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Abstract

This paper presents a framework to study real options with illiquidity of option exercise

opportunities. I incorporate a constraint that the investment time is chosen from Poisson

arrival times in the standard real option value (ROV) model. I derive the closed-form

solution and show that illiquidity decreases the option value of waiting and the investment

threshold. I extend the results to a case with different types of projects and show that an

inferior project can be undertaken in the presence of illiquidity. I prove that the solution

of the illiquid model converges to that of the ROV model for higher liquidity and converges

to that of the net present value (NPV) model for lower liquidity. I also show that the

solution agrees with the limit of the corresponding regime-switching model. The results

fill the gaps in the NPV, ROV, and regime-switching models and reveal the effects of

illiquidity on investment decisions.
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1 Introduction

In project valuation involving high uncertainty and managerial flexibility, the real option

value (ROV) method adds value to the basic net present value (NPV) method (cf. Dixit

and Pindyck (1994)). A number of papers have recently investigated corporate financial

issues, such as financing and investment, mergers and acquisitions, and bankruptcy and

liquidation in the ROV framework. Most of these studies presume that an option holder

can exercise his/her real option at an arbitrary time, analogous to American call and put

options.

In the real world, however, the assumption of arbitrary exercise timing does not always

hold. For example, consider a firm that will expand its business by acquiring (a certain

section of) another firm. If a hostile acquisition is too costly, the firm begins by searching

for a target that may potentially agree to be acquired. Only if the firm finds such a target

and the negotiation and/or bidding process succeeds, the firm can acquire the target

assets. Otherwise, the firm begins by searching for another target. In this case, the firm

can exercise the acquisition option not at an arbitrary time but only when it finds a target

satisfying certain conditions. Similarly, in an asset liquidation problem, a firm can sell

illiquid assets at fair prices not at an arbitrary time but only when it meets a counterparty.

Another example is a financially constrained firm’s investment. A firm can invest in a

project not at an arbitrary time but when it is able to raise funds for the project. Some

investments might be feasible only when the investment programs qualify for government

grants and subsidies. Boyle and Guthrie (2003) investigate investment timing decisions,

assuming that investment is feasible only when internal funds are sufficient.

Real options frequently concern transactions of illiquid assets, such as real estate,

technology, patents, and businesses. Capital market friction may also restrict real option

exercise opportunities. Nevertheless, in the real options context, few papers have investi-

gated the effects of illiquidity of exercise opportunities. On the other hand, a number of

papers focus on market illiquidity of labor, real estate, and financial assets such as debts

and derivatives, etc. For example, Duffie, Garleanu, and Pedersen (2005) reveal how in-

termediation and asset prices in over-the-counter markets are affected by illiquidity. He

and Xiong (2012) and He and Milbradt (2014) show the effects of debt market illiquidity

on a firm’s bankruptcy timing. These studies are based on search theory, which was first

proposed by Diamond (1982) to investigate labor market illiquidity.

This paper develops a new framework to study real option problems with illiquidity of

option exercise opportunities. To do so, I incorporate a constraint that the investment time
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is chosen from Poisson arrival times in the investment timing model (hereafter, the ROV

model) of McDonald and Siegel (1986).1 The Poisson arrival process, as in search-theoretic

models, stands for illiquidity of option exercise opportunities. Most notably, I derive

the closed-form solution in the proposed illiquid model. The obtained solution exhibits

intermediate characteristics between the NPV and ROV solutions. Indeed, the option

value of waiting decreases due to illiquidity, and hence, the investment threshold decreases.

This implies that in the presence of illiquidity, the firm exercises an investment option

more eagerly than in the ROV model. Although Boyle and Guthrie (2003) document

similar results from capital market friction, they do not derive any analytical solution due

to the model complexity.

Furthermore, I also examined a case in which two types of projects arrive randomly.

Although I cannot derive a closed-form solution in this case, I obtain the analytical so-

lution. When the profitability gap between the two types, liquidity, and the probability

of the good-type appearance increase, the firm is more likely to wait for a good-type

project and forgo a bad-type project. When these factors are low, the firm accepts only

a good-type project for intermediate levels of the state variable and accepts even a bad-

type project for sufficiently high levels of the state variable. The impact of illiquidity

on the bad-type investment threshold is much greater than on the good-type investment

threshold. This result is also numerically verified for a case with a continuum of project

types.

I prove that the solution of the illiquid model converges to that of the ROV model

for higher liquidity and that of the NPV model for lower liquidity. I also reveal the re-

lationship of the illiquid model to the regime-switching model of Hackbarth, Miao, and

Morellec (2006); indeed, the limiting solution of the regime-switching model concurs with

the solution of the illiquid model. Thus, in terms of illiquidity of real option exercise

opportunities, this paper fills the gaps in the NPV, ROV, and regime-switching models.

The proposed models and solutions can potentially play a significant role as a new frame-

work to study real options with illiquidity of option exercise opportunities. They can be

applied to various problems, including but not limited to problems of merger and acquisi-

tion timing with illiquidity of searching and matching, illiquid asset sales and liquidation

timing, and investment timing with illiquidity of fundraising.

The remainder of this paper is organized as follows. Section 2 introduces the model

1Although I describe the results of the investment timing model in full details, the same analysis can be

applied to asset sales and liquidation models (cf. Section 4.3).
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setup. Then, Sections 3.1 and 3.2 explain the NPV and ROV models. Sections 3.3 and

3.4 show the main results of the models with illiquidity of option exercise opportunities.

Section 4 extends these models in several ways, and Section 5 concludes the paper.

2 Setup

Consider a firm that has an option to invest in a project only when an investment oppor-

tunity arrives. Assume that the project arrival process follows a Poisson process with the

arrival rate λ(> 0). If the firm rejects a project, the firm has to wait until another project

arrives. The firm cannot invest in more than one project.2

Project i requires the initial investment cost Ii and perpetually generates cash flow

aiX(t). The random shock X(t) follows a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x,

where B(t) denotes the standard Brownian motion defined in a filtered probability space

(Ω,F ,P, {Ft}) and µ, σ(> 0) and x(> 0) are constants. Throughout the paper, for the

model tractability, I assume that B(t) is independent of the Poisson process. A positive

constant r denotes the discount rate, and for convergence I assume that r > µ.

I consider two types of projects, i.e., i = G (Good) and i = B (Bad), where 0 < aB <

aG and 0 < IG ≤ IB. Define the expected payoff of project i by πi(x) = aix/(r − µ)− Ii.

In terms of profitability, a project G dominates a project B because πG(x) > πB(x) holds

for all x > 0.3 Section 3.3 examines a case in which the same type of projects arrive.

Section 3.4 examines a case in which a project type follows an independent draw with

i = G at probability q ∈ (0, 1) and i = B at probability 1− q.

The model incorporates illiquidity of investment opportunities in the ROV model of

McDonald and Siegel (1986). As in search-theoretic models (e.g., Diamond (1982) and

Duffie, Garleanu, and Pedersen (2005)), illiquidity is captured by the Poisson arrival

process. The illiquid model is relevant to real options involving transactions of illiquid

assets, such as real estate, technology, patents, and businesses. It can also represent

illiquidity of fundraising. Several papers (e.g., Baldwin and Meyer (1979) and Baldwin

(1982)), prior to development of the real options literature, investigate investment timing

2Investment projects are mutually exclusive or the firm chooses one project under financial constraints.
3Unlike this paper, Décamps, Mariotti, and Villeneuve (2006) consider two mutually exclusive projects with

different scales, i.e., 0 < aB < aG and 0 < IB < IG. They solved the optimal investment timing and sizing

problem under the standard real options assumption that investment is possible at an arbitrary time.
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under the assumption that investment opportunities arrive according to a Poisson process,

but these models do not include a continuous-time state process, i.e., X(t). Section 4.2

shows the relationship of the illiquid model to the regime-switching model of Hackbarth,

Miao, and Morellec (2006). I can apply the same analysis used in this paper to put-type

real options (cf. Section 4.3).

3 Model Solutions

3.1 The NPV model

As a benchmark, this subsection briefly explains the NPV framework. Suppose that a

project of type i, which is fixed at G or B, is feasible at the initial time.4 Consider the

firm that follows the NPV rule, i.e., the firm undertakes a project if and only if πi(x) ≥ 0

at the initial time.

