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Abstract

We develop a dynamic bankruptcy model with asset illiquidity. In the model, a dis-

tressed firm chooses between sell-out and default, as well as its timing under the assump-

tion that sell-out is feasible only at Poisson jump times, where the arrival rate of acquirers

stands for asset liquidity. With lower asset liquidity, the firm increases the sell-out re-

gion to mitigate the risk of not finding an acquirer until bankruptcy. Despite the larger

sell-out region, lower asset liquidity increases the default probability and decreases the

equity, debt, and firm values. In the optimal capital structure, with lower asset liquidity,

the firm reduces leverage, but the cautious capital structure does not fully offset the in-

creased default risk. The stock price reaction caused by sell-out depends on the sell-out

timing. When the firm’s asset value is not sufficiently high, the stock price jump size is

an inverted U-shape with the economic state variable. Lower asset liquidity increases the

jump size due to greater surprise. These results fit empirical observations.

JEL Classifications Code: G13; G32; G33.

Keywords: liquidation; illiquidity; real option; M&A.

∗This version was written on 12 September, 2019. We thank Makoto Gotoh, Sangho Kim, and Kazutoshi

Yamazaki for helpful comments. We also thank the participants at FMA 2018 in Kyoto, 9th Global Business

Research Conference in Kathmandu, 27th EBES Conference in Denpasar, ORSJ 2019 spring conference in

Chiba, and 11th Global Conference in Amsterdam for their feedbacks. This work was supported by the JSPS

KAKENHI (Grant numbers JP17K01254, JP16KK0083, JP17H02547).
†Corresponding Author. Graduate School of Economics, Osaka University, 1-7 Machikaneyama, Toyonaka,

Osaka 560-0043, Japan, E-mail: nishihara@econ.osaka-u.ac.jp, Phone: 81-6-6850-5242, Fax: 81-6-6850-5277
‡Graduate School of Management, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-

0397, Japan, E-mail: tshibata@tmu.ac.jp, Phone: 81-42-677-2310, Fax: 81-42-677-2298

1



1 Introduction

Asset liquidity (or asset deployability) affects firms’ operating and financing decisions

(e.g., Shleifer and Vishny (1992), Schlingemann, Stulz, and Walkling (2002), and Ortiz-

Molina and Phillips (2014)). For firms in financial distress, asset illiquidity is crucial

because they can sell assets to avoid bankruptcy. As shown in Hotchkiss and Mooradian

(1998) and Maksimovic and Phillips (1998), some firms are successfully acquired by other

firms as a form of exit strategy, but others fail. For instance, the Japanese electronics

manufacturer Sharp Corporation was acquired by the Taiwanese manufacturer Foxconn

to get through financial distress, while the American retail company Circuit City filed for

bankruptcy after it failed to be acquired by the American video company Blockbuster.

The objective of this paper is to explore the effects of asset illiquidity on a distressed

firm’s exit decisions. We build a model of a firm with console debt as in the standard liter-

ature (e.g., Black and Cox (1976) and Leland (1994)). As in Mella-Barral and Perraudin

(1997), Nishihara and Shibata (2017), and Nishihara and Shibata (2018), the firm can

sell out (i.e., be acquired by another firm) to avoid bankruptcy. On sell-out, shareholders

of the firm obtain the residual value (i.e., the sales price minus the face value of debt),

while debt holders are repaid the face value of debt. On default, shareholders stop coupon

payments of debt, and the former debt holders take over the firm, where a fraction of the

firm value is lost to bankruptcy costs. Shareholders (or equivalently, managers acting

on behalf of shareholders’ interests) optimize the exit choice between sell-out and default

as well as its timing. A key difference from previous literature is an assumption that

sell-out is feasible only at Poisson jump times. This assumption captures the illiquidity

associated with searching for an acquirer.1 Throughout the paper, we regard the arrival

rate of acquirers as the firm’s asset liquidity.

We analytically derive model solutions, which are classified into the following cases.

When asset value over debt value and asset liquidity are high, the firm does not default but

sells out for a sufficiently low state variable. When asset value over debt value is low, the

firm does not sell out but defaults at the default threshold. Notably, for the intermediate

parameter values, the firm has both sell-out and default regions. If an acquirer fortunately

appears in the sell-out region until the state variable hits the default threshold, the firm

succeeds in selling out. Otherwise, the firm defaults. For relatively high asset values, the

sell-out region is below a certain threshold (i.e., threshold policy of sell-out), whereas for

1Cornett, Tanyeri, and Tehranian (2011) and Wang (2018) empirically show the low predictability of M&As.

Rhodes-Kropf and Robinson (2008) also examine a merger market with search frictions.
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relatively low asset values, the sell-out region is between an interval strictly higher than

the default threshold (i.e., interval policy of sell-out). Compared with the deterministic

choice between sell-out and default in Mella-Barral and Perraudin (1997), Nishihara and

Shibata (2017), and Nishihara and Shibata (2018), our result of the stochastic choice fits

empirical observations well.

In the model, we reveal the effects of asset liquidity on the firm’s exit policy, default

probability, equity, debt, and firm values. With lower asset liquidity, the firm increases the

sell-out region to mitigate the risk of not finding an acquirer until bankruptcy takes place.

Notably, this earnest asset sales policy cannot fully offset the decreased liquidity effect.

Lower asset liquidity, despite the larger sell-out region, increases the default probability

and decreases the equity, debt, and firm values. These results are consistent with empirical

evidence (e.g., Ortiz-Molina and Phillips (2014), Song and Walkling (2000), and Cornett,

Tanyeri, and Tehranian (2011)). In fact, Ortiz-Molina and Phillips (2014) show that

lower asset liquidity reduces a firm’s operating flexibility and increases the cost of capital

and the bankruptcy risk. Song and Walkling (2000) and Cornett, Tanyeri, and Tehranian

(2011) show that higher acquisition probabilities (which can be interpreted as higher asset

liquidity in our model) tend to increase target stock prices.

In the optimal capital structure, with lower asset liquidity, the firm reduces its leverage

to mitigate the increased bankruptcy risk. Intriguingly, the cautious capital structure and

earnest asset sales policy cannot fully offset the decreased liquidity effect. Lower asset

liquidity thus increases the default probability and decreases the debt and firm values. The

positive relationship between asset liquidity and leverage is consistent with the empirical

observations in Sibilkov (2009) and Campello and Giambon (2013).

The model also yields an upward jump of the equity value at the sell-out time. The

upward jump can be interpreted as a stock price reaction to the acquisition. Our model

shows that the stock price reaction greatly depends on the sell-out timing (i.e., the eco-

nomic state variable when the firm is acquired). If asset value is sufficiently high, the jump

size decreases with the state variable due to the threshold policy of sell-out. This implies

that being acquired is more beneficial to shareholders as the firm is closer to default.

More notably, if asset value is not sufficiently high, the jump size becomes an inverted

U-shape with the state variable due to the interval-type policy of sell-out. This suggests

that being acquired is not very beneficial to shareholders when the distance to default is

either too short or too long. These results highlight the dependence of acquisition timing

on stock price reactions and help explain the dispersion of target stock price reactions.
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We also show that lower asset liquidity leads to a more positive stock price reaction be-

cause of greater surprise. This result aligns with Cornett, Tanyeri, and Tehranian (2011)’s

empirical finding that stock price reactions increase with lower merger anticipation.

The remainder of this paper is organized as follows. Section 2 briefly reviews the

related literature. Section 3 introduces the model setup. After Section 4.1 shows the

model solutions for the unlevered firm, Section 4.2 shows the model solutions for the

levered firm. Section 5 demonstrates numerical examples and economic implications.

After Section 6 discusses the model extensions, Section 7 concludes the paper.

2 Literature review

This paper explores the interactions of two real options: sell-out and default. Although

many real options models focus on investment timing, some papers investigate exit options

(for a recent review of the real options literature, see Trigeorgis and Tsekrekos (2018)).

For instance, Hagspiel, Huisman, and Nunes (2016) examine a firm’s choice between

investment and exit, whereas Guerra, Kort, Nunes, and Oliveira (2018) investigate a

firm’s mothballing option before permanent exit. The above papers do not focus on a

levered firm’s default decision. Regarding a default option, Black and Cox (1976) first

derive default timing, which is endogenously determined in shareholders’ interests, and

Leland (1994) derives the optimal capital structure determined by the tradeoff between

the tax benefits of debt and bankruptcy cost. As in most papers, we borrow these standard

frameworks of endogenous default and optimal capital structure.

By extending the standard frameworks, many papers investigate joint investment and

financing decisions. For instance, Mauer and Sarkar (2005), Shibata and Nishihara (2012),

and Sundaresan, Wang, and Yang (2015) derive optimal investment timing and capital

structure. Morellec, Valta, and Zhdanov (2015) and Shibata and Nishihara (2015) ex-

amine optimal investment and financing choices between market debt and private debt.

Hackbarth, Mathews, and Robinson (2014) examine optimal investment, financing, and

organizational form. Charalambides and Koussis (2018) investigate optimal investment

and operation with financing by debt allowing future coupon reduction. Lukas and Thier-

gart (2019) explore the effects of debt financing on a real option held jointly by a firm and

a government. These papers examine the interactions of default and investment options.

This paper considers not an investment option but a sell-out option in addition to a

default option. In this sense, Mella-Barral and Perraudin (1997), Lambrecht and Myers
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(2008), Nishihara and Shibata (2017), and Nishihara and Shibata (2018), who consider

the choice between sell-out (or scrap) and default, are most closely related to this paper.

