1− τ kt+1

)
+ βγη lnxt. (39)

The term (*1) is reformulated as follows:

(1− α)A (kt)
α ht (1− τt) = (1− α)A (kt)

α ht −
[
(1 + n)xt +Rtb̂t − (1 + n)b̂t+1 − τ kt Rt

st−1

1 + n

]
= (1− α)A (kt)

α ht −
[
(1 + n)xt + αA (kt)

α−1 b̂t − (1 + n)b̂t+1

−τ kt αA (kt)
α−1
(
b̂t + ktht

)]
, (40)

where the first equality comes from (5) and the second equality comes from (3), (4), and

(6). The term (*2) is reformulated as follows:

kt+1 =
1

(1 + n)ht+1

[
β

1 + β
(1− τt)wtht − (1 + n)b̂t+1

]
=

1

(1 + n)D (ht)
1−η (xt)

η

{
β

1 + β

[
A (kt)

α ht −
(
1− τ kt

)
αA (kt)

α−1
(
b̂t + ktht

)
−(1 + n)xt + (1 + n)b̂t+1

]
− (1 + n)b̂t+1

}
=

β
1+β

(1 + n)D (ht)
1−η (xt)

η

[
A (kt)

α ht −
(
1− τ kt

)
αA (kt)

α−1
(
b̂t + ktht

)
− (1 + n)xt −

1

β
(1 + n)b̂t+1

]
,

(41)

where the first equality comes from (6) and the second equality comes from (3), (4),

and(6). From (40) and (41), Ωt in (39) is reformulated as

Ωt ≃
ω

(1 + n)(1− ω)
ln
(
1− τ kt

)
+ (1 + β) ln

[
A (kt)

α ht −
(
1− τ kt

)
αA (kt)

α−1
(
b̂t + ktht

)
− (1 + n)xt + (1 + n)b̂t+1

]
+ β [(α− 1) + γα] ln

[
A (kt)

α ht −
(
1− τ kt

)
αA (kt)

α−1
(
b̂t + ktht

)
− (1 + n)xt −

1

β
(1 + n)b̂t+1

]
+ β ln

(
1− τ kt+1

)
+ βη (1− α) (1 + γ) ln xt. (42)

With the use of x̃t and b̃t+1, we can further reformulate Ωt in (42) as in (10).

■
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A.2 Proof of Proposition 1

Suppose that b̃′ = 0 holds. This leads to Z1 = Z2. Thus, (17) implies that b̃′ = 0 if

(1 + n)− α (1 + γ) (1 + n) ≤ 0, that is, if (1− α) /α ≤ γ.

When b̃′ = 0 holds, (16) and (18) are rewritten as

ω

(1 + n)(1− ω)

1

1− τ k
=

1

Z1
α [1 + αβ (1 + γ)]

(
1 +

b̂

kh

)
, (43)

and

βη (1− α) (1 + γ)
1

x̃
=

1

Z1
(1 + n) [1 + αβ (1 + γ)] , (44)

respectively. From (43) and (44), we obtain

(1 + n)x̃ =
(1 + n)(1− ω)

ω
βη (1− α) (1 + γ)α

(
1 +

b̂

kh

)(
1− τ k

)
. (45)

We substitute (45) into (43) and rearrange the terms to obtain

1− τ k =

ω
(1+n)(1−ω)
ω

(1+n)(1−ω) + ψ

1

α
(
1 + b̂

kh

) . (46)

Thus, the guess in (13) is verified if T kun is specified by

T kun ≡ 1

α

ω
(1+n)(1−ω)
ω

(1+n)(1−ω) + ψ
.

By plugging (46) into (45), we obtain the policy function of X as in Proposition 1. We

can obtain the labor tax rate τ by substituting the policy functions of τ k, x, and b̃′ = 0

into the government budget constraint in (12).

Next, suppose that b̃′ > 0 holds; the first-order condition with respect to b̃′ in (17)

holds with an equality. From (17) and (18), we obtain

(1 + β) (1 + n)

Z1
=
βη (1− α) (1 + γ)

x̃
. (47)

From (16) and (18), we have

α

(
1 +

b̂

kh

)(
1− τ k

)
=

ω
(1+n)(1−ω)

βη (1− α) (1 + γ)
(1 + n)x̃. (48)

We substitute (48) into the first-order condition with respect to b̃′ in (17). After

rearranging the terms, we obtain the relation between x̃ and b̃′ :

[1− α (1 + γ)]

[
1−

(
ω

(1+n)(1−ω)

βη (1− α) (1 + γ)
+ 1

)
(1 + n)x̃

]
=

(
α (1 + γ) +

1

β

)
(1 + n)b̃′.

