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Abstract

This paper discusses what determines the reference point in decision making, using an em-
pirical dataset of performance stats in professional baseball. Previous literature has argued that
some round-numbers may work as such points, and as a result, bunching occurs around these
numbers in the distribution of the target outcomes. On the other hand, in the setting of work-
place, the outcomes are observable both for the worker (players) and the evaluator (managers).
This paper shows that this bunching do NOT occur from the structure of the contracts, or how the
managers evaluate the players. Bunching seems to stem from the reference-point dependence
of the workers themselves, and so to avoid this economically inefficient behavior, we have to
design contracts that incentivize players to do so.
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1 Introduction

Reference-point dependence is one of the most important concepts to evaluate outcomes, and
it affects agents’ economic behavior. Classical economic models assume that economic agents
evaluate their choices/prospects according to the absolute value of the (expected) return. On the
other hand, Tversky and Kahneman (1992) introduced the behavioral assumption: agents with
reference-point dependent references consider outcomes by the relative value to some target
value of the outcomes, or reference points. That is, the agents have the feeling of gain or loss
by the extent to which the current outcome deviates from the target. For example, workers feel
happy if her/his wage goes up to $15 per hour, but unhappy if it goes down to $15, although the
absolute value of $15 remains the same. In this case, the previous wage works as the reference
point and affects her/his utility.

In this paper, we explore whether there are bunching in the salary of the player whose
performance stats are above round-numbers, using data on individual performance stats in
Major League Baseball (MLB).

Prospect theory consists of two main characteristics: one is the probability weighting function,
and the other is the reference-point dependence, mentioned above. They allow us to interpret
phenomena that cannot be explained by the traditional microeconomic theory. To explore the
mechanism, we observe that much following research has been conducted in field and laboratory
settings.

Reference dependence also is observed in the behavior of athletes. Pope and Schweizer (2011)
found that professional golf players regarded “par,” the standard number of shots determined
according to the difficulty of each hole, as reference points. Additionally, Allen et al. (2016)
argued that marathon runners adjusted their finish times just before the round number times (just
three or four hours), the reference points. Similarly, Pope and Simonsohn (2011) showed the
existence of the reference point in the MLB, a professional baseball league of the U.S..

MLB position players evaluate themselves by the stats of their performance. Moreover, they
seem to have some reference points in their self-evaluation, for example, about their batting
performance stats: .300 of batting average. Pope and Simonsohn (2011) have shown that there
exists bunching just above .300 of the distribution of these stats.

Pope and Simonsohn (2011) differs from the former two papers. Golfers or marathon runners
do not receive any monetary incentives to achieve these goals, but MLB players receive monetary
rewards determined according to their performance.

Consider the case of professional golf players. Golf is essentially a competition of the total
number of shots they needed to finish the whole tour, regardless of that of every single hole,
or whether she or he saves par or not in the hole. The final rank of order is determined
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according to the total number of shots, and those with better scores are rewarded. Then, there
appears a question as to what if there is some monetary incentive to make an effort to save par.
Suppose when every time she or he saves par in each hole, she or he can get some additional
bonus separated from their total score. In this case, then, making an effort to save par can be
interpreted as a sufficiently “rational” choice for the player, although the observed behavior itself
appears to be evidence of the reference dependence. However, there usually does not exist any
additional monetary rewards such as “Save-Par-Bonus.”

On the contrary, in MLB, it might not be sufficient to prove that the bunching is caused by
reference-dependent utility function about their performance stats: team managers may assign
some monetary incentives for the players to adjust their aspiration level to meet those points, as
we described in the example above.

Our most important contribution of this paper is to reveal the observed behavior of MLB
players to be in fact reference dependence. There are two things to be mentioned. First, we
found the evidence for the manipulation of the performance stats around the round numbers,
by using McCrary (2008)’s method to test manipulation. We additionally include analysis of
not only .300 of batting average but also other points of batting-average and other stats, such
as homerun or stolen-bases. Second, we explored whether this observed manipulation was
truly driven by the preference for reference dependence of the players. We applied a regression
analysis using the data of the players’ annual salary.

Our paper found three results. First, our examination for manipulation supported Pope and
Simonsohn (2011). We observed there existed seemingly reference point dependent behavior,
where .300 of batting-average worked as a reference point. Similar results were obtained about
other round numbers of batting-average, and other batting stats such as on-base percentage or
homerun. Second, we found that as a whole, there did not exist any monetary incentive for
them: for their fixed part of the salary contract, we conclude that their monetary rewards are
continuous at just above each performance stats, such as .300 of batting-average. That is, they
behave as they consider these round numbers as reference points, even though they do not receive
any additional payment by achieving them. Furthermore, we reinforce our results from some
alternative interpretations about other types of monetary incentives: the part of the incentivized
contract, and relation with contract length. Finally, there exist serial changes in the players’ stats
manipulation. .250 of batting-average was not considered as a reference point in recent years,
while 20 of homerun was only for the recent players. Among them, .300 of batting-average
seems to be a solid benchmark for the players.

Through the results above, this paper cotributes to the studies that argues how to design
the efficient contract. As the same as other workplace, players (workers) are evaluated by
their managers (evaluators), based on some performance outcomes. Observed bunching is
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economically inefficient behavior for the managers, since reaching the round-numbers does not
raise the expected winning-percentage of the teams (firm’s productivity). On the other hand, the
possible resource of this misallocation is not only the players themselves. In practice, paying
attention to which one (or other possible mechanisms) affects to the observed inefficient behavior
and adequately motivating individuals, such as designing contracts will enhance the workers
productivity.

This paper proceeds as follows. In Section 2, we review some literature and verify the
standpoint of my paper. Section 3 describes the data we availed. Section 4 presents the
theoretical framework and empirical specification, and make some conjecture. Section 5 shows
the results of the analysis. Discussion about some alternative interpretation and non-statistical
data are included in Section 6. Finally, Section 7 provides concluding remarks.

2 Literature Review

Tversky and Kahneman (1992) mentioned reference point dependence as one of the two
distinct respects of their prospect theory. The most primitive form of reference-point dependent
utility function is:

u(x|r) =
{

x − r if x ≥ r
λ(x − r) if x < r

where x denotes a certain outcome, and r is one of the reference points (Figure 1). This agent
evaluates the outcome by a difference from the reference point. Besides, they assume “loss-
aversion”of the individual, or λ > 1. The size of the disutility incurred when an individual loses
a certain amount of outcome is larger than the size of utility gained when she or he receives the
same amount of outcome. “Diminishing sensitivity,” which is concave in the phase of gain
and convex in that of loss is an advanced form of this specification (Figure 2).

Diecidue and Van de Ven (2008)‘s “aspiration level” model added discontinuity assumption:
that is, a utility function that “jumps” at the reference point (Figure 3). When there exists a jump
in their utility function, then individuals try to manipulate their outcome level, paying additional
cost which is not incorporated into the model with the standard continuous utility function. As
a result, excess mass or bunching around or just above the reference point arises. We discuss
the required functional assumptions of them in Section 4.1.