Mella-Barral and Perraudin (1997) show that debt renegotiation prevents shareholders

from early default and leads to efficient liquidation timing. Lambrecht and Myers (2008)

show that debt can reduce manager-shareholder conflicts and efficiently speed up liq-

uidation. Nishihara and Shibata (2017) and Nishihara and Shibata (2018) show that

information asymmetries can change a firm’s exit policy from sell-out to default. How-

ever, they do not focus on the illiquidity risk of not finding an acquirer; in their models,

sell-out is feasible at any time.

Although the above papers consider full liquidation with debt repayment rather than

partial liquidation, Morellec (2001) develops the model in which a distressed firm can

liquidate assets partially and sequentially until bankruptcy. He shows that for unsecured

debt, lower liquidation costs play negative roles in increasing bankruptcy risk and de-

creasing debt value through the channel of managerial asset disposition. Nishihara and

Shibata (2016) also examine partial liquidation with debt restructuring and show that

partial asset sales decrease equity value. These models do not include the risk of not

finding an asset acquirer.

He and Xiong (2012), He and Milbradt (2014), and Chen, Cui, He, and Milbradt

(2018) explore the effects of debt market illiquidity on bankruptcy decisions. They show

that debt market illiquidity hastens bankruptcy timing and increases default risk via the

channel of debt rollover risk. They focus on the illiquidity of the secondary debt market

rather than real asset illiquidity; in fact, these models do not include real asset sales.

Technically, this paper treats the optimal stopping (sell-out timing) problem con-

strained within Poisson jump times. The unlevered firm’s sell-out timing problem in

Section 4.1 is essentially the same as the problem solved in Dupuis and Wang (2002).

By extending this mathematical framework, Hugonnier, Malamud, and Morellec (2015a),

Hugonnier, Malamud, and Morellec (2015b), and Morellec, Valta, and Zhdanov (2015)

reveal the effects of the illiquidity of fund-raising on investment, cash holdings, and cap-

ital structure. They focus on capital and credit supply illiquidity rather than real asset

illiquidity.

Despite the growing literature on dynamic corporate finance issues, to our knowledge,

no paper investigates the effects of asset illiquidity (i.e., the risk of not finding an acquirer)

on the dynamic bankruptcy procedure. The main contribution of this paper is to reveal

how asset illiquidity distorts a firm’s exit choice between sell-out and default, exit timing,
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bankruptcy risk, and equity, debt, and firm values, as well as optimal capital structure.

In addition, this paper also yields new implications about stock market reactions in the

acquisition period.

3 Model Setup

3.1 Firm until exit

The model builds on the standard setup (e.g., Mella-Barral and Perraudin (1997), Gold-

stein, Ju, and Leland (2001), and Lambrecht and Myers (2008)). Consider a firm with

console debt with coupon C, i.e., the firm continues to pay coupon C to debt holders

until bankruptcy. First, we assume an exogenous coupon C, although in Section 5 we also

examine the optimal capital structure. The firm receives continuous streams of earnings

before interest and taxes (EBIT) X(t), where X(t) follows a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x,

where B(t) denotes the standard Brownian motion defined in a filtered probability space

(Ω,F ,P, {Ft}) and µ, σ(> 0) and x(> 0) are constants. Assume that the initial value,

X(0) = x, is sufficiently high to exclude the firm’s exit at the initial time. For convergence,

we assume that r > µ, where a positive constant r denotes the risk-free interest rate. We

assume that managers operate the firm on behalf of shareholders’ interests, and hence we

do not distinguish between shareholders and managers. Shareholders continue to receive

cash flows (1− τ)(X(t)− C) until exit, where τ ∈ (0, 1) denotes a corporate tax rate.

3.2 Asset sales opportunities

Following a Poisson process with the arrival rate λ, potential acquirers arrive and bid

P (X(t)) =
aX(t)

r − µ
+ θ (1)

for the firm, where a ∈ [0, 1) and θ > 0. We assume the linear function (1) following Lam-

brecht (2001), Lambrecht and Myers (2008), Nishihara and Shibata (2016), and Nishihara

and Shibata (2018). Equation (1) means that after partial assets are scrapped at a fixed

price θ, an acquirer perpetually receives cash flows aX(t) from the remaining assets, where

a ∈ [0, 1) represents that the revenues contract due to the partial liquidation. Transaction

costs and the acquirer’s gains can also be included in the parameters a and θ. Section 6.2

discusses a case in which an acquirer’s bid price is contingent on the target stock price.
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For model tractability, we assume that the Poisson process is independent of X(t).2 If the

firm rejects an acquirer’s proposal, the firm has to wait until another acquirer arrives.

The novelty of the model is the Poisson arrival of asset sales opportunities. We regard

the arrival rate λ as the degree of asset liquidity. A lower λ means lower asset liquidity be-

cause 1/λ equals the expected duration between acquirers’ arrivals. In reality, distressed

firms do not always find acquirers that offer favorable bid prices, although previous pa-

pers (e.g., Lambrecht and Myers (2008), Nishihara and Shibata (2016), and Nishihara

and Shibata (2018)) consider liquid models, which correspond to λ = ∞ in our model.

Our illiquid model can capture the effects of asset illiquidity on the bankruptcy process.

Hugonnier, Malamud, and Morellec (2015a), Hugonnier, Malamud, and Morellec (2015b),

and Morellec, Valta, and Zhdanov (2015) propose dynamic investment models with illiq-

uidity of fund-raising, which is modeled by a Poisson process, although our model focuses

on the illiquidity of real asset sales rather than fund-raising.

3.3 Exit choice between sell-out and default

As in Mella-Barral and Perraudin (1997), Lambrecht and Myers (2008), and Nishihara

and Shibata (2018), we consider two types of the firm’s exit. A successful exit without

formal bankruptcy is called sell-out. On sell-out, shareholders of the distressed firm sell

all assets to an acquirer at price P (X(t)). According to the absolute priority rule (APR)

of debt, debt holders are repaid the face value of debt, which equals C/r for the console

debt. Then, shareholders receive the residual value, i.e., (1 − τ)P (X(t)) − C/r. Note

that the asset redeployment also increases social welfare. Indeed, P (X(t)) > X(t)/(r−µ)

holds because the residual value is nonnegative when shareholders prefers to sell out.

The other exit is called default, which leads to a formal bankruptcy. On default,

shareholders stop coupon payments to debt holders. According to the APR, debt holders

take over the firm, and shareholders receive nothing. As in the standard literature (e.g.,

Leland (1994), Mella-Barral and Perraudin (1997), and Goldstein, Ju, and Leland (2001)),

the former debt holders can operate the firm as a going concern, but a fraction α ∈ (0, 1)

of the firm’s asset value is lost to the bankruptcy costs (filing fees, attorney fees, etc.).

Contrasted to sell-out, the deadweight costs of bankruptcy lead to social loss.

2Hugonnier, Malamud, and Morellec (2015a), Hugonnier, Malamud, and Morellec (2015b), and Morellec,

Valta, and Zhdanov (2015) also assume independence between the economic state process and the Poisson

process representing illiquidity of fund-raising. In fact, without the independence, we cannot analytically derive

any solution.
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For simplicity, as in Lambrecht and Myers (2008), and Nishihara and Shibata (2018),

we assume no opportunity of debt renegotiation and restructuring.3 As in the standard

literature, shareholders of the distressed firm makes the exit decision in their own interests.

They do not take into account of debt in place, which leads to agency conflicts between

shareholders and debt holders, and debt is priced at the initial time under the rational

expectation of shareholders’ exit policy.

4 Model Solutions

4.1 Unlevered firm

As a benchmark, this subsection examines the all-equity firm’s exit policy. Suppose that

there is no coupon payment (i.e., C = 0). Because there is no coupon payment, there

is no possibility of default. Instead, the firm can sell out when an offer is favorable.

Technically, the firm’s optimal sell-out timing problem is regarded as an optimal stopping

problem constrained to Poisson jump times, which was solved in Dupuis and Wang (2002).

We use EU (x) to denote the firm value when an asset sale opportunity is not available,

and we use ẼU (x) to denote the firm value when an acquirer arrives. We have ẼU (x) =

max{(1 − τ)P (x), EU (x)} because the firm value ẼU (x) turns to EU (x) by forgoing an

asset sale opportunity. As proved in Dupuis and Wang (2002), the optimal sell-out policy

becomes the threshold policy, i.e., inf{t ≥ 0 | X(t) ≤ xsU}, and EU (x) satisfies ordinary

differential equations (ODEs):

µxE′
U (x) + 0.5σ2x2E′′

U (x) + λ((1− τ)P (x)− EU (x)) + (1− τ)x = rEU (x) (x < xsU ),

(2)

µxE′
U (x) + 0.5σ2x2E′′

U (x) + (1− τ)x = rEU (x) (x > xsU ), (3)

where λ((1 − τ)P (x) − EU (x)) in (2) corresponds to the fact that EU (x) changes to

(1 − τ)P (x) with probability λdt in infinitesimal time interval dt in the sell-out region

x < xsU . As shown in Dupuis and Wang (2002), Es
U (x) is continuously differentiable at

xsU
4 and also satisfies boundary conditions Es

U (x
s
U ) = (1 − τ)P (xsU ), limx→0E

s
U (x) < ∞,

3Several papers (e.g., Morellec, Valta, and Zhdanov (2015), and Shibata and Nishihara (2015)) distinguish

between private debt, which can be renegotiated, and market debt, which cannot be renegotiated. In this

context, our model is more relevant to firms funded with market debt than firms funded with private debt.
4This is not the smooth pasting (i.e., optimality) condition in Dixit and Pindyck (1994), but it is the same

condition as the piecewise C2 property of the value function in Morellec, Valta, and Zhdanov (2015). Technically,

this property follows from Theorem 4.4.9 in Karatzas and Shreve (1998).
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and limx→∞Es
U (x)/x < ∞. The boundary condition Es

U (x
s
U ) = (1− τ)P (xsU ) means that

the firm is indifferent to whether to accept or reject an acquirer’s offer at xsU (i.e., the

optimality of xsU ). The other boundary conditions are trivial. By solving (2) and (3) with

these boundary conditions, we have the following proposition, where we define, for y > 0,

βy = 0.5− µ

σ2
+

√( µ

σ2
− 0.5

)2
+

2(r + y)

σ2
(> 1), (4)

γy = 0.5− µ

σ2
−
√( µ

σ2
− 0.5

)2
+

2(r + y)

σ2
(< 0), (5)

and, we simplify the notations by β = β0 and γ = γ0. For the proof, refer to Appendix A.