(49)
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We can obtain another relation between x̃ and b̃′ by substituting (48) into (47):

(1 + n)b̃′ =

[
1 + β

βη (1− α) (1 + γ)
+ 1 +

ω
(1+n)(1−ω)

βη (1− α) (1 + γ)

]
(1 + n)x̃− 1. (50)

By solving (49) and (50) for x̃ and b̃′, we obtain the policy functions of x and b̂′ as in

Proposition 1. Note that b̂′ > 0 holds if and only if γ < (1− α)/α.

We substitute the obtained policy function, X, into (48) to derive

1− τ k =

ω
(1+n)(1−ω)
ω

(1+n)(1−ω) + ψ

1

α
(
1 + b̂

kh

) .
Finally, we can compute the labor tax rate by substituting the obtained τ k, x, and b̂′ into

the government budget constraint in (12).

■

A.3 Derivation of (19) and (20)

Recall the human capital formation function, h′ = D(x)η(h)1−η. With the use of the

policy function of x in Proposition 1, this function is rewritten as

h′

h
= D

[
1

1 + n

βη (1− α) (1 + γ)
ω

(1+n)(1−ω) + ψ

]η
[A (k)α]

η
, (51)

or,
h′

h
= DΨH [A (k)α]

η
,

where ΨH is defined as in (22). The expression in (51) holds for both b̂′ = 0 and b̂′ > 0

because the policy functions of x are the same in these two cases.

Next, consider the capital market-clearing condition in (11). Suppose that b̂′ = 0 (i.e.,
1−α
α

≤ γ) holds. With the use of the policy functions in Proposition 1, (11) is rewritten

as

(1 + n)k′h′ =
β

1 + β

1 + αβ (1 + γ)
ω

(1+n)(1−ω) + ψ
A (k)α h. (52)

By substituting (51) into (52) and rearranging the terms, we obtain

k′ =
β

1 + β

1 + αβ (1 + γ)
ω

(1+n)(1−ω) + ψ

{
(1 + n)D

[
Xun

1 + n

]η}−1

[A (k)α]
1−η

, (53)

where Xun is defined in Proposition 1.

Alternatively, suppose that b̂′ > 0 (i.e., 1−α
α

> γ) holds. With the use of the policy

function of τ in Proposition 1, (11) is rewritten as

(1 + n)k′h′ =
αβ (1 + γ)

ω
(1+n)(1−ω) + ψ

A (k)α h. (54)
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By substituting (51) into (54) and rearranging the terms, we obtain

k′ =
αβ (1 + γ)

ω
(1+n)(1−ω) + ψ

{
(1 + n)D

[
Xun

1 + n

]η}−1

[A (k)α]
1−η

. (55)

(53) and (55) are summarized as in (19).

■

A.4 Proof of Proposition 3

Equation (19) suggests that there is a unique, stable steady-state equilibrium level of the

physical-to-human capital ratio, k, for both (1− α)/α ≤ γ and (1− α)/α > γ.

Suppose that (1−α)/α ≤ γ (i.e., b′ = 0) holds. The tax rates τ k and τ in Proposition

1 are

τ k = 1−
ω

(1+n)(1−ω)
ω

(1+n)(1−ω) + ψ

1

α
< 1,

τ = 1− 1

1− α

1 + αβ (1 + γ)
ω

(1+n)(1−ω) + ψ
< 1.

Direct calculation leads to

τ k ≥ 0 ⇔ ω

(1 + n)(1− ω)
≤ α

1− α
ψ,

τ ≥ 0 ⇔ α

1− α
ψ − βη

1− α
(1 + γ) (1− α) ≤ ω

(1 + n)(1− ω)
.

These are summarized in (23).

Next, suppose that (1−α)/α > γ (i.e., b′ > 0) holds. In the steady state, b̂/kh = b̂′/k′h′

holds, so

b̂

kh
=

β[1−α(1+γ)]
ω

(1+n)(1−ω)
+ψ
A (k)α h

αβ(1+γ)
ω

(1+n)(1−ω)
+ψ
A (k)α h

=
1− α (1 + γ)

α (1 + γ)
, (56)

where the first equality comes from the policy function of b̂′ in Proposition 1 and the

capital market-clearing condition in (54).

From (56), the tax rate on capital, τ k, when b′ > 0 becomes

τ k = 1−
ω

(1+n)(1−ω)
ω

(1+n)(1−ω) + ψ

1

α
(
1 + 1−α(1+γ)

α(1+γ)

) ,
or

τ k = 1−
ω

(1+n)(1−ω) (1 + γ)
ω

(1+n)(1−ω) + ψ
< 1.
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Direct calculation leads to

τ k ≥ 0 ⇔ ω

(1 + n)(1− ω)
≤ ψ

γ
. (57)

The tax rate on labor, τ , is given by

τ = 1− 1 + β

1− α

1
ω

(1+n)(1−ω) + ψ
< 1.