The firm value with a project i, denoted by NPVi(x), is given by

NPV i(x) = max{πi(x), 0} (i = G,B). (1)

The investment threshold in the NPV model is given by

xNPV
i =

(r − µ)Ii
ai

(i = G,B). (2)

The firm invests in a project i if x ≥ xNPV
i . Otherwise, it never invests in a project. The

NPV rule is optimal if the firm has no option to defer the investment timing.

3.2 The ROV model

As another benchmark, this subsection explains the ROV model, which was first studied

in McDonald and Siegel (1986). Suppose that a project of type i, which is fixed G or

B, is feasible at any time.5 Consider the firm that follows the ROV rule, i.e., the firm

undertakes a project at the optimal time.

For future uses, I define, for y > 0,

βy = 0.5− µ

σ2
+

√( µ

σ2
− 0.5

)2
+

2(r + y)

σ2
(> 1), (3)

γy = 0.5− µ

σ2
−
√( µ

σ2
− 0.5

)2
+

2(r + y)

σ2
(< 0). (4)

4The firm focuses only on project G when both types of projects are feasible at the initial time.
5The firm focuses only on project G when both types of projects are feasible at an arbitrary time.
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For notational simplicity, I denote β = β(0) and γ = γ(0). In the standard manner (e.g.,

Dixit and Pindyck (1994)), I can derive the firm value with a project i as

ROVi(x) =

 πi(x
ROV
i )

(
x

xROV
i

)β

(x < xROV
i ),

πi(x) (x ≥ xROV
i ),

(i = G,B), (5)

where the investment threshold is given by

xROV
i =

βxNPV
i

β − 1
(< xNPV

i ) (i = G,B). (6)

For x ≥ xROV
i , the firm invests in a project i at the initial time. In this case, ROVi(x) =

NPVi(x) holds, which means the ROV method adds no value to the NPV method. For

x < xROV
i , the firm invests in a project i as soon as the state variable X(t) hits xROV

i .

The upper equation in (5) stands for the value of deferring investment. Because of the

option value of waiting, ROVi(x) > NPVi(x) holds for x < xROV
i .

3.3 The same type of projects arriving randomly

This subsection examines the baseline model in which the same type of projects arrive

randomly. To be more precise, I assume that projects of type i, which is fixed at G or

B, arrive according to a Poisson process with the arrival rate λ. I denote by Vi(x) the

firm value when a project i is not feasible and by Ṽi(x) the firm value when a project

i arrives. I have Ṽi(x) = max{πi(x), Vi(x)} because the firm value Ṽi(x) becomes Vi(x)

when a feasible project i is forgone.

I can show that the value function Ṽi(x) is continuous and that the optimal policy is

a threshold policy. For the proof, see Appendix A. Then, the stopping region S∗
i = {x ∈

R+ | Ṽi(x) = πi(x)} is expressed as

S∗
i = {x ∈ R+ | x ≥ x∗i }, (7)

where x∗i = min{x ∈ R+ | Ṽi(x) = πi(x)}, and Ṽi(x) is expressed as

Ṽi(x) =

 Vi(x) (x < x∗i ),

πi(x) (x ≥ x∗i ).
(8)

Because of NPVi(x) ≤ Ṽi(x) ≤ ROVi(x), the investment threshold x∗i exists between

xNPV
i and xROV

i . Because of Theorem 4.4.9 in Karatzas and Shreve (1998), for the

threshold policy, the expectation Vi(x) is a piecewise C2 function and satisfies ordinary

differential equations (ODEs):

µxV ′
i (x) + 0.5σ2x2V ′′

i (x) = rVi(x) (0 < x < x∗i ), (9)

µxV ′
i (x) + 0.5σ2x2V ′′

i (x) + λ(πi(x)− Vi(x)) = rVi(x) (x > x∗i ), (10)
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where λ(πi(x)−Vi(x)) corresponds to the fact that Vi(x) changes to πi(x) with probability

λdt in infinitesimal time interval dt. The piecewise C2 property means that Vi(x) is

continuously differentiable at x∗i (see Theorem 4.4.9 in Karatzas and Shreve (1998)). By

solving (9) and (10) with the boundary conditions which will be specified in the proof, I

have the following proposition.

Proposition 1

Vi(x) =


A1,ix

β (x < x∗i ),

λaix

(r − µ)(r + λ− µ)
− λIi

r + λ
+A2,ix

γλ (x ≥ x∗i ),
(11)

where the investment threshold x∗i and coefficients A1,i, A2,i are

x∗i =
(r + λ− µ)((β − γλ)r + βλ)xNPV

i

(r + λ)((β − γλ)(r − µ) + (β − 1)λ)
, (12)

A1,i =
πi(x

∗
i )

x∗βi
, (13)

A2,i =
1

x∗γλi

(
aix

∗
i

r + λ− µ
− rIi

r + λ

)
. (14)

Proof. I have the boundary conditions

lim
x→0

Vi(x) = 0 (15)

lim
x→∞

Vi(x)

πi(x)
< ∞ (16)

Vi(x
∗) = πi(x

∗) (17)

along with the continuous differentiability of Vi(x) at x∗i . Conditions (15) and (16) are

trivial, while condition (17) follows from (8) and the continuity of Ṽi(x). The continuous

differentiability of Vi(x) at x
∗
i follows from Theorem 4.4.9 in Karatzas and Shreve (1998)).6

A general solution to ODE (9) with (15) is expressed as A1,ix
β, where A1,i is an

unknown coefficient. Then, by (16), I have the expression (13). A general solution to

ODE (10) with (16) is expressed as

λaix

(r − µ)(r + λ− µ)
− λIi

r + λ
+A2,ix

γλ ,

6This is not the smooth pasting (i.e., optimality) condition in Dixit and Pindyck (1994), but it is the same

condition as the piecewise C2 property in the regime-switching models in Guo, Miao, and Morellec (2005) and

Hackbarth, Miao, and Morellec (2006). I do not have to impose the smooth pasting condition and verify the

optimality of the solution. Instead, I can directly calculate the expectation Vi(x) by condition (17) which stems

from the optimality of x∗
i .
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where A2,i is an unknown coefficient. Then, by (17), I have the expression (14). By the

continuous differentiability of Vi(x) at x
∗
i , I have

βA1x
∗β−1
i =

λai
(r − µ)(r + λ− µ)

+ γλA2x
∗γλ−1
i . (18)

By substituting (13) and (14) into (18), I have

βπi(x
∗
i ) =

λaix
∗
i

(r − µ)(r + λ− µ)
+ γλ

(
aix

∗
i

r + λ− µ
− rIi

r + λ

)
x∗i =

(r + λ− µ)((β − γλ)r + βλ)xNPV
i

(r + λ)((β − γλ)(r − µ) + (β − 1)λ)
.

The proof is complete. □

The firm’s optimal policy is to invest in a project i only if it arrives at time t satisfying

X(t) ≥ x∗i . Unlike in the standard real options model, the investment time is later than

the first hitting time to the investment threshold x∗i . Indeed, the firm cannot invest at

the first hitting time when a project is not feasible.7 Lower liquidity λ increases the gap

between the first hitting time and the investment time.

The upper equation in (11) stands for the value of waiting when the option value is

higher than the investment payoff, i.e, Vi(x) > πi(x). The lower equation in (11) stands

for the value of waiting when the option value is lower than the investment payoff, i.e,

Vi(x) ≤ πi(x). Then, the firm wishes to immediately exercise the investment option, but

it cannot do so because of illiquidity of exercise opportunities. To be more precise, the

lower equation in (11) can be decomposed as follows. The first and second terms of the

lower equation stand for the expected payoff of investing as soon as a project i arrives.

The last term A2,ix
γλ stands for the value of the option to forgo a project i when it arrives

at time t satisfying X(t) < x∗i .

Notably, I have the closed-form solution in Proposition 1. Indeed, the investment

threshold x∗i is derived in the closed-form expression (12). In a more generalized model

(i.e., X(t) following a geometric Lévy process with one-sided jumps), Perez and Yamazaki

(2018) show an analytical solution, but they do not derive any closed-form solution. Sim-

ilarly, Hackbarth, Miao, and Morellec (2006) show an analytical solution in the general

regime-switching model, but they do not derive any closed-form solution.8 Sections 4.1–4.3

also present closed-form solutions in several extended models. By virtue of tractability,

the closed-form solutions obtained in this paper will be a framework to study real options

with illiquidity of option exercise opportunities.