Proposition 1

EU (x)

=


(1− τ)

{
(r + aλ− µ)x

(r − µ)(r + λ− µ)
+

λθ

r + λ
+

(
x

xsU

)βλ
(
(a− 1)xsU
r + λ− µ

+
rθ

r + λ

)}
(x ≤ xsU ),

(1− τ)

{
x

r − µ
+

(
x

xsU

)γ ((a− 1)xsU
r − µ

+ θ

)}
(x > xsU ),

(6)

where the sell-out threshold xsU is defined by

xsU =
(r + λ− µ)((γ − βλ)r + γλ)

(r + λ)((γ − βλ)(r − µ) + (γ − 1)λ)

θ(r − µ)

1− a
. (7)

The firm’s optimal policy is to sell out only if an acquirer arrives at time t satisfying

X(t) ≤ xsU . For X(t) ≤ xsU , the firm is better off selling out because of a positive constant

θ embedded in P (X(t)). The lower equation in (6) stands for the firm value when the firm

value is higher than the sell-out payoff, i.e, EU (x) > (1 − τ)P (x). The upper equation

in (6) stands for the firm value when the firm value is lower than the sell-out payoff, i.e,

EU (x) ≤ (1 − τ)P (x). Then, the firm wishes to immediately sell out, but it may take

time because of asset illiquidity. To be more precise, the upper equation in (6) can be

decomposed as follows. The first and second terms of the equation stand for the expected

payoff of selling out as soon as an acquirer appears. The last term of the equation stands

for the value of the option to forgo an offer when it arrives at time t satisfying X(t) > xsU .

It should be noted that the sell-out threshold xsU is derived in the closed-form expres-

sion (7). By virtue of the closed-form solution, we can easily show that xsU monotonically

decreases to the solution of the liquid model, i.e., γθ(r − µ)/(γ − 1)(1 − a) as λ → ∞.

We can also show that xsU monotonically increases to the solution of the net present value
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model, i.e., θ(r − µ)/(1 − a) as λ → 0. Similarly, we can easily show that the firm value

EU (x) converges to the corresponding solutions in the liquid and net present value mod-

els. To summarize, lower asset liquidity λ decreases the value of waiting and increases the

sell-out threshold. With lower asset liquidity, the firm accepts an acquirer’s offer more

eagerly because the expected waiting time for another offer increases.

4.2 Levered firm

This subsection examines the levered firm’s exit policy. Suppose that the firm has issued

console debt with coupon C(> 0) at the initial time. We use E(x), D(x), and F (x) =

E(x)+D(x) to denote the equity, debt, and firm values when sell-out is infeasible, while we

use Ẽ(x), D̃(x), and F̃ (x) = Ẽ(x)+D̃(x) to denote the equity, debt, and firm values when

sell-out is feasible. We have Ẽ(x) = max{(1− τ)P (x)−C/r,E(x)}5 because shareholders

optimize the choice between sell-out and forgoing an acquirer. Recall that shareholders

receive the residual value (1− τ)P (x)− C/r on sell-out.

Clearly, E(x) is a nonnegative and nondecreasing function. E(x) is also higher than

(1− τ)x/(r−µ)−C/r, which is the payoff of perpetually operating the firm. Throughout

the paper, we suppose that E(x) is a convex function.6 Then, the two functions E(x)

and (1− τ)P (x)− C/r intersect twice at most. We can classify the functions into Cases

(S), (DS), (DOS), and (D) based on the relationships between the two functions (see

Figure 1). In the upper right panel of Figure 1, we have default, sell-out, and operation

regions from left (i.e., x = 0), and we call this Case (DS). In the lower left panel, we have

default, operation, sell-out, and operation regions from left, and we call this Case (DOS).

Intuitively, we can see from Figure 1 that Case (S) holds for the highest residual value,

followed in order by Case (DS), Case (DOS), and Case (D).

In Case (S), (i.e., when the residual value is highest) the two functions intersect once,

and E(x) is strictly positive for x > 0. There is no possibility of default, and the intersec-

tion point xs is the sell-out threshold. The firm accepts an acquirer’s offer for X(t) ≤ xs.

As in Section 4.1, we can derive E(x) by solving ODEs

µxE′(x) + 0.5σ2x2E′′(x) + λ((1− τ)P (x)− C/r − E(x)) + (1− τ)(x− C) = rE(x) (x ∈ S),

(8)

µxE′(x) + 0.5σ2x2E′′(x) + (1− τ)(x− C) = rE(x) (x ∈ O), (9)

5There is no tax shield on repayment of the principal C/r.
6We cannot mathematically prove it, but it always holds in numerical examples.
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where S = (0, xs) and O = (xs,∞) are the sell-out and operation region, along with the

boundary conditions E(xs) = (1−τ)P (xs)−C/r, limx→0E(x) < ∞, limx→∞E(x)/x < ∞,

and continuous differentiability of E(x) at xs. In ODE (8), λ((1− τ)P (x)−C/r−E(x))

corresponds to the fact that E(x) changes to (1 − τ)P (x) − C/r with probability λdt in

time interval dt in the sell-out region. Because of no default risk, the debt value D(x)

equals the riskless debt value C/r.

In Case (DS), the two functions intersect once, and E(x) equals zero for x ∈ (0, xd].

The intersection point xs is the sell-out threshold. The firm accepts an acquirer’s offer

for X(t) ≤ xs. However, if no acquirer appears in the sell-out region until X(t) hits

the default threshold xd, the firm defaults. We can derive E(x) by solving ODEs (8)

and (9) with the sell-out region S = (xd, xs) and the operation region O = (xs,∞). The

boundary conditions are E(xd) = 0, E(xs) = (1−τ)P (xs)−C/r, and limx→∞E(x)/x < ∞,

The condition E(xd) = 0 follows from the assumption that shareholders gain nothing on

default, and the other conditions are the same as in Section 4.1. By the smooth pasting

(optimality) condition, E(x) is continuously differentiable at xd, and as in Section 4.1,

E(x) is also continuously differentiable at xs.

In this case, there is default risk, and the debt value D(x) follows

µxD′(x) + 0.5σ2x2D′′(x) + λ(C/r −D(x)) + C = rD(x) (x ∈ S), (10)

µxD′(x) + 0.5σ2x2D′′(x) + C = rD(x) (x ∈ O), (11)

where S = (xd, xs) and O = (xs,∞). In ODE (10), λ(C/r − D(x)) corresponds to the

fact that D(x) changes to the repayment value C/r with probability λdt in time interval

dt in the sell-out region. We can derive D(x) by solving ODEs (10) and (11). The

boundary conditions are D(xd) = (1 − α)EU (x) and limx→∞D(x) = C/r. The former

means that debt holders receive the unlevered firm value minus bankruptcy costs at the

default threshold, whereas the latter means that the debt value approaches the riskless

value for an infinitely large state variable. As in E(x), D(x) is continuously differentiable

at xs, while D(x) is continuous at xd. Note that D(x) is not continuously differentiable

at xd because the default threshold xd does not maximize D(x) but E(x).

In Case (DOS), the two functions intersect twice, and E(x) equals zero for x ∈ (0, xd].

Notably, the sell-out region, unlike in Cases (DS) and (S), becomes the interval [xs1, xs2].

The firm accepts an acquirer’s offer forX(t) ∈ [xs1, xs2]. However, if no acquirer appears in

the sell-out region untilX(t) hits the default threshold xd, the firm defaults. We can derive

E(x) by solving ODEs (8) and (9) with S = (xs1, xs2) and O = (xd, xs1)∪ (xs2,∞). As in

Case (DS), the boundary conditions are E(xd) = 0, E(xs1) = (1−τ)P (xs1)−C/r,E(xs2) =
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(1− τ)P (xs2)− C/r, and limx→∞E(x)/x < ∞, and E(x) are continuously differentiable

at xd, xs1, and xs2. We can also derive the debt value D(x) by solving ODEs (10) and

(11) with S = (xs1, xs2) and O = (xd, xs1) ∪ (xs2,∞). The boundary conditions are

D(xd) = (1−α)EU (x) and limx→∞D(x) = C/r, and we have continuous differentiability

of D(x) at xs1 and xs2, and continuity of D(x) at xd.

In Case (D), (i.e., when the residual value is lowest) the two functions do not intersect,

and E(x) equals zero for x ∈ (0, xd]. There is no possibility of sell-out because E(x)

dominates (1− τ)P (x)−C/r. The firm defaults when X(t) hits the default threshold xd.