Individuals with such reference-dependent utility aim to put their effort to achieve their
internal target or reference point. There is several empirical literature that specifies the existence
of reference dependence in the field or lab experimented studies. Farber (2008) applied this
model to the labor supply of New York cab drivers to show that as soon as they reached daily
target sales, they stopped working, even when they reached it early. Jones (2018) analyzed the
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system of American tax payment. He showed that individuals tried to manipulate their real
payment by substituting it by donation or other charitable action, and especially did so when
facing losses. This observation is also caused by the feeling of loss-aversion, with the reference
point of the zero-payment threshold.

x

u(x)

r

Figure 1: primitive gain-loss
function

x

u(x)

r

Figure 2: diminishing sensi-
tivity

x

u(x)

O r

Figure 3: jump at the refer-
ence point

Reference dependence also arises in cases of sports. One of the most well-known papers
among them is Pope and Schweizer (2011). They obtained the data of professional golf players,
to show that in each hole, players behave as they take “par” as the reference point. Specifically,
the probability of succeeding in their putts was significantly higher when the putt was one to
save par than when it was one to get “eagle” or “birdie.” Similarly, Allen et al (2016) specified
the existence of reference point dependence of marathon runners, using data of the finish time
of runners in an enormous number of races in the United States. In this case, the distribution of
finishing time has an excess mass around every 30 minutes. Note that these cases are common
in that the outcomes themselves are nonmonetary ones, and even if they achieve their internal
goals, they do not receive any additional monetary reward for their success. Professional golf
players are awarded according to the total number of shots through the whole tour, not to the
number of pars they saved.

Pope and Simonsohn (2011) mention a seemingly similar case. They picked up three em-
pirical pieces of evidence of round numbers that were considered as reference points: SAT (a
standardized test for college admission in the United States) scores, laboratory experiments, and
baseball. In their section of baseball, they picked up the evidence of Major League Baseball
(MLB) players. They argue that the players have reference-dependent preferences for evaluating
themselves in their performance stats: batting-average (AVG). According to their paper, the
position players (batters) pay attention to their batting-average (AVG) especially to finish each
season with their batting average of just above .300. They obtained MLB season individual AVG
data from 1975 to 2008 and observed position players (= players except for pitchers) with at least
200 at-bats in each season. Then, they found that their distribution of the batting-average had
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excess mass just above .300, which revealed the existence of manipulation there. Furthermore,
they found that players with batting-average of just below .300 were more likely to hit a base-hit
and less likely to get a base-on-balls. Both base-hits and base-on-balls avoid the batter from
being gotten out, so for the team which he belongs to, base-on-balls also has important value
to win the game. However, batting-average does not count base-on-balls as an element to raise
the number (For the definition of performance stats, see Appendix), so they prefer getting hit to
base-on-balls.

There is similar behavior to the cases of Allen et al (2016): bunching. However, one important
thing we have to take care of is that they are professional athletes, and so there exists a procedure
of the contract between the player and the team managers: those who evaluate the player.
They propose contracts to the players for each season before it starts. In other words, the
observed excess mass may be derived by their monetary value function, not by the preference
of themselves. We will distinguish them, which is the main determining factor of the bunching
behavior of this paper.

Pope and Simonsohn (2011) conducted analysis only for batting-average. To reinforce their
research, below are our following topics. We first search for the round numbers of various
batting stats manipulated by the players. Then, we test if there exist any monetary incentives for
the players. The team managers and the players agree to the contract that sets fixed additional
bonuses which are paid when certain performance stats reaches the point. For the players whose
stats are around the cutoff points, making a discontinuously large effort to succeed in bunching
can be interpreted as an economically rational choice, under the above contract. For example,
there should be little difference in the skills as a player between players with .300 of batting-
average and .299. Thus, rational team managers contract them almost the same offer to these
two players, controlling other factors than the batting-average.

Therefore, two possibilities are to be concerned. One is that team managers offer contracts
that make players make additional efforts to achieve the goals. In this case, we can conclude
that the managers show reference dependence about evaluating players. The other is that players
have reference-dependent preferences, which leads to observed excess mass around the cutoff
points. In this case, contracts do not bunch at any round-numbers.

Research about performance and monetary rewards using Major League Baseball has been
conducted in the field of labor economics. One of the first papers is published by Scully (1974).
In the next section, we describe the data used in our paper.

3 Data Description

To make empirical research, we need information about the players’ performance, contracts,
and other details. Then, we obtained panel data that contain this specific information from some
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open data-source. Each sample consists of stats of a player at the end of a single season. We
explain the specific information about the dataset below.

First, Performance data are obtained from baseball fan website: FanGraphs and Baseball
References. We collect information from the 1957 season, the year when the qualified number
of plate-appearances was regulated. It is the cutoff point to be eligible for the title of leading
hitter, the player with the highest batting-average. Stats in each season cover only the regular
season, not Spring-Training or postseason games. The full-sample size is N = 54469.

Note that we then restrict with the subsample including the players who appear to the plate
in MLB games enough to be tested because those with a small number of plate-appearances
are likely to be evaluated by other elements than their batting skills . . . pitching or fielding,
performance at the minor leagues, or those who injured at the season. Especially the batting-
average and on-base percentage of players with few plate-appearances are not be regarded as
reliable. Pope and Simonsohn (2011) set the cutoff at 200 at-bats, but alternatively, we use
200 plate-appearances as the required number to be considered in our analysis. This is because
at-bat does not count the number of base-on-balls or sacrifice bunts in the denominator, even
though they surely appear to the plate and made something to their teams. On the other hand,
plate-appearance stands for the number of chances of batting their coaches gave him. Restricting
the sample reduces the sample size to N = 18143.

The dataset includes the players’ plate-appearance, batting-average, on-base percentage,
homerun, stolen-base, runs-batted-in, base-hit, all of which are the main stats of interest in
this paper. Besides, for the regression analysis, we obtain additional stats: batting, fielding,
and BaseRun, the estimated contribution to the team expressed in the runs they produced, and
WPA, or winning percentage added. Further explanations used in our analysis are provided in
the Appendix.

We then describe the characteristics of the stats. Baseball batting stats are roughly divided into
two types. The first is the one that simply indicates the number of certain plays, and the second
is the one calculated using these numbers, which indicates the rate or the expected number of
the plays. Here we call the former “count stats,” and the latter “rate stats.” count stats are for
example “base-hit” or “home run,” or “stolen-bases.” count stats are irreversible and so they
are monotonically increasing in their appearances. That is, once the players reached a certain
number of count stats such as 20 home runs, it does not matter how their performance goes
afterward. On the other hand, rate stats can fluctuate: even once they reached their internal
goals, it may fall if their performance becomes worse. Batting-average and on-base percentage
are categorized to this type.