7Mathematically, the probability of the Poisson arrival at the first hitting time is equal to zero.
8In Section 4.2, I derive the closed-form solution of the regime-switching model where investment is feasible

in one of the two regimes and reveal the relationship of the illiquid model with the regime-switching model.
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Next, I examine the effects of liquidity λ on the investment threshold and firm values.

I will show the following results in the limiting cases.

Proposition 2 Vi(x), Ṽi(x), and x∗i monotonically increase in λ.

lim
λ→0

Vi(x) = 0, lim
λ→0

Ṽi(x) = NPV i(x), lim
λ→0

x∗i = xNPV
i ,

lim
λ→∞

Vi(x) = lim
λ→∞

Ṽi(x) = ROVi(x), lim
λ→∞

x∗i = xROV
i .

Proof. By definition of the problem, Vi(x) and Ṽi(x) monotonically increase in the arrival

rate λ. By the monotonicity of Ṽi(x) and x∗i = min{x ∈ R+ | Ṽi(x) = πi(x)}, I have the

monotonicity of x∗i .

By λ → 0 in (12), I have

lim
λ→0

x∗i = xNPV
i . (19)

By substituting (19) into (13) and (14), I have limλ→0A1,i = limλ→0A2,i = 0. Then,

limλ→0 Vi(x) = 0 holds. By (8), I also have limλ→0 Ṽi(x) = NPVi(x).

Now I consider the limiting case of λ → ∞. Note that limλ→∞ γλ/λ = 0. By this

property and (12), I have

lim
λ→∞

x∗i = xROV
i . (20)

By substituting (20) into (13), (14), and (11), I have limλ→∞ Vi(x) = ROVi(x). By (8), I

also have limλ→∞ Ṽi(x) = ROVi(x). The proof is completed. □

Lower liquidity of investment opportunities decreases the value of waiting and the

investment threshold x∗i below xROV
i . In other words, the firm accepts an investment

opportunity more eagerly than in the ROV model because the firm has to wait for another

project arrival if it forgoes an investment opportunity. This is similar to Boyle and Guthrie

(2003)’s result that cash shortfall risk decreases the value of waiting and the hurdle rate

for investment, although they do not derive any analytical solution due to the model

complexity.

Proposition 2 shows that the NPV and ROV solutions are obtained in the limiting cases

of λ → 0 and λ → ∞, respectively.9 Indeed, as λ decreases (increases), x∗i , Vi(x), and Ṽi(x)

approach the NPV (ROV) solutions. The baseline model results fill the gaps between the

two extreme cases (i.e., the NPV and ROVmodels) by showing the intermediate solution in

the closed form. Indeed, it is more general and plausible to assume that the firm can delay

9Although Perez and Yamazaki (2018) numerically check the limiting cases (for a geometric Lévy process

with one-sided jumps X(t)), they do not analytically prove the limiting cases.
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the investment time but cannot choose an arbitrary investment time. A Bermudan option,

where the holder can exercise the option only on certain predefined dates, also captures an

intermediate case between the NPV and ROV models. In this case, however, the solution

cannot be analytically derived but can be numerically computed in the corresponding

discrete-time model. In contrast, by virtue of randomizing exercise dates, I can derive the

closed-form solution in the baseline model.

Lastly, I check the impacts of illiquidity on the investment thresholds and firm values

in numerical examples. The baseline parameter values are set in Table 1. We now consider

the case of i = G. Figure 1 shows the firm value function VG(x) along with the benchmark

values ROVG(x) and NPVG(x) for x close to the investment threshold x∗G = 0.8088. Note

that NPVG(x) = πG(x) holds in the depicted region. As shown in Proposition 1, VG(x)

crosses πG(x) at the investment threshold x∗G = 0.8088. As shown in Proposition 1, the

investment threshold x∗G = 0.8088 lies between xNPV
G = 0.2 and xROV

G = 0.9531.

Figure 2 shows VG(x), ROVG(x), x
∗
G, and xROV

G along with the liquidity cost LC =

(ROVG(x) − VG(x))/ROVG(x) and the threshold decrease TD = (xROV
G − x∗G)/x

ROV
G

for varying levels of 1/λ. Note that 1/λ is equal to the expected time interval (years)

between two projects. The firm values are computed for the initial value x = 0.2, where

NPVG(x) = 0 holds. As shown in Proposition 2, both VG(x) and x∗G monotonically

decrease in 1/λ. More interestingly, I can see from the figure that the impact of illiquidity

is greater on the investment threshold than on the firm value. For instance, I have

LC = 0.005 and TD = 0.1515 for λ = 1. Note that LC does not depends on the initial

value x for x ≤ x∗G and that LC increases to (r− µ)/(r+ λ− µ) for x → ∞. As expected

from the expression (r − µ)/(r + λ− µ), LC can be significantly high for plausible levels

of 1/λ when r − µ is quite large (say, negative µ10). By Proposition 2, I can easily show

that limλ→0 LC = 1, limλ→0 TD = 1/β, and limλ→∞ LC = limλ→∞ TD = 0.

Figure 3 shows VG(x), ROVG(x), x
∗
G, x

ROV
G , LC, and TD for varying levels of σ. The

parameter values other than σ are set in Table 1. It is well known that ROVG(x) and

xROV
G monotonically increase in σ because a higher σ increases the value of deferring

investment (e.g., Dixit and Pindyck (1994)). In the NPV model, volatility has no effect

on the firm value and investment threshold. Taking into account that the baseline model

is intermediate between the ROV and NPV models, I can conjecture that the volatility

effects in the baseline model are weaker than in the ROV model. Figure 3 verifies this

conjecture. Indeed, both VG(x) and x∗G monotonically increase in σ, but the increases

10If I set µ = −0.05 in Table 1, I have LC = 0.1428 and TD = 0.1079.
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are moderate compared to ROVG(x) and xROV
G (see the top panels). As a result, the

impacts of illiquidity, i.e., LC and TD, monotonically increase in σ (see the bottom

panels). By (12), I can easily show that limσ→0 x
∗
i = xNPV

i (r + λ− µ)/(r + λ) for µ > 0

and limσ→0 x
∗
i = xNPV

i for µ ≤ 0. I also have limσ→∞ x∗i = xNPV
i (r + λ − µ)/(r − µ),

which is sharply contrasted with the unbounded threshold limσ→∞ xROV
i = ∞ in the

ROV model. Then, I can show that limσ→0 LC = 1 − ((r + λ)/(r + λ − µ))r/µλ/(r +

λ), limσ→0 TD = µ/(r+ λ) for µ > 0 and limσ→0 TD = 0 for µ ≤ 0. I can also show that

limσ→∞ LC = (r − µ)/(r + λ− µ), limσ→∞ TD = 1.

3.4 Two types of projects arriving randomly

Throughout this paper, I investigate illiquidity of investment opportunities. Although I

focus on exclusive investment projects, projects might be different from each others. For

instance of a merger and acquisition option with illiquidity of searching and matching,

the acquiring firm might meet different targets, where the synergies in the merger and

acquisition vary over targets. It is important to see how the baseline results in Section 3.3

change with multiple project types. To do so, this section extends the baseline model to a

case in which two types of projects arrive randomly.11 To be more precise, I assume that

projects arrive following a Poisson process with the arrival rate λ and that project type

i equals G at probability q and equals B at probability 1 − q by an independent draw.

The firm can choose between acceptance and rejection after it observes project type i.

I denote by W (x) the firm value when no project is feasible and by W̃i(x) (i = G,B)

the firm values when a project i arrives. I have W̃i(x) = max{πi(x),W (x)} (i = G,B)

because the firm value W̃i(x) becomes W (x) when a feasible project i is forgone.