We can derive E(x) by solving ODE (9) with O = (xd,∞). Note the boundary conditions

E(xd) = 0, limx→∞E(x)/x < ∞, and continuous differentiability of E(x) at xd. In this

default only case, E(x) is essentially the same as the equity value of Leland (1994).

By choosing the maximal equity value in all cases, we have the following proposition,

where we define

ϵ = (1− a)
−γ
1−γ ∈ (0, 1]. (12)

For the proof, refer to Appendix B.

Proposition 2

Case (S):
C

rθ
≤ (1− τ)λ

τλ+ (1− τ)(r + λ)
. (13)

The firm prefers to sell out.

E(x) =



(1− τ)

{
(r + aλ− µ)x

(r − µ)(r + λ− µ)
− C

r
+

λ

r + λ

(
θ − τC

(1− τ)r

)
+
( x

xs

)βλ
(
(a− 1)xs

r + λ− µ
+

r

r + λ

(
θ − τC

(1− τ)r

))}
(x ≤ xs),

(1− τ)

{
x

r − µ
− C

r
+
( x

xs

)γ
(
(a− 1)xs

r − µ
+ θ − τC

(1− τ)r

)}
(x > xs),

(14)

D(x) =
C

r
,

where the sell-out threshold xs is defined by

xs =
(r + λ− µ)((γ − βλ)r + γλ)

(r + λ)((γ − βλ)(r − µ) + (γ − 1)λ)

(r − µ)

1− a

(
θ − τC

(1− τ)r

)
. (15)

Cases (DS) and (DOS) :

(1− τ)λ

τλ+ (1− τ)(r + λ)
<

C

rθ
≤ 1− τ

τ + (1− τ)ϵ
. (16)

The firm can either default or sell out.
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Case (DS):

E(x) =



0 (x ≤ xd),

(1− τ)

{
(r + aλ− µ)x

(r − µ)(r + λ− µ)
− C

r
+

λ

r + λ

(
θ − τC

(1− τ)r

)
+A1x

βλ +A2x
γλ

}
(x ∈ (xd, xs]),

(1− τ)

{
x

r − µ
− C

r
+
( x

xs

)γ
(
(a− 1)xs

r − µ
+ θ − τC

(1− τ)r

)}
(x > xs),

(17)

D(x) =


(1− α)EU (x) (x ≤ xd),
C

r
−B1x

βλ −B2x
γλ (x ∈ (xd, xs]),

C

r
−B3

( x

xs

)γ
(x > xs),

(18)

where we denote

A1 =
xsγλF1 − xdγλF2

xdβλxsγλ − xsβλxdγλ
,

A2 =
xdβλF2 − xsβλF1

xdβλxsγλ − xsβλxdγλ
,

F1 = − (r + aλ− µ)xd

(r − µ)(r + λ− µ)
+

C

r
− λ

r + λ

(
θ − τC

(1− τ)r

)
,

F2 =
(a− 1)xs

r + λ− µ
+

r

r + λ

(
θ − τC

(1− τ)r

)
,

B1 =
(γ − γλ)x

sγλ(C/r − (1− α)EU (x
d))

(βλ − γ)xsβλxdγλ − (γλ − γ)xdβλxsγλ
,

B2 =
(βλ − γ)xsβλ(C/r − (1− α)EU (x

d))

(βλ − γ)xsβλxdγλ − (γλ − γ)xdβλxsγλ
,

B3 = B1x
sβλ +B2x

sγλ

and the default and sell-out thresholds xd, xs are the solutions to

r + aλ− µ

(r − µ)(r + λ− µ)
+ βλA1x

dβλ−1 + γλA2x
dγλ−1 = 0, (19)

r + aλ− µ

(r − µ)(r + λ− µ)
+ βλA1x

sβλ−1 + γλA2x
sγλ−1 =

1 + γ(a− 1)

r − µ
+

γ

xs

(
θ − τC

(1− τ)r

)
.

(20)
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Case (DOS):

E(x) =



0 (x ≤ xd),

(1− τ)

{
x

r − µ
− C

r
+A1x

β +A2x
γ

}
(x ∈ (xd, xs1)),

(1− τ)

{
(r + aλ− µ)x

(r − µ)(r + λ− µ)
− C

r
+

λ

r + λ

(
θ − τC

(1− τ)r

)
+A3x

βλ +A4x
γλ

}
(x ∈ [xs1, xs2]),

(1− τ)

{
x

r − µ
− C

r
+
( x

xs2

)γ
(
(a− 1)xs2

r − µ
+ θ − τC

(1− τ)r

)}
(x > xs2),

(21)

D(x) =



(1− α)EU (x) (x ≤ xd),
C

r
−B1x

β −B2x
γ (x ∈ (xd, xs1)),

C

r
−B3x

βλ −B4x
γλ (x ∈ [xs1, xs2]),

C

r
−B5

( x

xs2

)γ
(x > xs2),

(22)

where we denote

A1 =
xsγF1 − xdγF2

xdβxsγ − xsβxdγ
,

A2 =
xdβF2 − xsβF1

xdβxsγ − xsβxdγ
,

A3 =
xs2γλF3 − xs1γλF4

xs1βλxs2γλ − xs2βλxs1γλ
,

A4 =
xs1βλF4 − xs2βλF3

xs1βλxs2γλ − xs2βλxs1γλ
,

F1 = − xd

r − µ
+

C

r
,

F2 =
(a− 1)xs1

r − µ
+ θ − τC

(1− τ)r
,

F3 =
(a− 1)xs1

r + λ− µ
+

λ

r + λ

(
θ − τC

(1− τ)r

)
,

F4 =
(a− 1)xs2

r + λ− µ
+

r

r + λ

(
θ − τC

(1− τ)r

)
,

and the default and sell-out thresholds xd, xs1, xs2 are the solutions to

xd

r − µ
+ βA1x

dβ + γA2x
dγ = 0, (23)

xs1

r − µ
+ βA1x

s1β + γA2x
s1γ =

(r + aλ− µ)xs1

(r − µ)(r + λ− µ)
+ βλA3x

s1βλ + γλA4x
s1γλ , (24)

(r + aλ− µ)xs2

(r − µ)(r + λ− µ)
+ βλA3x

s2βλ + γλA4x
s2γλ =

(1 + γ(a− 1))xs2

r − µ
+ γ

(
θ − τC

(1− τ)r

)
.

(25)
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The coefficients Bi (i = 1, 2, . . . , 5) are the solution of the linear system:

xdβB1 + xdγB2 =
C

r
− (1− α)EU (x

d), (26)

xs1βB1 + xs1γB2 − xs1βλB3 − xs1γλB4 = 0, (27)

βxs1βB1 + γxs1γB2 − βλx
s1βλB3 − γλx

s1γλB4 = 0, (28)

xs2βλB3 + xs2γλB4 −B5 = 0, (29)

βλx
s2βλB3 + γλx

s2γλB4 = 0. (30)

Case (D):
C

rθ
>

1− τ

τ + (1− τ)ϵ
. (31)

The firm prefers to default.

E(x) =


0 (x ≤ xd),

(1− τ)

{
x

r − µ
− C

r
+
( x

xd

)γ
(
− xd

r − µ
+

C

r

)}
(x > xd),

(32)

D(x) =


(1− α)EU (x) (x ≤ xd),

C

r
−
( x

xd

)γ
(
C

r
− (1− α)EU (x

d)

)
(x > xd),

where the default threshold xd is defined by

xd =
γ(r − µ)C

(γ − 1)r
. (33)

In each case, Ẽ(x) and D̃(x) equal (1 − τ)P (x) − C/r and C/r, respectively, in the

sell-out region, whereas Ẽ(x) and D̃(x) equal E(x) and D(x), respectively, in the operation

region. The firm values F (x) and F̃ (x) equal E(x)+D(x) and Ẽ(x)+ D̃(x), respectively.

We can see from (13) that Case (S) (i.e., the sell-out only case), tends to hold for

lower coupon, higher scrap value, and higher asset liquidity. In Case (S), the firm’s

optimal policy is to sell out only if an acquirer arrives at time t satisfying X(t) ≤ xs.

Debt is riskless, and E(x) is similar to EU (x) in Proposition 1. The sell-out threshold xs

is lower than xsU because of the term τC/(1− τ)r (cf. (15) and (7)). This is because the

tax benefits of coupon payments are lost after sell-out.

On the other hand, we can see from (31) that Case (D), i.e., the default only case,

tends to hold for higher coupon and lower asset value. Because of ∂ϵ/∂σ ≥ 0, a higher σ

also increases the region of Case (D). The impact of σ is the same as shown by Nishihara
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and Shibata (2018).7 In Case (D), the firm’s optimal policy is to default once X(t) hits

the default threshold xd. On bankruptcy, debt holders take over the firm, but a fraction

α of the firm value is lost as bankruptcy costs. There is no possibility of sell-out, and

hence, E(x) and D(x) are essentially the same as shown by Leland (1994). In this case,

the default threshold xd is derived in the closed form (33).

Cases (DS) and (DOS) are novel. These intermediate cases do not appear in any

previous literature. Indeed, in the previous models allowing asset sales at any time (e.g.,

Mella-Barral and Perraudin (1997), Nishihara and Shibata (2017), and Nishihara and

Shibata (2018)), the firm sells out if (31) does not hold. We can see from (16) that the

novel cases tend to appear for intermediate coupon and asset value, as well as for lower

market volatility. In these cases, the firm’s exit choice between sell-out and default is not

determined at the initial time but depends on the realized paths of X(t) and the Poisson

process. The firm succeeds in sell-out only if an acquirer appears in the sell-out region

until X(t) hits the default threshold xd. Otherwise, the firm defaults.