Second, we mention the salary data. Salary data are obtained from USA TODAY and Baseball
References. We collected annual salary data of the position players who registered into MLB
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Table 1: Summary Statistics for Sample A

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
PA 18, 143 456.477 152.836 200 320 591 778
AVG 18, 143 .264 .032 .135 .242 .285 .394
OBP 18, 143 .331 .039 .174 .305 .356 .609
HR 18, 143 11.811 9.747 0 4 17 73
RBI 18, 143 51.882 26.912 4 31 69 165
SB 18, 143 7.846 10.869 0 1 10 130
H 18, 143 108.941 42.933 29 72 143 262
Age 18, 143 28.506 4.042 18 25 31 46

Table 2: Summary Statistics for Sample B

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Age 8, 915 28.714 3.901 19 26 31 46
PA 8, 915 471.946 150.890 200 342 605.5 778
AVG 8, 915 .268 .031 .146 .248 .289 .394
OBP 8, 915 .337 .038 .174 .311 .360 .609
HR 8, 915 13.446 10.213 0 6 19 73
RBI 8, 915 56.339 27.621 5 35 74 165
SB 8, 915 8.534 10.851 0 1 11 109
H 8, 915 114.232 42.481 30 78 148 262
+WPA 8, 915 8.715 3.471 2.030 5.820 11.430 19.160
-WPA 8, 915 −8.270 2.610 −15.050 −10.420 −6.060 −2.740
Bat 8, 915 3.257 16.139 −44.200 −7.300 11.100 116.800
Fld 8, 870 .304 7.482 −36.100 −4.000 4.400 37.000
BsR 8, 915 .092 2.712 −12.600 −1.200 1.200 14.300
Salary 8, 915 3, 487, 838 4, 487, 344 62, 500 512, 750 4, 658, 334 29, 200, 000
FA 8, 915 .168 .374 0 0 0 1

Roster at the beginning of each season. They also contain information about other player-specific
characteristics: age, position (such as catcher, 1st-baseman, left-fielder, designated hitter and
so on), the teams they signed, and the possession of the free agency. We merged this dataset
with the player’s stats in the previous year, because the salary is usually determined based on the
performance of the previous season. Because of the lack of disclosed information, this dataset
contains data on salary only from 1987. Because we regard the players’ performance as reflected
in their annual reward in that of the next year, we cannot merge the stats dataset of 2018. So
the latest available season is 2017. The aggregated number of the panel is N = 13226, and the
restriction of 200 plate-appearances reduces the number to N = 8915. Then, here we use two
datasets: one that contains salary data (we call this Sample B), while the other does not (Sample
A). As we explain in the next section, we use two main analyses: manipulation of performance
stats (only use play stats) and design of the contracts (needs information about salary). In the
former, we use Sample A, and in the latter Sample B, The descriptive statistics of each sample
are described in Table 1 and Table 2, respectively.
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4 Empirical Methodology

4.1 Test for Bunching

First, we test if we can observe any behavior that seems to be related to reference-point
dependent preference. As we explained in the previous sections, manipulation is verified by the
observation of bunching or an excess mass around the possible reference point. To specify the
excess mass, we apply the method of regression discontinuity design (RDD).

RDD is a way to measure the effect of a treatment, such that whether the treatment is assigned or
not depends on the threshold of a certain variable (called “running variable”). Then, comparing
the samples just above and just below the threshold is sufficient examination of the treatment,
since they are in almost the same states except for the existence of the treatment.

However, there is an important assumption for this specification is regarded to be valid (Lee
and Lemieux, 2010): continuity of the running variable around the threshold. In other words,
individuals must not be able to manipulate the running variable to cross over the cutpoint. If
there exists manipulation, then a selection bias problem arises, that is, those who try to be
assigned the treatment can adjust their running variable. Therefore, there are some empirical
ways to test the manipulation of a variable, which is the very method I apply in our analysis. One
of the frequently applied methods for this specification is McCrary(2008)’s local linear density
estimation. We avail of this to our specification of bunching.

This test of the manipulation at the cutoff point c proceeds in two steps. First, let d(.) denote
the density function of the variable x to be tested (here we use the performance stats). Then
we undersmooth the observed density: determine the binsize b of x, and obtain the histogram.
And finally, we conduct local linear approximation to both just above and below the cutoff point.
Note that the optimal bandwidth is to be selected by the fourth-order polynomial approximation.
Then, we estimate the frequency at the cutoff point, d̂(r), by fitting the estimated density function
from both below and above the cutoff, d̂+ and d̂−, respectively. Finally, we make the difference
between ln d̂+ and ln d̂− to calculate the statistics θ. With θ and its estimator of standard
deviation, t-tests can be conducted to specifying manipulation.

4.2 Monetary Incentives

Then, we examine the existence of the monetary incentive. For this procedure we use the
specification of the two functional features mentioned in Section 4.1: notch and kink at certain
cutoff points.

First, we specify the salary scheme f (.) without a notch at the cutoff. Then the entire salary
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scheme is expressed as follows:

wit = β0 + f (PERFit) + β2ABOVEit

If f (.) is linear in the performance stats PERFit, then

wit = β0 + β1PERFit + β2ABOVEit

For each player i in the season t, wit is logarithm of their average annual salary in next season
t + 1. PERFit is the value of performance stats (batting-average, on-base percentage,. . . ).
ABOVEit is an indicator of the achievement of their goals for the stats. If the estimated value
of β2 is supported to be positive and significant, then we consider there is an additional bonus
paid to the player that reached a certain target value of the performance stats, which leads them
to bunch.

As the second possibility, the kink at the reference point is specified as follows.

wit = β0 + β1PERFit + β2ABOVEit + β3PERFit × ABOVEit

The first three terms on the right-hand side are the same as the specification of a notch,
the linear salary scheme in the performance stats. In addition, we add the interaction term of
PERFit and ABOVEit. This term stands for the return to the performance stats for the players
that achieve the cutoff point. In words, players with .320 of batting-average, for example, are
evaluated by β1 until .300, and then β1 + β3 for the rest .020 (it is the case of that bunching at
.300 is argued). If the estimated value of β3 is negative and significant, then there exists kink in
the reward function, which again supports the bunching at the cutoff point.

Then, we describe the empirical specification. In our paper, we specify the local polynomial
functions described above by the regression analysis, for each performance stats (batting-average,
for example) and cutoff point (.300). We employ the methodology of regression discontinuity
design (RDD1). We restrict the sample to those who are around the cutoff of each stats (for
example .025 around .300 for batting-average). The bandwidths in each analysis are selected
according to the optimization of Imbens and Kalyanaraman (2009).

We also use linear regression with the interaction term of PERFit and ABOVEit to see the
kink at the reference point. In each analysis, we restrict the sample to the players with their stats
around the cutoff. The window sizes are selected ad hoc, so we tried various cutoffs to check
the robustness.

wit = β0 + β1PERFit + β2ABOVEit + β3PERFit × ABOVEit

1 We have to note that there is a problem to apply RDD in this case: The running variable is manipulated. In
Section 5., we come back to this topic.
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Furthermore, to check the robustness of the results, we include the terms about the player-
specific characteristics as well. Thus, the model to be estimated is:

wit = β0 + β1PERFit + β2ABOVEit + bZit

wit = β0 + β1PERFit + β2ABOVEit + β3PERFit × ABOVEit + bZit

Team and individual fixed effect models are also included.
One important problem of this method is the lack of consideration of the possibility of

endogeneity about our results. We discuss this in Section 5.

5 Result

5.1 Excess Mass Around The Reference Point

In this section, we present our main results of the analysis. First, we show the results that
verify bunching. Table 3 includes the summary of McCrary (2008)’s manipulation tests about
the performance stats. Consistent with Pope and Simonsohn (2011), there exists excess mass
around .300, and besides .250 of batting-average. Manipulation was also observed in some of
the other round numbers of other stats: .350 of on-base percentage, 20 of home runs, 100 of
runs-batted-in, 30 and 40 of stolen-bases, and 200 of base-hits.