As in Section 3.3, I can show that W̃i(x) (i = G,B) are continuous and the optimal

policy is a threshold policy. For the proof, refer to Appendix B. To be more precise, the

stopping regions S∗∗
i = {x ∈ R+ | W̃i(x) = πi(x)} (i = G,B) are expressed as

S∗∗
i = {x ∈ R+ | x ≥ x∗∗i } (i = G,B) (21)

Because of NPVG(x) ≤ W̃G(x) ≤ ROVG(x), the good-type investment threshold x∗∗G

exists between xNPV
G and xROV

G . Because of W̃B(x) ̸≤ ROVB(x), the bad-type threshold

x∗∗B (≥ max(x∗∗G , xNPV
B )) can be infinite, i.e., S∗∗

B can be empty. I will later clarify the

11I can similarly derive the solution in the illiquid model with a finite number of project types. Section 4.4

examines a continuum of project types. In Baldwin and Meyer (1979) and Baldwin (1982), project types has a

continuous distribution, although the models do not include the state process, i.e., X(t).
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condition under which S∗∗
B is empty. The value functions W̃i(x) (i = G,B) are expressed

as

W̃i(x) =

 W (x) (x < x∗∗i ),

πi(x) (x ≥ x∗∗i )
(i = G,B). (22)

If S∗∗
B is empty, I can derive W (x) in the same manner as in Proposition 1. Suppose

that x∗∗B is finite. As in Section 3.3, for the threshold policy, the expectation W (x) is a

piecewise C2 function and satisfies ODEs:

µxW ′(x) + 0.5σ2x2W ′′(x) = rW (x) (0 < x < x∗∗G ), (23)

µxW ′(x) + 0.5σ2x2W ′′(x) + λq(πG(x)−W (x)) = rW (x) (x∗∗G < x < x∗∗B ), (24)

µxW ′(x) + 0.5σ2x2W ′′(x) + λ(π̄(x)−W (x)) = rW (x) (x > x∗∗B ), (25)

where I define π̄(x) = qπG(x) + (1− q)πB(x). In (24), λq(πG(x)−W (x)) corresponds to

the fact that W (x) changes to πG(x) with probability λqdt in infinitesimal time interval

dt, and in (25), λ(π̄(x)−W (x)) corresponds to the fact that W (x) changes to π̄(x) with

probability λdt in dt. As in Vi(x) in Section 3.3, W (x) is continuously differentiable at

thresholds x∗∗i (i = G,B) because of Theorem 4.4.9 in Karatzas and Shreve (1998). By

solving (23)–(25) with the boundary conditions which will be specified in the proof, I

have the following proposition. In the proposition, I define ā = qaG + (1 − q)aB and

Ī = qIG + (1 − q)IB, and I denote (8), (11), and (12) by ṼG(x;λ), VG(x;λ), and x∗G(λ),

respectively, to indicate argument λ.

Proposition 3 Suppose that
r − µ

λq
+ 1 ≤ aG

aB
. (26)

The firm has no possibility of investing in a project B. The firm value W (x) is given by

W (x) = VG(x;λq).

The investment thresholds x∗∗i (i = G,B) are given by

x∗∗G = x∗G(λq), x∗∗B = ∞.

Suppose that (26) does not hold. Assume that there exists a unique solution (xG, xB)

satisfying xNPV
G ≤ xG < xB and

λqaGxG
(r − µ)(r + λq − µ)

+ βλqB2x
βλq

G + γλqB3x
γλq
G = βπG(xG), (27)

λqaGxB
(r − µ)(r + λq − µ)

+ βλqB2x
βλq

B + γλqB3x
γλq
B =

λāxB
(r − µ)(r + λ− µ)

+ γλC3, (28)
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where Bi (i = 1, 2, . . . , 4) and Ci (i = 1, 2, 3) are defined by

B1 =
πG(xG)

xβG
,

B2 =
x
γλq
G C2 − x

γλq
B C1

x
βλq

B x
γλq
G − x

βλq

G x
γλq
B

,

B3 =
x
βλq

B C1 − x
βλq

G C2

x
βλq

B x
γλq
G − x

βλq

G x
γλq
B

,

B4 =
C3

xγλB
,

C1 =
aGxG

r + λq − µ
− rIG

r + λq
,

C2 = πB(xB)−
λqaGxB

(r − µ)(r + λq − µ)
+

λqIG
r + λq

,

C3 = πB(xB)−
λāxB

(r − µ)(r + λ− µ)
+

λĪ

r + λ
.

The investment thresholds x∗∗i (i = G,B) are the above solution, i.e.,

x∗∗G = xG, x∗∗B = xB.

The firm value W (x) is given by

W (x) =


B1x

β (x < x∗∗G ),

λqaGx

(r − µ)(r + λq − µ)
− λqIG

r + λq
+B2x

βλq +B3x
γλq (x ∈ [x∗∗G , x∗∗B )),

λāx

(r − µ)(r + λ− µ)
− λĪ

r + λ
+B4x

γλ (x ≥ x∗∗B ).

(29)

Proof. Assume that (26) holds. In this case, I can show that VG(x;λq) > πB(x) (x ∈ R+)

as follows. For x < x∗G(λq), I have

VG(x;λq) = ṼG(x;λq) > πG(x) ≥ πB(x). (30)

By A2,i > 0 in (11), for x ≥ x∗G(λq), I have

VG(x;λq) >
λqaGx

(r − µ)(r + λq − µ)
− λqIG

r + λq

≥ aBx

r − µ
− λqIG

r + λq
(31)

> πB(x), (32)

where (31) follows from (26). By (30) and (32), I have VG(x;λq) > πB(x) (x ∈ R+).

Then, I have

W̃B(x) ≥ W (x) ≥ VG(x;λq) > πB(x) (x ∈ R+),

13



which implies that S∗∗
B is empty. The firm has no possibility of investing in a project B,

and hence, the problem is reduced to the problem when projects G arrive according to a

Poisson process with the arrival rate λq. By Proposition 1, I have W (x) = VG(x;λq) and

x∗∗G = x∗G(λq).

Next, assume that (26) does not hold. I can readily see that VG(x
′;λq) < πB(x

′) for a

sufficiently large x′. This implies that S∗∗
B is not empty. Indeed, if S∗∗

B is empty, I have

W̃B(x
′) = max{πB(x′),W (x′)} = W (x′) = VG(x

′;λq),

which contradicts the inequality VG(x
′;λq) < πB(x

′). Then, two finite thresholds x∗∗i (i =

G,B) exist, and hence, I have ODEs (23)–(25). I have the boundary conditions

lim
x→0

W (x) = 0 (33)

lim
x→∞

W (x)

πB(x)
< ∞ (34)

W (x∗∗i ) = πi(x
∗∗
i ) (i = G,B), (35)

along with the continuous differentiability of the continuous differentiability of W (x) at

x∗∗i (i = G,B). Conditions (33) and (34) are trivial, and condition (35) follows from

(22) and the continuity of W̃i(x) (i = G,B). The continuous differentiability of W (x) at

x∗∗i (i = G,B) follows from Theorem 4.4.9 in Karatzas and Shreve (1998). ODE (23) with

boundary conditions (33) and (35), ODE (24) with boundary condition (35), and ODE

(25) with boundary conditions (34) and (35) lead to the first, second, and third rows in

(29), respectively. Because of the continuous differentiability of W (x) at x∗∗i (i = G,B),

the investment thresholds x∗∗i (i = G,B) satisfy (27) and (28). The proof is complete. □

The solution varies according to whether (26) holds or not. In the former case, the

firm always ignores a project B, and hence, the solution is the same as in Proposition 1

with i = G and the arrival rate λq. I can see from (26) that higher aG/aB, λ, q, and lower

r − µ are likely to lead this case.

When (26) does not hold, the firm takes the following policy. The firm forgoes any

project when it arrives at time t satisfying X(t) < x∗∗G . The firm undertakes a project

G if it arrives at time t satisfying X(t) ≥ x∗∗G . Notably, the firm accepts only a project

G for X(t) ∈ [x∗∗G , x∗∗B ). The firm undertakes even a project B if it arrives at time t

satisfying X(t) ≥ x∗∗B . As explained after Proposition 1, the investment time is later

than the first hitting time to the threshold. The paths of X(t) and the Poisson process

determine whether the firm invests in a project G or B. This unpredictability is a key

difference from the ROV model in which the firm invests in a project G at the first hitting

14



time. Due to illiquidity of investment opportunities, unlike in the ROV model, the firm

can potentially invest in a project B.