We obtain

τ ≥ 0 ⇔ 1 + β

1− α
− ψ ≤ ω

(1 + n)(1− ω)
. (58)

(57) and (58) are summarized in (24).

■

A.5 Proof of Proposition 5

First, compare the capital tax rates. From Proposition 1, given k0 and b0, we immediately

find that τ k0
∣∣
tax

= τ k0
∣∣
debt

holds. For t ≥ 1, τ kt
∣∣
tax

< τ kt
∣∣
debt

holds because b̂/kh = 0(> 0)

holds in the tax-financing (debt-financing) case.

Next, compare the labor tax rates and growth rates. Direct comparison leads to

τ |tax > τ |debt ⇔ γ <
1− α

α
,

and

h′/h|tax > h′/h|debt ⇔ γ <
1− α

α
.

The condition γ < α/(1 − α) holds by assumption. Finally, we immediately obtain

(1 + n)x/y|tax = (1 + n)x/y|debt from Proposition 1.

■

A.6 Proof of Proposition 6

(i) Recall the indirect utility function of the old given by (8). Because τ k0
∣∣
tax

= τ k0
∣∣
debt

holds as demonstrated in Proposition 5, we immediately obtain V o
0 |tax = V o

0 |debt.
To consider the effect on the utility of generation 0, V M

0 , recall the political objective

function in period 0:

Ω0 =
ω

(1 + n)(1− ω)
V o
0 + V M

0 .

When γ < α/(1 − α) holds, Ω0 is maximized by choosing b̂′ > 0 (Proposition 1). How-

ever, the government choice is constrained when it is forced to finance its expenditure

solely by taxes. That is, the government attains a lower value of its objective under tax
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financing than under debt financing: Ω0|tax < Ω0|debt. This implies V M
0

∣∣
tax

< V M
0

∣∣
debt

since V o
0 |tax = V o

0 |debt holds.
(ii) Recall the indirect utility function of the middle-aged in (7). Suppose that from

some period t0(≥ 1) onward, the economy is in a steady state regardless of the govern-

ment’s financing method. The indirect utility function in (7) becomes

V M
t

∣∣
j
= (1 + β) ln(1− α)A

(
k|j
)α (

ht|j
)(

1− τ |j
)
+ β [(α− 1) + γα] ln k|j

+ β ln
(
1− τ kt+1

∣∣
j

)
+ βγη ln xt|j + ϕM (ht)

∣∣
j
,

≃ (1 + α (β + γ)) ln k|j + (1 + β) ln
(
1− τ |j

)
+ β ln

(
1− τ kt+1

∣∣
j

)
+ βγη ln xt|j + [(1 + β) + βγ (1− η)] ln ht|j , j = tax, debt (59)

where the constant terms are omitted from the expression.

With the use of the policy functions in Proposition 1, (59) is rewritten as follows:

V M
t

∣∣
j
≃ (1 + α (β + γ)) ln k|j + (1 + β) ln

(
1− τ |j

)
+ β ln

1

1 +
(
b̂t+1/kt+1ht+1

)∣∣∣
j

+ βγη lnA
(
k|j
)α (

ht|j
)
+ [(1 + β) + βγ (1− η)] ln ht|j ,

or

V M
t

∣∣
j
≃ [1 + α (β + γ + βγη)] ln k|j + (1 + β) ln

(
1− τ |j

)
+ [1 + β (1 + γ)] ln

(
h′/h|j

)t−t0
ht0|j , j = tax, debt.

The direct comparison of V M
1

∣∣
tax

and V M
1

∣∣
debt

leads to

V M
1

∣∣
tax

≷ V M
1

∣∣
debt

⇔ (t− t0) [1 + β (1 + γ)] ln
h′/h|tax
h′/h|debt

≷ [1 + α (β + γ + βγη)] ln
k|debt
k|tax

+ (1 + β) ln
1− τ |debt
1− τ |tax

+ [1 + β (1 + γ)] ln
ht0 |debt
ht0 |tax

, (60)

where the left-hand and right-hand sides of (60) are denoted by LHS and RHS, respec-

tively. These satisfy the following properties:

∂LHS/∂t > 0, LHS|t=t0 = 0, lim
t→∞

LHS = ∞, and ∂RHS/∂t = 0.