The stochastic exit choice is contrasted with the deterministic choice in Mella-Barral

and Perraudin (1997), Nishihara and Shibata (2017), and Nishihara and Shibata (2018).

This result fits empirical observations well. In fact, before bankruptcy, many firms search

for acquirers that will save them. Some firms (e.g., Sharp Corporation) succeed in being

acquired, while other firms (e.g., Circuit City) fail and become bankrupt. More gener-

ally, M&A literature, such as Cornett, Tanyeri, and Tehranian (2011) and Wang (2018),

empirically shows the low predictability of targets of acquisitions.

We cannot analytically prove but can numerically show (also intuitively from Figure 1)

that Case (DS) holds for relatively lower coupon and higher asset value, while Case (DOS)

holds for relatively higher coupon and lower asset value. According to our computations

for a wide range of parameter values, we always have a unique solution either in Case

(DS) or in Case (DOS).

Now, we see E(x) and D(x) in Case (DS) more closely. The lower equation in (17)

stands for the equity value in the operation region, i.e, E(x) > (1 − τ)P (x) − C/r. The

center equation in (17) stands for the equity value in the sell-out region, i.e, E(x) ≤

(1 − τ)P (x) − C/r. The first three terms of the center equation represent the expected

payoff of selling out as soon as an acquirer appears. The last two terms, i.e., A1x
βλ+A2x

γλ

7Intuitively, a higher σ increases the default option value than the sell-out option value because the convexity

of the default option is stronger than that of the sell-out option. By the similar logic, Kort, Murto, and Pawlina

(2010) show that higher volatility is more likely to lead to lumpy rather than stepwise investment.
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stand for the value of the options to default and to delay sell-out. The upper equation in

(17) means that the equity value is zero in the default region.

Debt holders are repaid the face value on sell-out, while they cannot fully recover the

face value on bankruptcy. Hence, debt is risky. The lower equation in (18) represents

the debt value in the operation region. The term C/r stands for the value of perpetually

receiving coupons, whereas the second term measures the possibility of X(t) hitting the

sell-out threshold xs. The center equation in (18) stands for the debt value in the sell-out

region. The term C/r stands for the value of perpetually receiving coupons, whereas the

last two terms, i.e., B1x
βλ + B2x

γλ measure the possibility of X(t) hitting either xd or

xs. The upper equation in (18) means that debt holders receive the unlevered firm value

subtracted by bankruptcy costs at the default time.

Next, we turn to E(x) and D(x) in Case (DOS). The main difference from Case (DS)

is that the sell-out region is the interval [xs1, xs2]. Because of the lower residual value

from sell-out in Case (DOS), unlike in Case (DS), shareholders are better off forgoing

an acquirer’s offer for X(t) < xs1. Then, we have two disconnected operation regions

(xd, xs1) and (xs2,∞) (cf. Figure 1). This is why E(x) and D(x) are expressed as the

four equations in (21) and (22). All the equations can be explained as in Case (DS);

we omit the detailed explanations. The existence of the intermediate operation region

(xd, xs1) is similar to the result of Guerra, Kort, Nunes, and Oliveira (2018) who examine

a mothballing option before permanent exit. Although their model considers neither debt

financing nor asset illiquidity, they show that the operation region can exist between the

mothballing region and the exit threshold.

In Cases (DS) and (DOS), the firm’s exit choice between sell-out and default is stochas-

tic. The following proposition analytically derives the default probability, denoted by

P d(x).

Proposition 3 Suppose that µ− 0.5σ2 < 0.

Case (S):

P d(x) = 0.

Case (DS):

P d(x) =


1 (x ≤ xd),

G1x
βλ−r +G2x

γλ−r (x ∈ (xd, xs]),

G3 (x > xs),

(34)

where xd and xs are the default and sell-out thresholds in Case (DS) of Proposition 2,
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and the coefficients G1, G2, G3 are defined by

G1 = − γλ−rx
sγλ−r

βλ−rxsβλ−rxdγλ−r − γλ−rxdβλ−rxsγλ−r
,

G2 =
βλ−rx

sβλ−r

βλ−rxsβλ−rxdγλ−r − γλ−rxdβλ−rxsγλ−r
,

G3 = G1x
sβλ−r +G2x

sγλ−r .

Case (DOS):

P d(x) =



1 (x ≤ xd),

G1x
1−2µ/σ2

+G2 (x ∈ (xd, xs1)),

G3x
βλ−r +G4x

γλ−r (x ∈ [xs1, xs2]),

G5 (x > xs2),

(35)

where xd, xs1, and xs2 are the default and sell-out thresholds in Case (DOS) of Proposition

2, and the coefficients Gi (i = 1, 2, . . . , 5) are the solution to the linear system:

xd1−2µ/σ2
G1 +G2 = 1,

xs11−2µ/σ2
G1 +G2 − xs1βλ−rG3 − xs1γλ−rG4 = 0,

(1− 2µ/σ2)xs11−2µ/σ2
G1 +G2 − βλ−rx

s1βλ−rG3 − γλ−rx
s1γλ−rG4 = 0,

xs2βλ−rG3 + xs2γλ−rG4 −G5 = 0,

βλ−rx
s2βλ−rG3 + γλ−rx

s2γλ−rG4 = 0.

Case (D):

P d(x) = 1.

Similarly, we can derive P d(x) for µ − 0.5σ2 ≥ 0, but we omit the expressions to avoid

redundancy.

Note that P d(x) is constant for x ≥ xs in Case (DS) and for x ≥ xs2 in Case (DOS)

because X(t) hits xs and xs2 almost surely under the assumption of µ− 0.5σ2 < 0. X(t)

also hits the default threshold xd almost surely, but a Poisson jump may occur in the

sell-out region before X(t) hits the default threshold xd. Hence, P d(x) decreases with x

for x ∈ (xd, xs] in Case (DS) and for x ∈ (xd, xs2] in Case (DOS). Under the assumption

of µ− 0.5σ2 < 0, the sell-out probability is 1− P d(x).

As explained after Proposition 2, contrasted with the deterministic choice (i.e., P d(X(t)) =

0 or 1) in the previous models (e.g., Mella-Barral and Perraudin (1997), Nishihara and

Shibata (2017), and Nishihara and Shibata (2018)), the stochastic dynamics of P d(X(t))
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is more realistic. In the next section, we will examine the effects of asset liquidity on the

firm’s default and sell-out policies, equity, debt, and firm values, and default probability

in full detail.

5 Numerical analysis and implications

In this section, we conduct numerical analysis, including comparative statics with respect

to asset liquidity λ and volatility σ. We set the baseline parameter values in Table 1.

Asset liquidity λ is set at 2, which means that an asset sales opportunity is expected to

arrive every half year. The other parameter values are standard and similar to those of

Nishihara and Shibata (2018).

For the baseline parameter values, Case (DOS) holds true, and we have the default

and sell-out thresholds xd = 0.432, xs1 = 0.472, and xs2 = 0.796, as well as the equity and

debt values E(x) = 5.308 and D(x) = 16.647. Debt is risky, i.e., D(x) = 16.647 < C/r =

16.667, and the default probability is P d(x) = 0.0065. Figure 2 shows a sample path of

the equity value E(X(t)) with no offer in the sell-out region. We depict the dynamics of

E(X(t)) rather than X(t) because it can be interpreted as the stock price dynamics until

bankruptcy. Note that the stock price equals E(X(t))/N , where N denotes the number of

shares. In the figure, the sell-out region is between E(xs1) = 2.846 and E(xs2) = 0.0953.

The firm attempts to sell out in the region, but in this example, no acquirer appears in

the region. Then, the firm defaults when the equity value falls zero, i.e., E(xd) = 0. If

an acquirer arrives in the sell-out region, the firm sells out, and then the equity value

E(X(t)) jumps upward to (1− τ)P (X(t))− C/r.

5.1 Impacts of asset liquidity

Figure 3 depicts the default and sell-out thresholds, the equity, debt, and firm values, and

the default probability for 1/λ ∈ (0, 2], where 1/λ equals the expected duration (year)

between acquirers’ arrivals. The other parameter values are set in Table 1. In Figure 3,

we also depict the sell-out threshold of the liquid model (i.e., λ = ∞), denoted by xsb,

for comparison. For all 1/λ ∈ (0, 2], Case (DOS) holds true. The right-hand side of (13)

monotonically increases up to 1 − τ as λ increases. For the baseline parameter values,

we have 1− τ < C/rθ ≤ (1− τ)/(τ + (1− τ)ϵ), and hence, Case (DOS) always holds. If

C/rθ < 1− τ holds, a higher λ leads to Case (S).

In the top-left panel, the sell-out threshold xs2 is higher than xsb of the liquid model,
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and the sell-out region [xs1, xs2] expands with higher 1/λ. In other words, with lower

liquidity, the firm accepts an acquirer’s offer more eagerly to mitigate the risk of not

finding an acquirer until bankruptcy. In the top-right and bottom-right panels, the default

threshold xd and the default probability P d(x) increase in 1/λ. This implies that the

firm’s earnest asset sales policy does not fully offset the decreased liquidity, and lower

asset liquidity increases the default risk.