Although I cannot derive closed-form expressions of x∗∗G and x∗∗B , I have the analytical

expression of W (x) in Proposition 3. In (29), the first row stands for the value of waiting

when the option value is higher than the good-type investment payoff, i.e, W (x) > πG(x).

The second row stands for the value of waiting when the option value is between the

bad- and good-type investment payoffs, i.e, πB(x) < W (x) ≤ πG(x). Then, the firm

wishes to immediately invest in a project G, but it cannot do so because of illiquidity of

investment opportunities. I can decompose the second row in (29) as follows. The first

and second terms represent the expected payoff of investing whenever a project G arrives.

B2x
βλq +B3x

γλq represents the value of the option to revise this investment policy when

X(t) passes either x∗∗G or x∗∗B before the arrival of a project G. The last row in (29) stands

for the value of waiting when the option value is lower than the bad-type investment

payoff, i.e, W (x) ≤ πB(x). The first and second terms of this equation represent the

expected payoff of investing whenever a project arrives regardless of its type. The last

term B4x
γλ represents the value of the option to revise this investment policy when X(t)

passes x∗∗B before the arrival of a project.

Next, I examine the effects of liquidity λ on the investment thresholds and firm values.

I will show the following results in the limiting cases under the assumptions in Proposition

3.

Proposition 4 W (x), W̃i(x), and x∗∗i monotonically increase in λ.

lim
λ→0

W (x) = 0, lim
λ→0

W̃i(x) = NPVi(x), lim
λ→0

x∗∗i = xNPV
i (i = G,B).

When λ → ∞, (26) is satisfied, and

lim
λ→∞

W (x) = lim
λ→∞

W̃G(x) = lim
λ→∞

W̃B(x) = ROVG(x), lim
λ→∞

x∗∗G = xROV
G , lim

λ→∞
x∗∗B = ∞.

Proof. By definition of the problem, W (x) and W̃i(x) monotonically increase in the

arrival rate λ. Then, the monotonicity of x∗∗i follows from x∗∗i = min{x ∈ R+ | W̃i(x) =

πi(x)}. First, consider the limiting case of λ → 0. (26) is not satisfied as λ → 0. In the

limiting case, I have

B2x
∗∗β
G +B3x

∗∗γ
G = πG(x

∗∗
G ) (36)

by W (x∗∗G ) = πG(x
∗∗
G ) (see (29)) and

βB2x
∗∗β
G + γB3x

∗∗γ
G = βπG(x

∗∗
G ) (37)
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by (27). By (36) and (37), I have (β − γ)B3x
∗∗γ
G = 0. Because of x∗∗G ≥ xNPV

G > 0, I have

B3 = 0. Similarly, I have

B2x
∗∗β
B +B3x

∗∗γ
B = πB(x

∗∗
B ) (38)

by W (x∗∗B ) = πB(x
∗∗
B ) (see (29)) and

βB2x
∗∗β
B + γB3x

∗∗γ
B = γπB(x

∗∗
B ) (39)

by (28). By (38) and (39), I have (β − γ)B2x
∗∗β
B = 0. Because of x∗∗B > x∗∗G > 0, I have

B2 = 0. By B2 = B3 = 0, (36), and (38), I have πG(x
∗∗
G ) = πB(x

∗∗
B ) = 0. Then, I have

x∗∗i = xNPV
i (i = G,B) and B1 = B4 = 0.

Next, consider the limiting case of λ → ∞. Because of aG/aB > 1 and limλ→∞(r −

µ)/λq = 0, (26) is satisfied in the limiting case. Then, by Proposition 3, I have x∗∗G =

x∗G(x;λq), W (x) = W̃B(x) = VG(x;λq), and W̃G(x) = ṼG(x;λq). The limiting results

follow from Proposition 2. The proof is complete. □

Proposition 4, as well as Proposition 2, shows that the illiquidity solution fills the gaps

between the NPV and ROV solutions. Indeed, as λ decreases (increases), x∗∗i ,W (x), and

W̃i(x) approach the NPV (ROV) solutions. When λ is sufficiently high, (26) holds, and

hence the firm always forgoes a project B and invests only in a project G. This result is

in line with that of the ROV model, in which the firm always invests in a project G when

both projects G and B are feasible. In contrast, for a lower λ, the firm can invest in a

project B if it is feasible.

Lastly, I examine the impacts of illiquidity on the investment thresholds and firm

values in numerical examples. Figure 4 shows W (x), ROVG(x), x
∗∗
G , x∗∗B , and xROV

G along

with the liquidity cost LC = (ROVG(x) − W (x))/ROVG(x) and the threshold decrease

TD = (xROV
G − x∗∗G )/xROV

G for varying levels of 1/λ. The parameter values other than λ

are set in Table 1. For 1/λ ≤ 0.5, (26) is satisfied, and hence x∗∗B = ∞ holds. As shown

in Proposition 4, W (x), x∗∗G , and x∗∗B monotonically decrease in 1/λ. As in Figure 2, I

find that the impact of illiquidity is greater on the investment thresholds than on the firm

value. Indeed, I have LC = 0.0112, TD = 0.2142, and x∗∗B = 1.6409 for λ = 1. Notably,

I can see from Figure 4 that x∗∗B decreases much more sharply than x∗∗G for 1/λ ≈ 0.5

because x∗∗B , unlike x∗∗G , becomes infinity for 1/λ ≤ 0.5. In the absence of illiquidity of

investment opportunities, the firm can always choose the best investment project, but

with illiquidity, the firm might give up waiting for the best project and invest in the

inferior project. Thus, the investment threshold for the inferior project depends greatly

on the degree of illiquidity. I will verify this result in a case of continuous project types

in Section 4.4.
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LC and TD in Figure 4 are higher than those in Figure 2 because a project is B

at probability 0.5 in this example. Note that LC does not depends on the initial value

x for x ≤ x∗∗G and that LC increases to (r − µ)/(r + λq − µ) for 1/λ ≤ 0.5 and (r +

λ − µ − λā/aG)/(r + λ − µ) for 1/λ > 0.5 as x → ∞. LC can be significantly high for

plausible levels of 1/λ when r− µ is quite large.12 By Proposition 4, I can also show that

limλ→0 LC = 1, limλ→0 TD = 1/β, and limλ→∞ LC = limλ→∞ TD = 0.

Figure 5 shows W (x), ROVG(x), x
∗∗
G , x∗∗B , and xROV

G for varying levels of σ. The pa-

rameter values other than σ are set in Table 1. Note that (26) does not hold, and hence,

I have finite x∗∗B . The impacts of σ on W (x) and x∗∗G are weaker than those in the ROV

model because the illiquid model is intermediate between the ROV and NPV models.

Then, LC and TD in Figure 5 monotonically increase in σ. These findings are similar

to those of the baseline model (cf. Figure 3). In conclusion, I argue that the effects

of illiquidity of investment opportunities increase with a higher volatility of the project

payoff.

Although I cannot derive any closed-form expression of limσ→0 x
∗∗
G for µ > 0, it follows

from (29) that limσ→0 x
∗∗
G = xNPV

G for µ ≤ 0 and limσ→∞ x∗∗i = xNPV
i (r+λ−µ)/(r+λ−

µ − λā/ai) (i = G,B). Then, I can show that limσ→0 TD = 0 for µ < 0, limσ→∞ LC =

(r + λ− µ− λā/aG)/(r + λ− µ), and limσ→∞ TD = 1.

4 Extensions

4.1 Search cost

In this subsection, I show that the same analysis as in Sections 3.3 and 3.4 can be applied

to the illiquid model with cost flows of searching for investment opportunities. In mergers

and acquisitions, the acquiring firm might continue costly searches and negotiations until

it succeeds. A financially constrained firm might continue to apply for government grants

until it receives sufficient funds. To capture these situations, in addition to the baseline

model, I assume that the firm incurs cost flows, denoted by c, when searching for a project.

The firm can freely suspend the search and switch between search and suspension. I use

subscript c to stand for the case with search cost c, instead of omitting project type i.

As in Section 3.3, I can show that a threshold policy is optimal, and I have two ODEs.