For precise estimation of bunching, we set the binsizes of undersmoothing artificially: .001 for
batting-average and on-base percentage, 1 for homerun (HR), stolen-base (SB), plate-appearance
(PA), and base-hit (H), and 4 for runs-batted-in (RBI). Batting-average (AVG) and on-base
percentage (OBP) are usually shown by three decimal digits, rounding the fourth decimal digit,
so strictly batters with .2995 of batting-average are taken as .300. As we mentioned in Section 3,
home run, stolen-base, plate-appearance, and base-hit stand for the number of plays in interest,
and they, therefore, take an integer and earn one for each plate-appearance. Runs-batted-in is
also an integer-stats, but it can get at most 4 at one plate-appearance, so we set it 4. To confirm
the robustness of our results, we repeated this test with various binsize, but we yielded essentially
the same results. Bandwidths are optimized by calculation, following McCrary (2007).

For .300 of batting-average, when we increased the sample size compared with Pope and
Simonsohn (2011), we obtained similar results: Players put effort to manipulate their batting-
average. A difference between the estimated frequency according to the approximation below
.300 and that of above .300 was significant at the .1% (z = 7.442) level.

In addition, bunching occurs in .250 (z = 5.061, p < .1%) as well. It was not reported
in Pope and Simonsohn (2011): there was no bunching observed in any other round numbers
of batting-average, so bunching may have occurred before 1973 (Pope and Simonsohn (2011)
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Figure 4: Histgram of Batting-Average

Figure 5: Discontinuity at .300 of AVG
Figure 6: Discontinuity at .250 of AVG
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Table 3: Test for Manipulation, leastPA = 200

stats type cutpoint binsize bandwidth θ z

AVG rate .300 .001 .019 .499 7.442***
(.067)

.250 .001 .024 .212 5.061***
(.042)

OBP rate .350 .001 .024 .139 2.854**
(.049)

HR count 20 1 5.309 .259 3.465***
(.075)

RBI count 100 4 15.423 .311 3.295***
(.094)

SB count 30 1 10.000 .529 4.274***
(.124)

40 1 11.505 .481 2.764**
(.174)

PA count 500 1 .003 .160 2.515*
(.063)

H count 200 1 18.922 .453 2.547 *
(.178)

Note ***: p < 0.1%, **: p < 1%, *: p < 5%.
Bandwidth is optimized following the method of McCrary(2008).

includes dataset after 1974). We specifically analyzed this in Section 6.4. Replicating analysis
with larger binsizes: .002 and .005 also yielded similar results.

On-base percentage, on the other hand, showed a similar tendency in .350, at the significance
level was the 5% level (z = 2.854). Pope and Simonsohn (2011) reported that when their
batting-average was just below .300 at the last plate-appearance of the season, they tried to
avoid getting walks to get a base-hit. This implies that players regard the batting-average as
more important than the on-base percentage. Our results, however, suggest that to some extent,
players set goals about their on-base percentages as well.

Bunching also occurs in count stats. They showed similar results. As well as batting-average
and on-base percentages, bunching is observed only in some round-numbers, not in all of them.
For Homerun, bunching occurs only in 20 (z = 3.465, p < 0.1%): there may be diminishing
sensitivity: 20 is located on above the 75 percentiles of the whole Sample A. We observe
bunching also at 30 (z = 4.274, p < 0.1%) and 40 (z = 2.764, p < 1%) of stolen-base and
200 in base-hit (z = 2.547, p < 5%). Stealing-bases require skills that are talented to a limited
number of the players but succeed with the probability of 60% to almost 100%, so those who
are evaluated by their number of stolen-bases can manipulate them. 30 and 40 of stolen-bases
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Figure 7: Histgram of On-Base Percentage Figure 8: Discontinuity at .350 of OBP

Figure 9: Histgram of Homerun

Figure 10: Discontinuity at 20 of HR

are also far above the 75 percentiles of all the players.
Base-hit was also manipulated, but the confidence level of the discontinuity was lower than

that of batting-average (z = 2.547, p < 5%). Base-hit is a stats close to batting-average because
both stats increase by getting base-hits. We obtain this result because the number of base-hit
is not regarded as important as batting-average (Most TV live on baseball display a player’s
batting-average, not the number of base-hits.) Alternatively, we can consider that this is the
difference between the count stats and the rate ones. If a player reaches .300 of batting-average,
for example, then he can keep it by not attending the rest of the plate-appearances or games.
Pope and Simonsohn (2011) pointed out that players with just above .300 were more likely to
be replaced with their last scheduled plate-appearance. On the other hand, if he gets the 200th
base-hit, then he does not have to care about the number of base-hits and attend the games to
get better performance.

Surprisingly, such manipulation occurs in runs-batted-in (z=3.295, p<0.1%), too. Compared
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Figure 11: Histgram of Runs-Batted-In Figure 12: Discontinuity at 100 of RBI

Figure 13: Histgram of Base-Hit

Figure 14: Discontinuity at 200 of Base-Hit

to other stats, runs-batted-in is harder to be manipulated because the number of that depends on
the performance of his teammates, and the number they can earn at a single plate-appearance
varies from 1 to 4. As in Table 3, there occurs the evidence in plate-appearances. However, it
may not be convincing because the optimized binwidth was smaller than one, even though the
number of PAs takes only integers. Setting binwidth larger than 1, then the result turned out to
be insignificant, so we regard it as not supportive results for bunching. (In fact, there certainly
exist monetary incentives for plate appearances. We come back to here in Section 6.1.)

Summarizing the results, there exists bunching at some round-numbers of the batting stats
and they are the possible reference point of the players. In the case of marathon runners, Allen
et al. (2016), there occurred bunching in every round number of the goal time, although the
size of discontinuity decreased. That is, it should be considered that the reference points are
not determined only by round numbers as argued by Pope and Simonsohn (2011). That is, the
nature of the reference points are likely to be close to “par” in Pope and Schweizer (2011), or
the well-known standards that are related to the image of “skilled players,” rather than round
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Figure 15: Histgram of Stolen-Base

Figure 16: Discontinuity at .300 of
AVG

Figure 17: Discontinuity at .250 of
AVG

numbers; or well, these numbers are monetarily incentivized goals by the team managers. So
next, we examine whether there is any monetary bonus in their contract.

5.2 Existence of Monetary Incentive

In Section 5.1, we confirmed the discontinuities at the cutoff points of the representative
stats. Then in this section, we show whether they target these goals based on their reference
dependence or their design of the contracts with a monetary incentive.

Table 4 describes the results of local linear regressions on the logarithm of their salary next
year, with the cutoffs of each possible reference point. Column “Other Control” indicates “Yes” if
the model includes covariates (Defense, BaseRun, player’s age, WPA and dummy for possession
of the right of free agency) and season dummies, but “No” otherwise. “bw type” indicates the
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bandwidths used in the model: “Optimal” includes the sample that is in the optimal bandwidth
calculated by Imbens and Kalyanaraman (2009), while “Half-BW” and “Double-BW” are using
a half and a twice of the Optimal bandwidth, respectively. The local average treatment effect of
achieving the goals are described in the sixth column.