These results are similar to those of Hugonnier, Malamud, and Morellec (2015b) who

consider the model in which a firm can increase debt to receive more tax benefits only

at Poisson jump times. They show that with a lower arrival rate of creditors, the firm

decreases the debt restructuring threshold to mitigate the risk of not finding creditors;

despite this effort, the restructuring probability decreases. This means that the firm’s

earnest debt restructuring policy does not fully offset the decreased credit supply. Al-

though they focus on debt expansion in economic expansion, we focus on asset sales in

economic downturn. He and Xiong (2012), He and Milbradt (2014), and Chen, Cui,

He, and Milbradt (2018) show that the illiquidity of the secondary debt market hastens

bankruptcy timing and increases the default probability via the channel of rollover risk.

Unlike in their papers, we study the effects of real asset illiquidity. Morellec (2001) shows

that for unsecured debt, lower asset liquidation cost, which leads to managerial asset

disposition, increases the bankruptcy probability and decreases the debt value. Unlike

Morellec (2001), we focus on sell-out, where debt holders are repaid the face value of

debt; hence, our model does not have the possibility for asset disposition to decrease the

debt value.

Finally, the center panels of Figure 3 show that both the debt value D(x) and the

equity value E(x) decrease in 1/λ. The decrease in D(x) is consistent with the stylized

fact (e.g., Shleifer and Vishny (1992) and Sibilkov (2009)). Shleifer and Vishny (1992)

argue that lower asset liquidity decreases the post-default value debt holders receive, and

our model captures the effect because the post-default value (1−α)EU (x) decreases in 1/λ.

In addition, our model suggests that lower asset liquidity also decreases D(x) through the

increased default probability channel. Furthermore, E(x) decreases in 1/λ because lower

asset liquidity decreases shareholders’ sell-out option value. This result is consistent with

empirical evidence in Ortiz-Molina and Phillips (2014), Song and Walkling (2000), and

Cornett, Tanyeri, and Tehranian (2011). Ortiz-Molina and Phillips (2014) show that real

asset illiquidity reduces a firm’s operating flexibility and through this channel increases

the cost of capital. Song and Walkling (2000) and Cornett, Tanyeri, and Tehranian (2011)
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show that a stock price increases as the probability of being acquired increases. Note that

the arrival rate λ can be interpreted as the probability of being acquired.

So far, we have examined the effects of asset liquidity with a fixed initial coupon C.

How do the results change if the firm can precisely anticipate the degree of asset liquidity

and optimize the capital structure at the initial time? As in the standard literature (e.g.,

Leland (1994)), the firm chooses the optimal capital structure to maximize the firm value

F (x), taking account of the trade-off between the tax benefits of debt and bankruptcy

costs.

Figure 4 shows the optimal coupon C, leverage LV (= D(x)/F (x)), and credit spread

CS(= C/D(x) − r) for 1/λ ∈ (0, 2]. In the figure, the optimal C and LV decreases in

1/λ, although CS increases in 1/λ. These results are interpreted as follows. Lower asset

liquidity increases the bankruptcy risk, and as a result, the firm reduces debt financing.

Despite the firm’s more cautious capital structure, the default risk increases (see CS in

Figure 4 and P d(x) in Figure 5) with decreased asset liquidity because the direct impact of

decreased asset liquidity dominates the impact from the reduced leverage. These results

are consistent with the empirical findings of Sibilkov (2009), Campello and Giambon

(2013), and Ortiz-Molina and Phillips (2014), who show that leverage is positively related

to asset liquidity.

Figure 5 depicts the default and sell-out thresholds, the equity, debt, and firm values,

and the default probability for 1/λ ∈ (0, 2] under the optimal capital structure. Case

(DOS) holds for 1/λ ∈ (0, 1.25], while Case (DS) holds for 1/λ ∈ (1.25, 2]. This is because

a higher 1/λ decreases the optimal coupon, which changes from Case (DOS) to Case (DS).

Aside from the default threshold xd and the equity value E(x), Figure 5 is similar to

Figure 3. In the top-left panel of Figure 5, the sell-out region expands with 1/λ. With

lower liquidity, in addition to using a more cautious capital structure, as in a case with a

fixed coupon, the firm accepts an acquirer’s offer more eagerly to mitigate the risk of not

finding an acquirer. In the bottom-right panel, the default probability P d(x) increases in

1/λ, although the increase is mitigated from that of a case with a fixed coupon (cf. P d(x) in

Figure 3). In other words, the cautious capital structure and earnest asset sales policy do

not fully offset the decreased liquidity, and then lower asset liquidity increases the default

probability. Due to the increased bankruptcy risk, in the center-right and bottom-left

panels, the debt and firm values monotonically decrease in 1/λ. These results align with

the empirical evidence (e.g., Ortiz-Molina and Phillips (2014), Song and Walkling (2000),

and Cornett, Tanyeri, and Tehranian (2011)).
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In the top-right panel, the default threshold xd decreases in 1/λ, and in the center-left

panel, the equity value E(x) decreases in 1/λ. These results are contrary to those of a

case with a fixed coupon (cf. xd and E(x) in Figure 3). The explanation follows. A higher

1/λ decreases the optimal C, which plays roles in decreasing xd and increasing E(x).

5.2 Impacts of cash flow volatility

Figure 6 depicts the default and sell-out thresholds, the equity, debt, and firm values, and

the default probability for σ ∈ [0.15, 0.35]. The other parameter values are set in Table 1.

Case (DOS) holds for σ ∈ [0.15, 0.289), while Case (D) holds for σ ∈ [0.289, 0.35]. Recall

that by ∂ϵ/∂σ ≥ 0 and (31), a higher σ leads to Case (D).

In the top-left panel, a higher σ narrows the sell-out region, whereas in the top-right

panel, a higher σ decreases the default threshold xd. These results are consistent with the

standard real options theory (e.g., Dixit and Pindyck (1994)) that a higher σ increases

the option value of waiting.

In the center panels, a higher σ increases the equity value E(x) and decreases the

debt value D(x). The wealth transfer from debt holders to shareholders is consistent

with the standard result (e.g., Jensen and Meckling (1976) and Eisdorfer (2008)). In the

bottom-left panel, the sensitivity of the firm value F (x) to σ depends on this trade-off.

Most notably, the change from Case (DOS) to Case (D) at σ = 0.289 greatly decreases

F (x) because the change greatly reduces D(x). The sharp decrease in D(x) stems from

the sharp increase in the default probability P d(x). In fact, in the bottom-right panel,

P d(x) sharply increases in σ ≈ 0.289. These results lead to empirical implications that

a slight increase in volatility can greatly increase default risk and decrease debt and firm

values.

Now, we examine the impacts of σ under the optimal capital structure. Figure 7

shows the optimal coupon C, leverage LV , and credit spread CS for σ ∈ [0.15, 0.35]. In

the figure, C and LV decrease in σ, whereas CS forms an inverted U-shape. The negative

correlation between σ and LV is consistent with the standard theory (e.g., Harris and

Raviv (1991) and Leland (1994)). A higher σ can reduce CS due to the lower LV , but it

can increase CS due to more volatile cash flows. The ambiguous sensitivity of CS stems

from this tradeoff.

Figure 8 depicts the default and sell-out thresholds, the equity, debt, and firm values,

and the default probability for σ ∈ [0.15, 0.35] under the optimal capital structure. Unlike

in a case with a fixed coupon, Case (DOS) holds for all σ ∈ [0.15, 0.35]. This is because
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(16) is satisfied, even for a higher σ, due to the reduced coupon. In the top panels, the

sell-out and default thresholds xs1, xs2, and xd decrease in σ. As in the case with a fixed

coupon, this result aligns with the standard real options result.

In the center panels, as in the case with a fixed coupon, a higher σ leads to a wealth

transfer from debt holders to shareholders. There are no sharp decreases inD(x) and F (x)

because the firm can adjust the optimal capital structure in accordance with volatility

changes. In the bottom-left panel, unlike in the case with a fixed coupon, F (x) monoton-

ically increases in σ. This is because the firm chooses the capital structure to maximize

F (x) and a higher σ increases the sell-out and default option values embedded in F (x). In

the bottom-right panel, as in CS in Figure 7, the default probability P d(x) is an inverted

U-shape based on the trade-off between the reduced leverage and more volatile cash flows.

5.3 Stock price reactions at the sell-out time

In this subsection, we explore the market reaction when the firm sells out. In the model,

an acquirer pays P (X(t)) at acquisition, and then, the equity value jumps from E(X(t))

to (1 − τ)P (X(t)) − C/r, which can be interpreted as the stock price reaction or the

acquisition premium. Recall that E(X(t)) ≤ (1− τ)P (X(t))− C/r always hold for X(t)

in the sell-out region. The positive stock price reaction is consistent with well-known facts.

In fact, targets gain abnormal returns (around 20%) in M&As (e.g., Huang and Walkling

(1987), Hotchkiss and Mooradian (1998), and Boone and Mulherin (2007)). Below, we

explore the key drivers of the positive stock price reaction.

Figure 9 depicts the jump size, defined by ((1−τ)P (X(t))−C/r−E(X(t)))/E(X(t)),

with respect toX(t) for varying levels of 1/λ and σ. In the left panels, the other parameter

values are set in Table 1, and Case (DOS) holds true. In the right panels, we replace C = 1

with C = 0.9 to see the results in Case (DS). There is no jump for x /∈ [xs1, xs2] in Case

(DOS) and for x /∈ [xd, xs2] in Case (DS) because the firm forgoes an acquirer’s offer.