ODE (9) does not change because the firm does not search a project for X(t) in the

12If I set µ = −0.05 in Table 1, I have LC = 0.2143 and TD = 0.124.
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rejection region. ODE (10) changes to

µxV ′
c (x) + 0.5σ2x2V ′′

c (x) + λ(π(x)− Vc(x))− c = rVc(x) (x > x∗c) (40)

because the firm has to pay cost flows c in the acceptance region. As in the proof of

Proposition 1, by solving ODEs (9) and (40) with the continuous differentiability condi-

tion at x∗c , as well as the boundary conditions limx→0 Vc(x) = 0, limx→∞ Vc(x)/π(x) <

∞, Vc(x
∗
c) = π(x∗c), I can show the following proposition.

Proposition 5

Vc(x) =


A1cx

β (x < x∗c),

λax

(r − µ)(r + λ− µ)
− λI + c

r + λ
+A2cx

γλ (x ≥ x∗c),
(41)

where the investment threshold x∗c and coefficients A1c, A2c are

x∗c =
(r − µ)(r + λ− µ)(((β − γλ)r + βλ)I − γλc)

a(r + λ)((β − γλ)(r − µ) + (β − 1)λ)
, (42)

A1c =
π(x∗c)

x∗βc
,

A2c =
1

x∗γλc

(
ax∗c

r + λ− µ
− rI + c

r + λ

)
.

I omit the proof of Proposition 5 because it can be proved in the same fashion as in the

proof of Proposition 1. As in Proposition 1, the firm invests in a project only when it

arrives at time t satisfying X(t) ≥ x∗c . Note that −γλc > 0 of the denominator in (42).

Because of cost flows c, the investment threshold x∗c is higher than that of the baseline

model. The upper equation in (41) stands for the value of waiting when the option value

is higher than the investment payoff, i.e, Vc(x) > π(x). The lower equation in (41) stands

for the value of waiting when the option value is lower than the investment payoff, i.e,

Vc(x) ≤ π(x). The first and second terms of the lower equation stand for the expected

payoff of continuing search and investing whenever a project is found. The last term

A2cx
γλ stands for the value of the option to suspend search when X(t) passes x∗c before

the arrival of a project. I can show similar results to Propositions 2–4, although I do not

redundantly present them. To summarize, the main results in Sections 3.3 and 3.4 remain

unchanged with the presence of search cost.

4.2 The relationship with the regime-switching model

This subsection reveals the relationship between the baseline model in Section 3.3 and the

regime-switching model of Hackbarth, Miao, and Morellec (2006). I consider the following
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regime-switching model with two regimes. In one of the regimes (say, boom), the firm

can invest in a project at an arbitrary time, whereas in the other regime (say, bust), the

firm has no chance to invest in a project. For notational simplicity, I skip the subscript

i for the project type. The project payoff function π(x) is the same as in Section 3. A

bust regime switches to a boom regime following a Poisson process with the arrival rate

λ(> 0), whereas a boom regime switches to a bust regime following a Poisson process

with the arrival rate η(> 0). I assume that the Poisson processes are independent of

the state process X(t). I denote by Vr(x) and Ṽr(x) the firm values in bust and boom

regimes, respectively. The subscript r stands for the regime-switching model. The regime-

switching model can be regarded as a simplified version of Hackbarth, Miao, and Morellec

(2006)’s model in which cash flows from investment depend on the regimes.

As in Section 3.3 (see Hackbarth, Miao, and Morellec (2006) and Bensoussan, Yan,

and Yin (2012) for more general cases), the following ODEs hold:

µxV ′
r (x) + 0.5σ2x2V ′′

r (x) + λ(Ṽr(x)− Vr(x)) = rVr(x), (x < x∗r), (43)

µxV ′
r (x) + 0.5σ2x2V ′′

r (x) + λ(π(x)− Vr(x)) = rVr(x), (x > x∗r), (44)

µxṼr
′
(x) + 0.5σ2x2Ṽr

′′
(x) + η(Vr(x)− Ṽr(x)) = rṼr(x) (x < x∗r), (45)

where x∗r is the investment threshold in a boom regime. The terms λ(Ṽr(x) − Vr(x)) in

(43) and λ(π(x)− Vr(x)) in (44) mean that Vr(x) changes to Ṽr(x) and π(x) when a bust

regime switches to a boom regime. The term η(Vr(x) − Ṽr(x)) in (45) means that Ṽr(x)

changes to Vr(x) when a boom regime switches to a bust regime. The boundary conditions

are limx→0 Vr(x) = 0, limx→∞ Vr(x)/π(x) < ∞, limx→0 Ṽr(x) = 0, Ṽr(x) = π(x) (x ≥ x∗r),

and the the continuous differentiability of Vr(x) and Ṽr(x) at x = x∗r .
13

As in the proof of Proposition 1, by solving ODEs (43)–(45) with the conditions above,

I can show the following proposition.

13The continuous differentiability of Ṽr(x) at x = x∗
r corresponds to the smooth pasting condition in Dixit

and Pindyck (1994), although the continuous differentiability of Vr(x) at x = x∗
r follows from Theorem 4.4.9

in Karatzas and Shreve (1998). See also Hackbarth, Miao, and Morellec (2006) and Bensoussan, Yan, and Yin

(2012).
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Proposition 6

Vr(x) =


A1rx

β − λ

η
A2rx

βλ+η (x < x∗r),

λax

(r − µ)(r + λ− µ)
− λI

r + λ
+A3rx

γλ (x ≥ x∗r),
(46)

Ṽr(x) =

 A1rx
β +A2rx

βλ+η (x < x∗r),

π(x) (x ≥ x∗r),
(47)

where the investment threshold x∗r and coefficients A1r, A2r, A3r are

x∗r =
(r + λ− µ)(β(r + λ)(βλ+ηη + λ(βλ+η − γλ))− γλη(βλ+ηr + βλ))xNPV

(r + λ)(λ(β − 1)(βλ+η − γλ)(r + λ+ η − µ) + η(β − γλ)(βλ+η − 1)(r − µ))
,

A1r =
1

(βλ+η − β)x∗βr

(
(βλ+η − 1)ax∗r

r − µ
− βλ+ηI

)
,

A2r =
1

(βλ+η − β)x
∗βλ+η
r

(
βI − (β − 1)ax∗r

r − µ

)
,

A3r =
1

x∗γλr

(
A1rx

∗β
r − λ

η
A2rx

∗βλ+η
r − λax∗r

(r − µ)(r + λ− µ)
+

λI

r + λ

)
.

I omit the proof of Proposition 6 because the calculation is lengthy but can be done in

the same manner as in the proof of Proposition 1. Notably, Proposition 6 shows the

closed-form solution, although Hackbarth, Miao, and Morellec (2006) do not derive any

closed-form solution. In a boom regime, the firm invests in the project at time t satisfying

X(t) ≥ x∗r . The investment time is either the first hitting time to x∗r or a boom arrival

time t satisfying X(t) ≥ x∗r .

The firm value in a bust regime, Vr(x) in (46), is similar to Vi(x) in (11) because the

firm cannot invest in the project in a bust regime. The upper equation in (46) stands

for the value of waiting when the option value is higher than the investment payoff, i.e,

Vr(x) > π(x). Because of the transition probability from a bust to a boom, unlike in (11),

it has an extra term A2rx
βλ+ηλ/η. The lower equation in (46) stands for the value of

waiting when the option value is lower than the investment payoff, i.e, Vr(x) ≤ π(x). The

first and second terms of the lower equation stand for the expected payoff of investing

whenever a boom regime arrives. The last term A3,rx
γλ stands for the value of the option

to change the policy when X(t) passes x∗r .

On the other hand, the firm value in a boom regime, Ṽr(x) in (47) is similar to ROVi(x)

in (5) because the firm can invest in the project at an arbitrary time in a boom regime.

The upper equation in (47) stands for the value of waiting when the option value is higher

than the investment payoff, i.e, Vr(x) > π(x). Because of the transition probability from
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a boom to a bust, unlike in (5), it has an extra term A2rx
βλ+η . The lower equation in

(47) represents the investment payoff.

By virtue of the closed-form expression of x∗r , I can directly show that limη→0 x
∗
r =

xROV and limη→∞ x∗r = x∗. Then, I can easily show the following proposition.

Proposition 7 Vr(x) and Ṽr(x), and x∗r monotonically decrease in η.

lim
η→0

Ṽr(x) = ROV (x), lim
η→0

x∗r = xROV

lim
η→∞

Vr(x) = V (x), lim
η→∞

Ṽr(x) = Ṽ (x), lim
η→∞

x∗r = x∗.