As a whole, no evidence supports the existence of monetary incentive to make an effort for
their observed goals. There is no essential difference between the count stats and rate stats. That
is, the reward function f (.) does not discontinuously jump at each cutoff point.

The other possibility that encourages players to manipulate stats is the kink of the monetary
incentives. Table 5 to 12 show results of local linear regression including the interaction terms
of the dummy variable and those of the corresponding stats, or Xit and ABOVEit. "PA" is
the number of plate-appearance. The second row is the performance stats, and the third one
is ABOVEit for the corresponding possible reference points. The fourth one is the interaction
terms.

Results again rejected the hypothesis of the existence of monetary incentives for bunching.
There is no evidence of neither kink or jump of their reward functions. Here we consider each
stats respectively.

First, for batting-average, results rejected the hypothesis of the existence of any additional
monetary bonus for achieving either .300 or .250. Although estimated jumps at each cutoff
point were positive, their standard errors are large and so the difference was insignificant. The
same results were obtained in the model with interaction terms (Tables 5 and 6): the estimated
coefficients of the dummies for achieving their internal goals and the interaction term with the
batting-average are all insignificant. That is, the monetary reward does not discontinuously
jump or kink at .300 of .250. These findings are consistent with the hypothesis that preferences
of the players are reference-dependent about their batting-average and excess mass is caused by
reference-dependent preferences, not by the monetary incentives.

On-base percentage seems similar. The estimated jump is negative, although statistically
insignificant. Table 7 shows that negative kink is not observed. On-base percentage is considered
as relatively more important stats: it is a closer correlation with the winning-average of the team
than batting-average. Thus, it can be the case that team managers attach a higher value to
on-base percentage than to batting-average and think of paying players with a higher number
more. However, our results are against this hypothesis.

For the count stats, observed results are similar: 20 of homerun, 100 of runs-batted-in, and
200 base-hits work as the cutoff points of bunching, but not as the marginal points for the players’
salary. Homeruns produce at least one score to the team and take one of the most “attractive”
aspects of baseball, so there may exist an additional positive effect for the team: it may bring a
lot of audiences, which profits them by stadium fees. Nevertheless, the discontinuous scheme
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of the salary was not observed. Regressions with the interaction term do not report kink at each
cutoff point.

Stolen-base, however, shows different results. Some of the results from Table 4 showed a
significant discontinuity of about 30 stolen-bases. According to Tables 11 and 12, some of the
regressions (column (1) for 30 SB and (1) and (6) for 40 SB) support the jump and negative
kink at the cutoff points. That is, not all the results are consistent with the analyses of other
stats. However, we do not regard them as sufficient support. First, in Table 4, controlling other
player-specific characteristics, their significance level drastically goes down. In Table 11, the
estimated values are a mixture of significant ones and insignificant ones, and they fluctuate from
.816 to 13.567. And finally, for 40 stolen-bases, the results of estimation showed a negative
jump, inconsistent with that of 30, even though these results argue the same stats. Thus, we
conclude these results cannot support the hypothesis of no jump or kink of the salary contracts
f (.), but either vice versa. Especially at this point, we require further analysis.

One possible alternative interpretation is that there exit the players that sign the contracts that
include plural-year service. Such a player receives a fixed salary regardless of their single-year
performance. Thus, we restrict the sample to those who have the right of free agency, which
enables them to negotiate with any MLB or other professional baseball teams. These players
just have finished their contract in the season, and so cannot play for any MLB teams without
signing a new contract, which always reflects his performance of the previous year. In the
analysis above, we consider the possession of the right of free agency by adding the dummy
variable that indicates whether he holds the right or not.

Table 13 shows the results of local-linear regression, using the restricted sample of free-agent
players. This is consistent with the main results: there does not exist evidence that supports the
additional reward at each cutoff point. Analysis of stolen-bases was not conducted because of
a lack of players around there. Table 14 shows the results about .300 of batting-average, also
for the free-agent players. The obtained implication is the same as the first analysis: there is no
kink and notch in the reward function.

5.3 Endogeneity Problem

One important factor to explain the results is the possible endogeneity problem. This is caused
by the methodology we applied in the analysis above.

As we mentioned above, we partly used the method of RDD to specify monetary incentives.
The required condition for this analysis is that the running variable is not manipulated by the
individuals. RDD design assumes that individuals just above and just below the cutoff are almost
the same except for that one is reaching the cutoff. If some players know the jump or kink in
f (.) at the .300 of batting-average, they try to keep their batting-averages above thereby avoiding
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Table 4: Linear Regression on Monetary Incentives
stats,cutpoint Other Control bw type bandwidth Observations Estimate Std. Error z
AVG, .300 No Optimal .084 8514 .047 .061 .773

Half-BW .042 5599 .088 .075 1.174
Double-BW .170 8915 .067 .056 1.184

Yes Optimal .045 5930 .034 .056 .615
Half-BW .023 3005 .061 .077 .788

Double-BW .090 8605 .016 .045 .354
AVG, .250 No Optimal .036 6110 .019 .068 .286

Half-BW .018 3496 .015 .092 .161
Double-BW .072 8539 .034 .054 .636

Yes Optimal .048 7271 .070 .052 1.340
Half-BW .024 4402 .066 .069 .953

Double-BW .096 8810 .075 .044 1.713
HR, 20 No Optimal 3.32 1315 .071 .175 .406

Half-BW 1.66 562 .073 .127 .576
Double-BW 6.64 2582 -.004 .109 -.034

Yes Optimal 3.30 1307 -.002 .141 -.015
Half-BW 1.65 560 .030 .102 .299

Double-BW 6.61 2558 -.032 .088 -.364
OBP, .350 No Optimal .044 6440 -.038 .065 -.592

Half-BW .021 3542 -.076 .089 -.849
Double-BW .087 8656 -.029 .051 -.570

Yes Optimal .045 6525 -.013 .049 -.272
Half-BW .022 3673 -.055 .069 -.807

Double-BW .089 8637 .004 .039 .107
RBI, 100 No Optimal 4.08 393 .072 .289 .250

Half-BW 2.04 228 .282 .400 .707
Double-BW 8.16 714 .008 .185 .043

Yes Optimal 4.04 390 .018 .209 .086
Half-BW 2.02 227 -.042 .324 .130

Double-BW 8.07 708 .056 .127 .435
H, 200 No Optimal 3.173 75 -.786 .396 -1.985*

Half-BW 1.587 35 .386 .271 -1.421
Double-BW 6.347 137 -.061 .309 -.199

Yes Optimal 3.175 75 -.420 1.042 -.403
Half-BW 1.587 35 -4.779 .576 -8.288**

Double-BW 6.349 137 -.109 .413 -.265
SB, 30 No Optimal 3.39 282 .962 .372 2.585**

Half-BW 1.70 134 .920 .263 3.492***
Double-BW 8.16 714 .008 .185 2.941**

Yes Optimal 3.40 282 .379 .297 1.271
Half-BW 1.70 134 .290 .249 1.163

Double-BW 6.79 533 .408 .180 2.260*
SB, 40 No Optimal 3.16 134 -1.276 .453 -2.818**

Half-BW 1.58 56 -.736 .383 -1.924
Double-BW 6.32 245 -.712 .313 -2.274*

Yes Optimal 3.16 134 -.346 .396 -.875
Half-BW 1.58 56 -.313 .429 -.730

Double-BW 6.33 245 -.115 .244 -.472
Note: ***: p < 0.1%, **: p < 1%, *: p < 5%.