In the left panels, i.e., Case (DOS), the jump size is an inverted U-shape with respect

to X(t). By Proposition 2, we have (1 − τ)P (X(t)) − C/r − E(X(t)) = 0 for the sell-

out thresholds xs1 and xs2, whereas we have (1 − τ)P (X(t)) − C/r − E(X(t)) > 0 for

X(t) ∈ (xs1, xs2). In other words, the interval policy of sell-out in Case (DOS) leads to

the inverted U-shaped jump size with respect to X(t). On the other hand, in the right

panel, i.e., Case (DS),8 the jump size increases infinitely as X(t) approaches xd because

the denominator E(xd) equals zero. According to our computations for a wide range of

8Only for σ = 0.25, Case (DS) holds, and the jump size is an inverted U-shape with X(t).

23



parameter values, in Cases (DS) and (S), the jump size monotonically decreases in X(t).

We see these results more closely below.

The jump size is rewritten as (1 − τ)P (X(t))/E(X(t)) − C/rE(X(t)) − 1. The first

term (1−τ)P (X(t))/E(X(t)) decreases in X(t). Indeed, the firm has a stronger incentive

to sell out to the acquirer for lower X(t) because sell-out involves partial liquidation with

the fixed scrap price θ (called the sell-out effect). The second term −C/rE(X(t)) increases

in X(t) because the denominator E(X(t)) increases in X(t) (called the debt repayment

effect). The impact of X(t) on the jump size is determined by the tradeoff between the

two effects. Recall that increased asset value (or decreased coupon) changes the region

from Case (DOS) to Cases (DS) and (S) (cf. Figure 1). When the target asset value

is sufficiently high compared to debt value (i.e., Cases (DS) and (S)), the sell-out effect

dominates the debt repayment effect. Hence, the jump size decreases in X(t). When the

target asset value is not sufficiently high compared to debt value (i.e., Case (DOS)), the

sell-out effect is stronger for relatively high X(t), but the debt repayment effect is stronger

for relatively low X(t). Hence, the jump size is an inverted U-shape with respect to X(t).

Our results highlight the significance of acquisition timing on stock price reaction. The

jump size greatly depends on the acquisition timing, even if we consider a transaction

between the same two firms. To put it roughly, we have the following predictions. If

the target asset value is relatively low, the stock price jump size is an inverted U-shape

with the distance to default. If the target asset value is relatively high, the stock price

jump size decreases in the distance to default. Although these have not been empirically

tested to date, our model can potentially account for the dispersion of target stock price

reactions.

The debt value also jumps upward from D(X(t)) to the riskless debt value C/r at the

sell-out time in Cases (DS) and (DOS), whereas the debt value remains C/r in Case (S).

With higher X(t), D(X(t)) approaches C/r (see (18) and (22)), and then the jump size

(C/r −D(X(t)))/D(X(t)) decreases. In other words, the debt value jump size increases

as the economic state variable deteriorates. Because acquisition saves debt holders from

bankruptcy risk in our model, this result is straightforward. Hence, we omit depicting a

figure of the debt value jump.

Figure 9 also shows that a higher 1/λ and a lower σ increase the equity value jump

size. Because E(X(t)) decreases in 1/λ (cf. E(x) in Figure 3), a higher 1/λ increases the

difference between E(X(t)) and the sell-out payoff (1 − τ)P (X(t)) − C/r. As a result,

the jump size increases in 1/λ. Intuitively, with lower asset liquidity, the acquisition
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announcement brings a greater surprise to the market, leading to a more positive stock

price reaction. This result is consistent with empirical evidence of Cornett, Tanyeri, and

Tehranian (2011), who show that lower merger anticipation increases market reactions at

the announcement. Because E(X(t)) increases in σ (cf. E(x) in Figure 6), a higher σ

decreases the difference between E(X(t)) and (1 − τ)P (X(t)) − C/r. Hence, the jump

size decreases in σ.

Lastly, Figure 10 depicts the jump size ((1− τ)P (X(t))−C/r−E(X(t)))/E(X(t)) for

varying levels of 1/λ and σ under the optimal capital structure, where the initial coupon

C is chosen to maximize the initial firm value. The other parameter values are set in Table

1. Case (DS) holds for 1/λ = 1.5, whereas Case (DOS) holds for the other parameter

values. Note that the optimal C decreases in 1/λ and σ (cf. C in Figures 4 and 7); hence,

the sell-out payoff (1− τ)P (X(t))−C/r increases in 1/λ and σ. The comparative statics

result with respect to 1/λ under the optimal capital structure is similar to that of the

case with a fixed coupon. Indeed, the jump size increases in 1/λ. Unlike in the case with

a fixed coupon, the jump size slightly increases in σ. This is because a higher σ, which

decreases the optimal C, increases (1− τ)P (X(t))− C/r more than E(X(t)).

6 Extensions

6.1 Search cost

In the baseline model, we assume there is no cost for searching for an acquirer. In this

subsection, we suppose that the firm has to pay flows of cost K while searching for an

acquirer. ODE (8) is replaced with

µxE′(x)+0.5σ2x2E′′(x)+λ((1−τ)P (x)−C/r−E(x))+(1−τ)(x−C−K) = rE(x) (x ∈ S),

where S denotes the sell-out region. In the operation region, the firm does not have to

search for an acquirer, meaning that ODE (9) remains unchanged. The problem can be

solved as in Section 4. Clearly, with a higher K, the firm is more likely to default than

in the baseline model. The main results in the previous sections remain unchanged in the

presence of search cost.

6.2 Offer price contingent on the stock price

In the baseline model, an acquirer’s offer price P (X(t)) (see (1)) depends on the state

variable X(t), but it is not contingent on the current equity value (or stock price) E(X(t)).
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In this subsection, we suppose that an acquirer pays ξP (x)+(1− ξ)E(x), where ξ ∈ (0, 1]

can be interpreted as the bargaining power of the distressed firm. Note that the offer

price agrees with P (x) for ξ = 1. ODE (8) is replaced with

µxE′(x) + 0.5σ2x2E′′(x) + λ((1− τ)(ξP (x) + (1− ξ)E(x))− C/r − E(x))

+ (1− τ)(x− C) = rE(x) (x ∈ S) (36)

because shareholders gain (1−τ)(ξP (x)+(1−ξ)E(x))−C/r at the sell-out time, whereas

ODE (9) remains unchanged. We can rewrite (36) as

µxE′(x)+0.5σ2x2E′′(x)+ λ̃((1− τ)P̃ (x)−C/r−E(x))+(1− τ)(x− C̃) = rE(x) (x ∈ S),

(37)

where we define λ̃ = λ(τ+(1−τ)ξ), P̃ (x) = ξP (x)/(τ+(1−τ)ξ), and C̃ = C/(τ+(1−τ)ξ).

Note that λ̃ = λ, P̃ (x) = P (x), and C̃ = C hold for ξ = 1.

We can solve the problem as in Section 4 because ODE (37) is of the same form as

ODE (8). We have ∂λ̃/∂ξ > 0, ∂P̃ (x)/∂ξ > 0, and ∂C̃/∂ξ < 0. Then, lower bargaining

power ξ plays the same role as lower asset liquidity and asset value, as well as higher

coupon. This implies that the firm is more likely to default than in the baseline model.

The main results in the previous sections remain unchanged in this case.

7 Conclusion

In this paper, we developed the dynamic bankruptcy model with illiquidity of sell-out

opportunities. In the model, we analytically derived the firm’s exit policy, its timing,

the default probability, and the equity, debt, and firm values. The main implications are

summarized below.

With lower asset liquidity, the firm accepts an acquirer’s offer more eagerly to mitigate

the risk of not finding an acquirer until bankruptcy takes place, but this earnest asset

sales policy does not fully offset the decreased liquidity effect. Lower asset liquidity then

increases the default probability and decreases the equity, debt, and firm values. In the

optimal capital structure, the firm reduces leverage with lower asset liquidity, but this

cautious capital structure does not fully offset the decreased illiquidity effect either. The

stock price reaction caused by sell-out greatly depends on the sell-out timing. Intriguingly,

when the target asset value is not sufficiently high, the stock price jump size can be an

inverted U-shape with the state variable. Lower asset liquidity leads to a more positive

stock price reaction due to greater shock. Our results fit empirical findings about asset

illiquidity well.
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A Proof of Proposition 1

A nonnegative solution to ODE (3) with limx→∞Es
U (x)/x < ∞ is expressed as (1 −

τ)x/(r−µ)+U1x
γ , where U1 is an unknown coefficient. Then, by Es

U (x
s
U ) = (1−τ)P (xsU ),

we have

U1 = (1− τ)

(
1

xsU

)γ ((a− 1)xsU
r − µ

+ θ

)
,

which leads to equation (6) for x > xsU .

A nonnegative solution to ODE (2) with limx→0E
s
U (x) < ∞ is expressed as

(1− τ)(r + aλ− µ)x

(r − µ)(r + λ− µ)
+

(1− τ)λθ

r + λ
+ U2x

βλ ,

where U2 is an unknown coefficient. Then, by Es
U (x

s
U ) = (1− τ)P (xsU ), we have

U2 = (1− τ)

(
1

xsU

)βλ
(
(a− 1)xsU
r + λ− µ

+
rθ

r + λ

)
,

which leads to equation (6) for x ≤ xsU .

Finally, by continuous differentiability of Es
U (x) at x

s
U , we have

xsU
r − µ

+ γ

(
(a− 1)xsU
r − µ

+ θ

)
=

(1− τ)(r + aλ− µ)xsU
(r − µ)(r + λ− µ)

+ βλ

(
(a− 1)xsU
r + λ− µ

+
rθ

r + λ

)
,

by which we can derive xsU as (7).

B Proof of Proposition 2

First, we derive the solution in each case, and we will choose the appropriate solution later.