Proposition 7 shows that the regime-switching model is intermediate between the ROV

model and the baseline model in Section 3.3. Indeed, the solution of the regime-switching

model converges to that of the ROV model for lower transition probability from a boom

to a bust, η, and converges to that of the baseline model for a higher η. Intuitively, with

a higher η, a boom ends sooner, and hence, the value of deferring investment within a

boom regime decreases. In the limiting case of η → ∞, the firm has to decide whether

or not to invest as soon as a boom regime arrives, which leads to the same solution as

the baseline solution in Section 3.3. Thus, the regime-switching model is regarded as an

extended model of the illiquid model in Section 3.3.14

4.3 Put-type option

Although this paper has examined call-type real options so far, I can also derive the solu-

tions for put-type real options, such as asset sales, liquidation, and bankruptcy options, in

the same fashion as in Sections 3.3 and 3.4. This subsection examines the stylized model

below. Suppose that a firm has an illiquid and indivisible asset that generates continu-

ous streams of cash flows aX(t), where a is a positive constant. The firm occasionally

meets acquirers who want to buy the asset at a constant price I(> 0) and optimizes

the asset sales policy.15 Assume that the acquirers’ arrival process is a Poisson process

with the arrival rate λ. If the firm rejects an acquirer’s offer, the firm has to wait until

another acquirer arrives. The Poisson arrival process stands for illiquidity of asset sales

opportunities.

14Similarly, the regime-switching model with three regimes can be regarded as an extension of the illiquid

model with two project types in Section 3.4.
15I can similarly derive the closed-form solution when the sales price is expressed as a linear function of X(t).
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As in Section 3.3, I can show that a threshold policy is optimal and that the firm’s

asset value Vp(x) satisfies

µxV ′
p(x) + 0.5σ2x2V ′′

p (x) + λ(I − Vp(x)) + ax = rV (x) (x < x∗p), (48)

µxV ′
p(x) + 0.5σ2x2V ′′

p (x) + ax = rV (x) (x > x∗p), (49)

where x∗p denotes the asset sales threshold below which the firm wishes to sell the asset.

The subscript p stands for the put-type option. Note that ax in (48) and (49) corresponds

to cash flows from the asset, while λ(I−Vp(x)) corresponds to the fact that Vp(x) changes

to I with probability λdt in infinitesimal time interval dt.

As in the proof of Proposition 1, by solving ODEs (48) and (49) with the continu-

ous differentiability condition at x∗p along with the boundary conditions limx→0 Vp(x) <

∞, limx→∞ Vp(x)/ax < ∞, Vp(x
∗) = I, I can show the following proposition.

Proposition 8

Vp(x) =


ax

r + λ− µ
+

λI

r + λ
+A2px

βλ (x ≤ x∗p),

ax

r − µ
+A1px

γ (x > x∗p),
(50)

where the asset sales threshold x∗ and coefficients A1p, A2p are

x∗p =
(r − µ)(r + λ− µ)((γ − βλ)r + γλ)I

a(r + λ)((γ − βλ)(r − µ) + (γ − 1)λ)
,

A1p =
1

x∗γp

(
I −

ax∗p
r − µ

)
,

A2p =
1

x∗βλ
p

(
rI

r + λ
−

ax∗p
r + λ− µ

)
.

The proof of Proposition 8 can be done in the same manner as in the proof of Proposition 1.

The firm liquidates the asset only when an acquirer arrives at time t satisfying X(t) ≤ x∗p.

I can easily show that the asset sales threshold is higher than that of the liquid model.

In other words, lower asset liquidity decreases the option value of waiting, and hence, the

firm more eagerly accepts an acquirer’s offer.

The lower equation represents the value of waiting when the firm’s asset value is higher

than the sales proceeds, i.e, Vp(x) > I. More precisely, the first term represents the asset

value without the asset sales opportunity, and the second term represents the value of the

asset sales option. The upper equation in (50) stands for the value of waiting when the

asset value is lower than the sales proceeds, i.e, Vp(x) ≤ I. The first and second terms of

the upper equation stand for the expected payoff when the firm sells the asset whenever
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an acquirer arrives, whereas the last term A2px
βλ stands for the value of the option to

suspend the asset sales at time t satisfying X(t) > x∗p. I can show results analogous to

Proposition 2-7, although I do not redundantly present them. Thus, for put-type real

options, the illiquid model also fills the gaps in the NPV, ROV, and regime-switching

models.

4.4 A continuum of project types

This subsection extends the illiquid model with two project types in Section 3.4 to a

case with a continuum of project types. Suppose that projects with payoff πk(x) =

akx/(r − µ) − Ik (k ∈ [0, 1]) may arrive, where I define ak = kaG + (1 − k)aB and

Ik = kIG + (1 − k)IB. Then, πk(x) increases in k from the the worst type k = 0 (i.e.,

project B in Section 3.4) to the best type k = 1 (i.e., project G). For simplicity, I assume

that project type k follows a uniform distribution on [0, 1], independently of X(t).

Although I cannot analytically derive the solution, I can numerically compute the

solution to ODE

µxU ′(x) + 0.5σ2x2U ′′(x) + λ(1− k∗(x))(π0.5+0.5k∗(x)(x)− U(x)) = rU(x), (51)

where U(x) denotes the firm value when no project is feasible, and I define k∗(x) =

min{k ∈ [0, 1] | U(x) ≤ πk(x)}. If U(x) > π1(x) holds, I artificially define k∗(x) = 1

to remove the term λ(1 − k∗(x)). The type k∗(x) stands for the lowest acceptable type

for x. In other words, the firm undertakes only a project of type k ≥ k∗(X(t)) and

forgoes a project of type k < k∗(X(t)) when it arrives at time t. From the opposite

perspective, the investment threshold for type k becomes the inverse function k∗−1(k). In

(51), λ(1−k∗(x))(π0.5+0.5k∗(x)(x)−U(x)) corresponds to the fact that the firm value U(x)

changes to π0.5+0.5k∗(x)(x) with probability λ(1 − k∗(x))dt in infinitesimal time interval

dt. Note that π0.5+0.5k∗(x)(x) and λ(1−k∗(x))dt represent the mean payoff and the arrival

probability of the acceptable types, respectively.

Figure 6 shows the lowest acceptable type k∗(x) for 1/λ = 0.6, 0.8, and 1. I can see

from the figure that lower liquidity decreases k∗(x). Lower liquidity decreases the value

of waiting for a superior project, and the firm accepts a project more eagerly. This result

is consistent with Proposition 3 (cf. (26)). In the figure, I also find that the differences

of the three lines are larger for lower k∗(x). This means that the impact of illiquidity on

the investment threshold for type k, i.e., k∗−1(k), decreases in k. This result shows the

robustness of Section 3.4’s result that the investment threshold for an inferior project is
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more affected by the degree of illiquidity. Because the results of LC and TD and the

comparative statics results of σ are similar to those of Sections 3.3 and 3.4, I omit the

figures.

5 Conclusion

This paper investigated the effects of illiquidity of investment opportunities on investment

decisions. I derived the firm value and investment threshold in the closed forms when

investment opportunities follow a Poisson process. Lower liquidity decreases the option

value of waiting and the hurdle rate for investment. For cash flows with a positive growth

rate, the impact of illiquidity on the investment threshold is greater than on the firm

value. A higher cash flow volatility amplifies the impacts of illiquidity on the firm value

and investment threshold.

Furthermore, I extended the results to a case with two types of projects arriving

randomly. Although I could not derive a closed-form solution, I derived the analytical

solution. When the profitability gap between the two types, liquidity, and the probability

of the good-type appearance are higher, the firm is more likely to accept only a good-

type project and forgo a bad-type project. When these factors are low, the firm accepts

only a good-type project for intermediate levels of the state variable and accepts even a

bad-type project for sufficiently high levels of the state variable. The impact of illiquidity

on the bad-type investment threshold is much greater than on the good-type investment

threshold.