Bandwidth is optimized following the method of Imbens-Kalyanaraman (2009).

Table 5: Local Linear Regression on Monetary Incentives
(1) (2) (3) (4)

(Intercept) 11.269 *** -3.374 *** -2.122 ***
(0.386) (0.631) (0.635)

PA 0.004 *** 0.004 *** 0.004 *** 0.002 ***
(0.000) (0.000) (0.000) (0.000)

AVG 3.794 ** 3.677 ** 0.172 0.387
(1.418) (1.209) (1.219) (1.010)

AVG_300 -1.081 -0.949 -0.394 -0.708
(0.920) (0.815) (0.799) (0.647)

AVG * AVG_300 3.851 3.312 1.414 2.477
(3.009) (2.663) (2.611) (2.110)

Age 0.885 *** 0.874 *** 0.901 ***
(0.037) (0.036) (0.031)

Age^2 -0.013 *** -0.013 *** -0.013 ***
(0.001) (0.001) (0.001)

Other Controls X X
Fixed effects Season, Team, Position
#observations 5960 5960 5930 5930
R squared 0.237 0.431 0.453 0.642
F statistic 519.892 855.842 520.717
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).
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Table 6: Local Linear Regression on Monetary Incentives, .250 of Batting-Average
(1) (2) (3) (4)

(Intercept) 12.923 *** -2.363 *** -1.746 **
(0.465) (0.639) (0.644)

PA 0.004 *** 0.004 *** 0.003 *** 0.002 ***
(0.000) (0.000) (0.000) (0.000)

AVG -2.561 -3.677 * -5.514 ** -3.425 *
(2.004) (1.736) (1.719) (1.344)

AVG_250 -1.404 * -1.753 *** -1.329 ** -0.904 *
(0.566) (0.487) (0.483) (0.385)

AVG * AVG_250 5.698 * 7.180 *** 5.480 ** 3.783 *
(2.315) (1.993) (1.974) (1.568)

Age 0.942 *** 0.937 *** 0.952 ***
(0.034) (0.034) (0.028)

Age^2 -0.014 *** -0.013 *** -0.014 ***
(0.001) (0.001) (0.000)

Other Controls X X
Fixed effects Season, Team, Position
#observations 7307 7307 7271 7271
R squared 0.213 0.424 0.444 0.643
F statistic 544.842 1040.701 621.448
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2.01e+03).

Table 7: Local Linear Regression on Monetary Incentives, .350 of On-Base Percentage
(1) (2) (3) (4)

(Intercept) 10.861 *** -4.325 *** -3.212 ***
(0.457) (0.639) (0.644)

PA 0.004 *** 0.004 *** 0.004 *** 0.001 ***
(0.000) (0.000) (0.000) (0.000)

OBP 4.720 *** 3.504 ** 0.488 2.218 *
(1.407) (1.227) (1.249) (1.026)

OBP_350 -0.824 -0.112 0.288 -0.275
(0.796) (0.685) (0.680) (0.558)

OBP * OBP_350 2.274 0.295 -0.867 0.745
(2.254) (1.943) (1.930) (1.581)

Age 0.944 *** 0.938 *** 0.962 ***
(0.035) (0.035) (0.029)

Age^2 -0.014 *** -0.013 *** -0.014 ***
(0.001) (0.001) (0.000)

Other Controls X X
Fixed effects Season, Team, Position
#observations 6656 6656 6620 6620
R squared 0.220 0.419 0.435 0.632
F statistic 528.545 927.252 540.942
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

the scheduled plate-appearances, for example. If the team managers that offer the contract can
detect those who manipulate stats, the contracts seem worse than the observed number of each
stats. That is, the effect of achieving the goals might be underestimated.
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Table 8: Local Linear Regression on Monetary Incentives, 20 Homeruns
(1) (2) (3) (4)

(Intercept) 13.540 *** -5.255 *** -4.906 **
(1.094) (1.570) (1.545)

PA 0.003 *** 0.003 *** 0.005 *** 0.003 ***
(0.000) (0.000) (0.001) (0.001)

HR -0.024 0.015 0.018 0.032
(0.061) (0.052) (0.052) (0.049)

HR_20 -1.422 -0.918 -0.863 -0.367
(1.360) (1.157) (1.143) (1.059)

HR * HR_20 0.074 0.043 0.040 0.013
(0.072) (0.061) (0.060) (0.056)

Age 1.110 *** 1.091 *** 1.113 ***
(0.081) (0.079) (0.070)

Age^2 -0.016 *** -0.016 *** -0.016 ***
(0.001) (0.001) (0.001)

Other Controls X X
Fixed effects Season, Team, Position
#observations 1315 1315 1307 1307
R squared 0.075 0.356 0.386 0.570
F statistic 26.693 125.158 80.250
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

Table 9: Local Linear Regression on Monetary Incentives, 100 Runs-Batted-in
(1) (2) (3) (4)

(Intercept) 14.542 *** -5.262 -5.563
(3.858) (3.786) (3.762)

PA 0.002 * 0.003 *** 0.005 *** 0.003 *
(0.001) (0.001) (0.001) (0.001)

RBI -0.005 -0.007 -0.006 -0.005
(0.040) (0.034) (0.034) (0.028)

RBI_100 -9.535 -6.213 -5.312 -0.929
(6.248) (5.703) (5.720) (5.132)

RBI * RBI_100 0.096 0.063 0.054 0.010
(0.063) (0.057) (0.057) (0.051)

Age 1.217 *** 1.253 *** 1.122 ***
(0.135) (0.146) (0.146)

Age^2 -0.019 *** -0.019 *** -0.017 ***
(0.002) (0.002) (0.002)

Other Controls X X
Fixed effects Season, Team, Position
#observations 476 476 470 470
R squared 0.025 0.286 0.337 0.655
F statistic 2.914 27.138 22.314
P value 0.021 0.000 0.000

Linear regressions on loggarithm of players’ salary next
season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust
standard errors are in the parentheses. The bandwidth in
each sample is chosen following to Imbens and
Kalyamanaran (2009).
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Table 10: Local Linear Regression on Monetary Incentives, 200 Base-Hits
(1) (2) (3) (4)

(Intercept) -10.720 -20.591 -15.364
(41.586) (45.800) (52.998)

PA 0.006 0.005 0.006 -0.004
(0.004) (0.005) (0.006) (26.412)

H 0.111 0.083 0.046 0.584
(0.211) (0.227) (0.257) (3066.727)

H_200 47.353 35.346 20.664 94.406
(48.323) (53.189) (55.472) (548282.725)

H * H_200 -0.237 -0.177 -0.103 -0.479
(0.243) (0.267) (0.279) (2776.812)

Age 1.070 1.121 2.640
(0.618) (0.717) (5465.018)

Age^2 -0.018 -0.018 -0.043
(0.011) (0.013) (93.699)