Therefore, there is a positive integer, denoted by t̂, such that LHS ≷ RHS ⇔ V M
t

∣∣
tax

≷
V M
t

∣∣
debt

for t ≷ t̂.

■
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A.7 Derivation of (30)

With the use of (26) and (28), we can rewrite b̂′/k′h′ as

b̂′

k′h′
=

1
1+n

εBunA (k)α h

1
1+n

β
1+β

[
(1− τ) (1− α)− 1+β

β
εBun

]
A (k)α h

=
εBun

β
1+β

[
(1− τ) (1− α)− 1+β

β
εBun

] .
This leads to

1 +
b̂′

k′h′
=

(1− τ) (1− α)

(1− τ) (1− α)− 1+β
β
εBun

. (61)

From (61), the conjecture of τ k′ = 1− T kcon
1

1+b̂′/k′h′
is rewritten as

τ k′ = 1− T kcon
(1− τ) (1− α)− 1+β

β
εBun

(1− τ) (1− α)
. (62)

The substitution of the government budget constraint in (27) into (62) leads to (30).

■

A.8 Proof of Proposition 7

The first-order conditions in (34) and (35) are summarized as

1− τ k =
ω

(1 + n)(1− ω)

(1 + n)x̃

βη (1− α) (1 + γ)

1

α
(
1 + b̂/kh

) . (63)

With the use of (63), Z̃1 and Z̃2 in (32) and (33) are rewritten as follows: Z̃1 = (1 + εBun)−
[
1 + ω

(1+n)(1−ω)
1

βη(1−α)(1+γ)

]
(1 + n)x̃,

Z̃2 = (1 + εBun)−
[
1 + ω

(1+n)(1−ω)
1

βη(1−α)(1+γ)

]
(1 + n)x̃− 1+β

β
εBun.

(64)

The substitution of (64) into the first-order condition with respect to x̃ in (35) leads to

βη (1− α) (1 + γ)

(1 + n)x̃
=

1

Z̃1
+

αβ (1 + γ)

Z̃1 − 1+β
β
εBun

. (65)

Figure A.1 illustrates the graph of (65), taking (1 + n)x̃ on the horizontal axis. The

figure indicates that there are two candidates for a solution to (65). However, the larger

one is not feasible since Z̃1 < 0 holds. Therefore, the smaller one is the solution to (65).

[Figure A.1 here.]
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To derive the solution to (65), we reformulate (65) as follows:

βη (1− α) (1 + γ)

(1 + n)x̃
=
Z̃1 − 1+β

β
εBun + αβ (1 + γ) Z̃1

Z̃1
(
Z̃1 − 1+β

β
εBun

) ,

or

f ((1 + n)x̃) ≡ G ((1 + n)x̃)2 −H(1 + n)x̃+ I = 0, (66)

where G, H, and I are defined in Proposition 7. Note that H > 0 and I > 0 hold because

εBun < β holds.

By solving (66) for (1 + n)x̃ and taking the smaller solution, we obtain

(1 + n)x̃ = Xcon ≡
H −

√
(H)2 − 4GI

2G
. (67)

The substitution of (67) into (63) yields

1− τ k =
ω

(1 + n)(1− ω)

H−
√

(H)2−4GI

2G

βη (1− α) (1 + γ)

1

α
(
1 + b̂/kh

) , (68)

which verifies the initial guess. Finally, the labor tax rate is derived by substituting (67)

and (68) into the government budget constraint in (27).

■
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Figure 1: Effects of decreased ε on the labor tax rate (Panel (a)), ratio of physical to
human capital (Panel (b)), education expenditure-to-GDP ratio (Panel (c)), capital tax
rate (Panel (d)), and steady-state growth rate (Panel (e)).
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Figure 2: Utility of generations from the initial old population (denoted by -1) to gener-
ation 9.
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ϵ = 0.2 ϵ = 0.5 ϵ = 0.8 ϵ = 1.0
Initial old population 1.3029 1.3031 1.3029 1.3026

Generation 0 1.2346 1.2352 1.2357 1.2359
Generation 1 2.3336 2.3201 2.3059 2.2961
Generation 2 3.4144 3.3934 3.3715 3.3563

Table 1: Utility of the first four generations
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Figure 3: Period 0 capital tax rate.
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Figure 4: Effects of the temporary implementation of the fiscal rule in period 2. The
solid, dashed, and chain lines depict the cases where the rule is terminated at the end of
periods 2, 3, and 4, respectively. Note: Panel (g) plots the ratio of utility in the presence
of the temporary implementation to that in the absence of the implementation.
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Figure A.1: Illustration of the left-hand side and right-hand side of equation (65).
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