I also proved that the solution of the illiquid model converges to those of the NPV and

ROV models for lower and higher liquidity, respectively. I also showed that the solution

agrees with the limit of the corresponding regime-switching model. Thus, this paper fills

the gaps in the NPV, ROV, and regime-switching models in terms of illiquidity of option

exercise opportunities. The proposed models and solutions can be a new framework to

study real options with illiquidity of option exercise opportunities. Potential applications

include but are not limited to mergers and acquisitions with illiquidity of searching and

matching, illiquid asset sales, and corporate investment with illiquidity of fundraising.
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A The continuity of Ṽi(x) and the optimality of a

threshold policy

First, we will show

0 ≤ Ṽi(x+∆)− Ṽi(x) ≤
∆ai
r − µ

(x,∆ ∈ R+) (52)

as follows. We denote the set of Ft-stopping times by T . We also denote by T P
λ the

subset of T restricted to the Poisson arrival times with the arrival rate λ. Assume that

the Poisson process arrives at time t = 0. For x,∆ ∈ R+, I have

Ṽi(x+∆)

= sup
τ∈T P

λ

E[e−rτ

(
ai(x+∆)e(µ−0.5σ2)τ+σB(τ)

r − µ
− I

)
]

≤ sup
τ∈T P

λ

E[e−rτ

(
aixe

(µ−0.5σ2)τ+σB(τ)

r − µ
− I

)
] + sup

τ∈T P
λ

E[e−rτ

(
ai∆e(µ−0.5σ2)τ+σB(τ)

r − µ

)
]

≤ sup
τ∈T P

λ

E[e−rτ

(
aixe

(µ−0.5σ2)τ+σB(τ)

r − µ
− I

)
] + sup

τ∈T
E[e−rτ

(
ai∆e(µ−0.5σ2)τ+σB(τ)

r − µ

)
]

=Ṽi(x) +
ai∆

r − µ
.

Similarly, I can easily show that Ṽi(x+∆) ≥ Ṽi(x) by e−rτai∆e(µ−0.5σ2)τ+σB(τ)/(r−µ) ≥ 0.

Then, I have (52).

Note that (52) shows the continuity of the value function Ṽi(x). By the continuity

of Ṽi(x) and πi(x), S
∗
i = {x ∈ R+ | Ṽi(x) = πi(x)} is a closed set. Because Ṽi(x) ≤

ROVi(x) = πi(x) holds for x ≥ xROV
i , S∗

i includes {x ∈ R+ | x ≥ xROV
i }. Because of

Ṽi(x) ≥ 0, S∗
i is included by {x ∈ R+ | x ≥ xNPV

i }. Therefore, by the closeness of S∗
i ,

min{x ∈ S∗
i } exists between xNPV

i and xROV
i . I denote this minimum by x∗i . I can show

that the optimal policy is the threshold policy, i.e., S∗
i = {x ∈ R+ | x ≥ x∗i } as follows.

Indeed, by (52), for x > x∗i , I have

Ṽi(x) ≤ Ṽi(x
∗
i ) +

(x∗i − x)ai
r − µ

= πi(x
∗
i ) +

(x∗i − x)ai
r − µ

= πi(x),

which implies x ∈ S∗
i . The proof is complete. □

Although this paper presented the simple proof in the standard manner (e.g., see

Detemple (2006)), Perez and Yamazaki (2018) proved the properties in a more general

case in a different manner.
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B The continuity of W̃i(x) and the optimality of

a threshold policy

In the same fashion as in Appendix A, we can show

0 ≤ W̃G(x+∆)− W̃G(x) ≤
∆aG
r − µ

(x,∆ ∈ R+) (53)

and by (53), I can show the continuity of W̃i(x), the optimality of a threshold policy, and

the existence of the optimal threshold x∗∗G ∈ [xNPV
G , xROV

G ].

Next, suppose that (26) does not hold. Then, I have

aB − aGλq

r + λq − µ
> 0. (54)

I will show

0 ≤ W̃B(x+∆)− W̃B(x) ≤
∆aB
r − µ

(x,∆ ∈ R+). (55)

as follows. Below, I assume that the Poisson process arrives at time t = 0 with i(0) = B,

where i(τ) denotes the feasible project type at the Poisson arrival time τ .

W̃B(x+∆)

= sup
τ∈T P

λ

E[e−rτ

(
ai(τ)(x+∆)e(µ−0.5σ2)τ+σB(τ)

r − µ
− I

)
]

≤ sup
τ∈T P

λ

E[e−rτ

(
ai(τ)xe

(µ−0.5σ2)τ+σB(τ)

r − µ
− I

)
] + sup

τ∈T P
λ

E[e−rτ

(
ai(τ)∆e(µ−0.5σ2)τ+σB(τ)

r − µ

)
]

≤W̃B(x) + sup
τ∈T

E[1{τ<T}e
−rτ

(
aB∆e(µ−0.5σ2)τ+σB(τ)

r − µ

)
+ 1{τ≥T}e

−rT

(
aG∆e(µ−0.5σ2)T+σB(T )

r − µ

)
]

(56)

=W̃B(x) + sup
τ∈T

E[e−(r+λq)τ

(
aB − aGλq

r + λq − µ

)(
∆e(µ−0.5σ2)τ+σB(τ)

r − µ

)
] +

aGλq∆

(r − µ)(r + λq − µ)

(57)

=W̃B(x) +

(
aB − aGλq

r + λq − µ

)
aB∆

r − µ
+

aGλq∆

(r − µ)(r + λq − µ)

=W̃B(x) +
∆aB
r − µ

,

where in (56), T denotes the first arrival time of the Poisson process with the arrival

rate λq (i.e., project G). The optimal stopping problem in (56) is the problem in which

the firm can gain either the bad-type payoff aB∆e(µ−0.5σ2)τ+σB(τ)/(r − µ) at the op-

timal time τ or the good-type payoff aG∆e(µ−0.5σ2)T+σB(T )/(r − µ) at the first arrival

time of project G. Note that the firm has no incentive to defer the good-type payoff
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aG∆e(µ−0.5σ2)T+σB(T )/(r − µ). In (57), the second term represents the option value of

gaining the bad-type payoff before the first arrival time of project G, whereas the last

term represents the value of the good-type payoff at the first arrival time. Because of

(54), the optimal stopping time in (57) is equal to 0, which implies that the firm has no

incentive to defer the bad-type payoff. I can easily show that W̃B(x + ∆) ≥ W̃B(x) by

e−rτai(τ)∆e(µ−0.5σ2)τ+σB(τ)/(r − µ) ≥ 0. Hence, I have (55).

By (55), I can show the continuity of W̃B(x), the optimality of a threshold policy, and

the existence of the optimal threshold x∗∗B ≥ max(x∗∗G , xNPV
B ) in the same fashion as in

Appendix A. The proof is complete. □
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Table 1: Baseline parameter values.

r µ σ λ x aG IG aB IB q

0.07 0.05 0.2 1 0.5 1 10 1/1.02 10.2 0.5

0.8 0.802 0.804 0.806 0.808 0.81 0.812 0.814 0.816 0.818 0.82
29.8
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30.4

30.6

30.8

31

31.2

VG(x)

ROVG(x)

NPVG(x)

x
G

=0.8088

Figure 1: Firm value functions. The figure plots functions VG(x), ROVG(x), and NPVG(x).

The parameter values other than x are set in Table 1.
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Figure 2: Comparative statics with respect to illiquidity 1/λ. The figure plots

VG(x), ROVG(x), x
∗
G, x

ROV
G , LC, and TD. The other parameter values are set in Table 1.
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Figure 3: Comparative statics with respect to volatility σ. The figure plots

VG(x), ROVG(x), x
∗
G, x

ROV
G , LC, and TD. The other parameter values are set in Table 1.
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Figure 4: Comparative statics with respect to λ in the case of two project types. The figure

plots W (x), ROVG(x), x
∗∗
G , x∗∗

B , xROV
G , LC, and TD. The parameter values are set in Table 1.
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Figure 5: Comparative statics with respect to σ in the illiquid model with two project types.

The figure plots W (x), ROVG(x), x
∗∗
G , x∗∗

B , xROV
G , LC, and TD. The other parameter values are

set in Table 1.
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Figure 6: The lowest acceptable type k∗(x) in the illiquid model with a continuum of project

types. The figure plots k∗(x) with respect to illiquidity 1/λ. The other parameter values are

set in Table 1.
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