Other Controls X X
Fixed effects Season, Team, Position
#observations 75 75 75 75
R squared 0.042 0.119 0.207 0.936
F statistic 0.622 1.122 1.268
P value 0.648 0.359 0.264

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

Table 11: Local Linear Regression on Monetary Incentives, 30 Stolen-Bases
(1) (2) (3) (4)

(Intercept) 12.892 *** -4.331 -4.535
(2.013) (2.910) (2.678)

PA 0.005 *** 0.005 *** 0.003 * 0.002
(0.001) (0.000) (0.001) (0.001)

SB -0.045 -0.085 -0.056 -0.065
(0.074) (0.065) (0.062) (0.069)

SB_30 6.364 * 1.687 2.209 0.632
(2.725) (2.444) (2.243) (2.531)

SB * SB_30 -0.191 * -0.038 -0.060 -0.011
(0.094) (0.084) (0.078) (0.088)

Age 1.154 *** 1.104 *** 1.132 ***
(0.164) (0.156) (0.170)

Age^2 -0.017 *** -0.017 *** -0.017 ***
(0.003) (0.003) (0.003)

Other Controls X
Fixed effects Season Season, Team, Position
#observations 361 361 361 361
R squared 0.232 0.456 0.547 0.751
F statistic 27.843 58.663 52.213
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

5.3.1 Donut-RDD
To deal with this possible endogeneity, we repeat the analysis above without the players in the

bandwidth of .005 of batting-average. .005 is the obtained value by a base-hit for the player with
200 at-bats. Table 15 shows the results.

We report the same result: the coefficients of the dummy variable and the interaction term
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Table 12: Local Linear Regression on Monetary Incentives, 40 Stolen-Bases
(1) (2) (3) (4)

(Intercept) 6.138 -4.880 0.455
(3.304) (4.399) (4.444)

PA 0.004 *** 0.004 *** 0.003 0.005
(0.001) (0.001) (0.002) (0.004)

SB 0.167 0.120 0.089 -0.007
(0.087) (0.084) (0.081) (0.143)

SB_40 14.200 ** 12.501 * 9.582 * 7.506
(5.387) (4.878) (4.666) (7.472)

SB * SB_40 -0.370 ** -0.321 ** -0.252 * -0.186
(0.135) (0.123) (0.118) (0.193)

Age 0.772 *** 0.466 * 0.935 **
(0.210) (0.227) (0.301)

Age^2 -0.011 ** -0.006 -0.014 **
(0.003) (0.004) (0.005)

Other Controls X X
Fixed effects Season, Team, Position
#observations 167 167 167 167
R squared 0.215 0.365 0.520 0.781
F statistic 10.901 14.658 13.078
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

Table 13: Local Linear Regression on Monetary Incentives for FA Players
stats,cutpoint Other Control bw type bandwidth Observations Estimate Std. Error z
AVG, .300 No Optimal .025 503 -.175 .197 -.888

Half-BW .013 252 -.307 .302 -1.016
Double-BW .052 1043 -.180 .141 -1.271

Yes Optimal .026 509 -.253 .138 -1.832
Half-BW .013 266 -.209 .212 -.986

Double-BW .052 1038 .199 .102 -1.938
AVG, .250 No Optimal .056 1366 .074 .102 .721

Half-BW .028 910 .147 .133 1.099
Double-BW .114 1501 .067 .090 .735

Yes Optimal .058 1367 .084 .082 1.020
Half-BW .029 923 .149 .107 .398

Double-BW .117 1480 .070 .072 .964
HR, 20 No Optimal 3.48 211 -.302 .300 -1.007

Half-BW 1.74 96 -.123 .226 -.543
Double-BW 6.96 387 .045 .203 .224

Yes Optimal 3.50 206 -.273 .296 -.924
Half-BW 1.75 95 -.156 .278 -.560

Double-BW 7.00 439 -.098 .174 -.565
OBP, .350 No Optimal .045 1103 .034 .129 .262

Half-BW .023 597 -.106 .172 -.620
Double-BW .092 1469 .024 .105 .225

Yes Optimal .043 1044 .021 .107 .196
Half-BW .021 566 -.085 .153 -.558

Double-BW .086 1435 .016 .084 .194
RBI, 100 No Optimal 4.90 50 -.100 .559 -.179

Half-BW 2.45 30 -.095 .949 -.101
Double-BW 9.80 102 .256 .333 .770

Yes Optimal 4.93 49 .195 .433 .449
Half-BW 2.46 30 -1.360 1.295 -1.050

Double-BW 9.86 100 .398 .160 2.481*
H, 200 No Optimal 4.498 107 -.070 .447 -.156

Half-BW 2.249 61 -.439 .726 -.605
Double-BW 8.996 218 -.025 .293 -.086

Yes Optimal 4.512 106 .649 .355 1.824
Half-BW 2.256 61 1.084 .963 1.125

Double-BW 9.024 240 .264 .243 1.087
Note: ***: p < 0.1%, **: p < 1%, *: p < 5%.

Bandwidth is optimized following the method of Imbens-Kalyanaraman (2009). 　
For stolen-bases, it cannot be optimized because of lack of samples.
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Table 14: For FA players: Local Linear Regression on Monetary Incentives
(1) (2) (3) (4)

(Intercept) 6.803 *** 6.827 * 8.564 ***
(1.887) (3.000) (2.432)

PA 0.004 *** 0.004 *** 0.002 -0.001
(0.000) (0.000) (0.001) (0.001)

AVG 20.329 ** 21.148 ** 12.552 * 6.042
(6.622) (6.699) (6.201) (4.675)

AVG_300 7.053 * 7.289 * 7.661 * 2.372
(3.266) (3.267) (3.100) (2.296)

AVG * AVG_300 -23.807 * -24.652 * -25.787 * -7.886
(10.864) (10.870) (10.311) (7.658)

Age 0.009 0.055 0.132
(0.150) (0.111) (0.101)

Age^2 -0.000 -0.001 -0.002
(0.002) (0.002) (0.001)

WAR3 0.090 *** 0.090 ***
(0.012) (0.009)

Other Controls X X
Fixed effects Season, Team, Position
#observations 503 503 492 492
R squared 0.373 0.378 0.522 0.824
F statistic 82.744 56.353 47.385
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

Table 15: Donuts RDD: .300 of Batting-Average
(1) (2) (3) (4)

(Intercept) 11.640 *** -3.487 *** -2.397 ***
(0.426) (0.683) (0.687)

PA 0.004 *** 0.004 *** 0.004 *** 0.002 ***
(0.000) (0.000) (0.000) (0.000)

AVG 2.412 2.904 * -0.464 0.526
(1.575) (1.340) (1.349) (1.121)

AVG_300 -3.049 * -2.262 * -1.597 -1.109
(1.249) (1.119) (1.086) (0.890)

AVG * AVG_300 10.157 * 7.501 * 5.233 3.721
(3.997) (3.574) (3.474) (2.841)

Age 0.908 *** 0.904 *** 0.923 ***
(0.039) (0.039) (0.033)

Age^2 -0.013 *** -0.013 *** -0.013 ***
(0.001) (0.001) (0.001)

Other Controls X X
Fixed effects Season, Team, Position
#observations 5259 5259 5232 5232
R squared 0.234 0.430 0.452 0.642
F statistic 451.710 744.160 455.735
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

with the batting-average are statistically insignificant. That is, there is no jump or kink in their
reward functions. Analysis of other cutoff points yields the same results.