In Case (S), E(x) can be derived as in Appendix A, and hence, we omit the derivation

of E(x). Clearly, the debt value equals D/r because of no default risk. In Case (D),

E(x) and D(x) are essentially the same as the well-known solutions in Goldstein, Ju, and

Leland (2001), and hence, we omit the derivation of E(x) and D(x).

Consider Case (DS). The solution to ODE (8) with boundary conditions E(xd) = 0

and E(xs) = (1−τ)P (xs)−C/r is expressed as (17) for x ∈ (xd, xs]. The solution to ODE

(9) with boundary conditions E(xs) = (1 − τ)P (xs) − C/r and limx→∞E(x)/x < ∞ is

expressed as (17) for x > xs. Continuous differentiability of E(x) at xd and xs leads to (19)

and (20), respectively. A general solution to ODE (10) is expressed as (18) for x ∈ (xd, xs].

A general solution to ODE (11) with boundary condition limx→∞D(x) = C/r is expressed

as (18) for x > xs. Continuity and continuous differentiability at xs lead to

xsβλB1 + xsγλB2 = B3, (38)

βλx
sβλB1 + γλx

sγλB2 = γB3, (39)
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respectively. By substituting (38) into (39), we have

(βλ − γ)xsβλB1 + (γλ − γ)xsγλB2 = 0. (40)

By (40) and boundary condition D(xd) = (1 − α)EU (x
d), we have the expressions of B1

and B2 in Proposition 2. The expression of B3 equals (38).

Next, consider Case (DOS). The solution to ODE (9) with boundary conditions

E(xd) = 0 and E(xs1) = (1 − τ)P (xs1) − C/r is expressed as (21) for x ∈ (xd, xs1).

The solution to ODE (8) with boundary conditions E(xs1) = (1 − τ)P (xs1) − C/r and

E(xs2) = (1− τ)P (xs2)−C/r is expressed as (21) for x ∈ [xs1, xs2]. The solution to ODE

(9) with boundary conditions E(xs2) = (1− τ)P (xs2)− C/r and limx→∞E(x)/x < ∞ is

expressed as (21) for x > xs2. Continuous differentiability of E(x) at xd, xs1, and xs2 leads

to (23), (24), and (25), respectively. A general solution to ODE (11) is expressed as (22)

for x ∈ (xd, xs1). A general solution to ODE (10) is expressed as (22) for x ∈ [xs1, xs2]. A

general solution to ODE (11) with boundary condition limx→∞D(x) = C/r is expressed

as (22) for x > xs2. Boundary condition D(xd) = (1−α)EU (x
d), continuity and continu-

ous differentiability at xs1, and continuity and continuous differentiability at xs2 lead to

(26)–(30), respectively.

Now, we consider which case holds. Note that (14) is nonnegative if and only if (13)

holds. Indeed, as x → 0, (14) decreases to

(1− τ)

{
−C

r
+

λ

r + λ

(
θ − τC

(1− τ)r

)}
,

which is nonnegative if and only if (13) holds. In this case, default is not optimal for any

X(t) because (14) dominates the default payoff 0. This removes the possibility of Cases

(DS), (DOS), and (D), and hence, we have Case (S) under condition (13).

Suppose that (13) does not hold. By the above argument, (14) is negative for a

sufficiently low x, which means that Case (S) does not hold. The remaining candidates are

Case (DS), (DOS), and (D). Note that (32) dominates the sell-out payoff (1−τ)P (x)−C/r

for any x(> 0) if and only if (31) holds. In fact, we define

f(x) = (1− τ)

{
x

r − µ
− C

r
+

( x

xd

)γ
(
− xd

r − µ
+

C

r

)}
− ((1− τ)P (x)− C/r)

=
(1− τ)(1− a)x

r − µ
+
( x

xd

)γ (1− τ)C

(1− γ)r
+

τC

r
− (1− τ)θ
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and have

min
x≥xd

f(x)

=f(xd(1− a)1/(γ−1)) (41)

=
(1− τ)(1− a)xd(1− a)1/(γ−1)

r − µ
+ (1− a)γ/(γ−1) (1− τ)C

(1− γ)r
+

τC

r
− (1− τ)θ

=
((1− τ)(1− a)γ/(γ−1) + τ)C

r
− (1− τ)θ,

which is positive if and only if (31) holds. We obtained (41) by solving the first order

condition (i.e., f ′(x) = 0) because of convexity of f(x). Under condition (31), sell-out is

not optimal for any X(t) because (32) dominates the sell-out payoff. This removes the

possibility of Cases (DS) and (DOS), and hence, we have Case (D) under (31). Note that

(1− τ)λ

τλ+ (1− τ)(r + λ)
<

1− τ

τ + (1− τ)ϵ
.

follows from ϵ ∈ (0, 1].

We now assume (16). By the above argument, (32) does not dominate the sell-out

payoff, which removes the possibility of Case (D). Thus, the remaining candidates are

Case (DS) and (DOS) under condition (16).

C Proof of Proposition 3

Clearly, we have P d(x) = 0 in Case (S), and P d(x) = 1 follows from µ − 0.5σ2 < 0 in

Case (D). Suppose that (16) holds. The default probability P d(x) satisfies the following

ODEs:

µxP d′(x) + 0.5σ2x2P d′′(x) + λ(−P d(x)) = 0 (x ∈ S), (42)

µxP d′(x) + 0.5σ2x2P d′′(x) = 0 (x ∈ O), (43)

where S and O stand for the sell-out and operation regions, respectively. In ODE (42),

λ(−P d(x)) corresponds to the fact that P d(x) changes to 0 with probability λdt in time

interval dt in the sell-out region.

Now, consider Case (DS). A general solution to ODE (42) is expressed as (34) for

x ∈ (xd, xs]. A general solution to ODE (43) with boundary condition limx→∞ P d(x) < ∞

is expressed as (34) for x > xs. As in derivation of D(x) in Case (DS) in Appendix B, by

continuity at xd and xs and continuous differentiability at xs, we have G1, G2, and G3 in

Proposition 3.
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Next, consider Case (DOS). A general solution to ODE (43) is expressed as (35) for

x ∈ (xd, xs1). A general solution to ODE (42) is expressed as (35) for x ∈ [xs1, xs2]. A

general solution to ODE (43) with boundary condition limx→∞ P d(x) < ∞ is expressed as

(35) for x > xs2. As in derivation of D(x) in Case (DOS) in Appendix B, by continuity at

xd, xs1, and xs2, as well as continuous differentiability at xs1 and xs2, we have the linear

equations of Gi (i = 1, 2, . . . , 5) in Proposition 3.
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Table 1: Baseline parameter values.

r µ σ τ α a θ C λ x

0.06 0.01 0.2 0.15 0.3 0.5 15 1 2 1

Figure 1: Four cases depending on E(x) and (1 − τ)P (x) − C/r. The notations O,S, and D

stand for the operation, sell-out, and default regions, respectively.
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Figure 2: A sample path of the equity value E(X(t)). The notations O,S, and D stand for the

operation, sell-out, and default periods, respectively.
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Figure 3: Comparative statics with respect to 1/λ. The other parameter values are set in Table

1. Case (DOS) holds for all 1/λ ∈ (0, 2].
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Figure 4: Optimal capital structure with respect to 1/λ. Case (DOS) holds for 1/λ ∈ (0, 1.25],

while Case (DS) holds for 1/λ ∈ (1.25, 2]. The other parameter values are set in Table 1.
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Figure 5: Comparative statics with respect to 1/λ under the optimal capital structure. Case

(DOS) holds for 1/λ ∈ (0, 1.25], while Case (DS) holds for 1/λ ∈ (1.25, 2]. The other parameter

values are set in Table 1.
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Figure 6: Comparative statics with respect to σ. The other parameter values are set in Table

1. Case (DOS) holds for σ ∈ [0.15, 0.289), while Case (D) holds for σ ∈ [0.289, 0.35].
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Figure 7: Optimal capital structure with respect to σ. The other parameter values are set in

Table 1. Case (DOS) holds for all σ ∈ [0.15, 0.35].

40



0.15 0.2 0.25 0.3 0.35
0.2

0.4

0.6

0.8

1

xs2

xs1

xsb

0.15 0.2 0.25 0.3 0.35
0.2

0.3

0.4

0.5

0.6 xd

0.15 0.2 0.25 0.3 0.35
4

5

6

7

8 E(x)

0.15 0.2 0.25 0.3 0.35
14

15

16

17

18

D(x)

0.15 0.2 0.25 0.3 0.35
21.5

22

22.5

23
F(x)

0.15 0.2 0.25 0.3 0.35
6

6.5

7

7.5

8

8.5

9
10-3

Pd(x)

Figure 8: Comparative statics with respect to σ under the optimal capital structure. The other

parameter values are set in Table 1. Case (DOS) holds for all σ ∈ [0.15, 0.35].
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Figure 9: Stock price reaction. This figure depicts the jump size (E(x) − (1 − τ)P (x) −

C/r)/E(x). In the left panels, the other parameter values are set in Table 1, and Case (DOS)

holds. In the right panels, we set C = 0.9, where Case (DOS) holds only for σ = 0.25, and

Case (DS) holds for the other parameter values.
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Figure 10: Stock price reaction under the optimal capital structure. This figure depicts the

jump size ((1−τ)P (X(t))−C/r−E(X(t)))/E(X(t)) under the optimal capital structure. The

other parameter values are set in Table 1. Case (DS) holds for 1/λ = 1.5, while Case (DOS)

holds for the other parameter values.
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