5.3.2 Stats before Manipulation
Furthermore, we checked robustness by using sample before manipulation.
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Table 16: For FA players, donuts RDD: .300 of Batting-Average
(1) (2) (3) (4)

(Intercept) 7.929 *** 8.320 *
(2.338) (3.494)

PA 0.004 *** 0.004 *** -0.001 -0.000
(0.000) (0.000) (0.001) (0.001)

AVG 16.177 17.519 * 12.830 * 12.779 *
(8.271) (8.418) (5.185) (5.851)

AVG_300 1.360 1.633 1.099 1.546
(5.017) (4.886) (3.368) (3.564)

AVG * AVG_300 -5.371 -6.392 -4.712 -6.098
(16.353) (15.962) (10.948) (11.645)

Age -0.018 0.114 0.169
(0.165) (0.105) (0.132)

Age^2 -0.000 -0.002 -0.003
(0.002) (0.002) (0.002)

WAR3 0.096 *** 0.089 ***
(0.011) (0.012)

Other Controls X X
Fixed effects Season, Team, Position
#observations 397 397 389 389
R squared 0.372 0.379 0.795 0.823
F statistic 63.013 43.812
P value 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

The objective of the players is to finish their season with their stats above the cutoffs, so they
start manipulation just before the end of each season.

Figure 17 shows the histogram of batting-average after 20022, at the end of the games of
September 28th of each season. The regular seasons of MLB usually end by September, so on
28th, each team remain two or three games. Generally, players manipulate their barring-averages
by avoiding the last several plate-appearances at the end of each season: that is, this subsample
captures stats before manipulation.

Figure 18 displays the result of McCrary (2008)’s manipulation test.The figure in the left
shows the result on September 28th, while the other is that at the end of each season. No
bunching is found at .300 (z = 1.10, p = 27%) but at the end of the season, players manipulated
their batting-averages (z = 4.65, p < .1%).

Table 17 shows the result of local linear regression using the subsample above. Again, at
least, there are no statistically significant effects found for achieving the round-number, .300.
Restricting the subsample to those with free agency yields essentially the same results.

5.3.3 Players Unable to Manipulate the Stats
Another point to consider the robustness is that manipulation is usually likely to take place

among players on the teams with their standings having been confirmed.

2 This is because of the limitation of data-availability.

24



Figure 18: Before-After: Manipulation Test

Table 17: Stats with “before” manipulation: .300 of batting-average
(1) (2) (3) (4)

(Intercept) 13.037 *** -2.700 0.058
(2.835) (2.486) (2.414)

PA 0.004 *** 0.004 *** 0.003 *** 0.002 *
(0.000) (0.000) (0.001) (0.001)

AVG -0.534 -5.334 -12.007 -10.490
(9.706) (7.592) (7.348) (7.189)

AVG_300 0.717 -0.117 -0.027 -0.054
(4.424) (3.539) (3.445) (3.297)

AVG * AVG_300 -1.979 0.849 0.514 0.583
(14.727) (11.761) (11.436) (10.947)

Age 1.038 *** 0.993 *** 1.005 ***
(0.073) (0.070) (0.071)

Age^2 -0.015 *** -0.014 *** -0.014 ***
(0.001) (0.001) (0.001)

Other Controls X X
Fixed effects Season, Team, Position
#observations 1142 1142 1141 1141
R squared 0.193 0.460 0.508 0.598
F statistic 75.194 183.063 127.631
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

The objectives of the MLB teams are to win the qualification for the postseason game, not to
help players to achieve their internal goals, such as .300 of batting-averages. If teams contend
until the end of the seasons, it is natural that players are not allowed to manipulate their stats by
missing the games. Of course, the audience sees if players try to manipulate them, so there is
no information asymmetry. In other words, players cannot secretly manipulate them.

Table 18 shows the results when restricting the sample to the players on the teams with close
competition, which satisfies at least one of the following conditions. We define them as the
players unable to manipulate their stats.

1. Teams that played 163 or more games at the season.
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Table 18: Monetary Incentives for .300 of Batting-Average: Players of the teams with close
competitions

(1) (2) (3) (4)
(Intercept) 12.583 *** -1.977 -0.539

(0.863) (1.461) (1.430)
PA 0.004 *** 0.004 *** 0.005 *** 0.003 ***

(0.000) (0.000) (0.001) (0.001)
AVG -1.611 0.115 -3.148 -3.021

(3.140) (2.623) (2.629) (2.417)
AVG_300 -3.562 -1.998 -1.022 -1.451

(2.169) (1.947) (1.927) (1.686)
AVG * AVG_300 12.815 7.425 4.122 5.251

(7.074) (6.342) (6.285) (5.497)
Age 0.826 *** 0.796 *** 0.799 ***

(0.083) (0.080) (0.075)
Age^2 -0.012 *** -0.011 *** -0.011 ***

(0.001) (0.001) (0.001)
Other Controls X X
Fixed effects Season, Team, Position
#observations 1119 1119 1114 1114
R squared 0.267 0.466 0.491 0.669
F statistic 120.826 190.300 114.724
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

The number of games is set at 162 since 1962. When some teams are lined up in winning
percentage, however, then they play an additional match to decide which team to advance
to the postseason games, called "One -game playoff." Needless to say, such teams went
through too close competitions to adjust the players’ plate-appearances to manipulate
their batting-averages.

2. Teams that player 161 or less at the season.
When a game was not played due to weather or other reasons, it is to be rescheduled.
However, at the end of the season and when the standings of the team had been established,
it is the case that the game is not taken place and the team end their regular season.

3. Teams that won(missed out on) the playoff berth by one game.
Again, they experience close competition: almost at the end of the season.

4. All teams in the 1994 season.
The regular season in 1994 was abruptly terminated on August 11th, because of the strike
by the Major League Baseball Players Association. It is natural to assume that players
would not predict when the season ended, so they could not manipulate their stats, either.

Figure 19 shows the result of McCrary(2008)’s manipulation test. As that of Section 5.3.3.,
no bunching was found (z = .91, p = 36%).

Results again show no significant difference with those of previous sections. The estimated
coefficients of interest are the opposite of what had been expected.
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Figure 19: Manipulation Test for Players "Unable" to Manipulate Stats

In summary, we found that players did not have monetary incentives at their observed internal
goals. Observing the reward functions f (.) for each performance stats does not either jump or
kink at the possible reference points that are reported in Section 5.1. That is, they adjust their
effort level to make their performance stats just above the reference points, because of their
reference-point dependent preferences. Although we do not specify which of the two charac-
teristics that lead to bunching is more appropriate, the players’ utility function can be described
with such characteristics. In the next section, we consider other alternative explanations by
conducting additional analysis and empirical evidence.

6 Alternative Interpretation and Some Evidence

In section 5, our analysis presented that there in fact exists bunching in some of the batting
stats, but no evidence was observed in their contracts, which supports the hypothesis that these
observations are driven by reference dependent preference of the players. Here we consider
some possible alternatives and additional discussions about our results.

6.1 Incentivized Contract

One most possible interpretation of our results is the incentivized design of the contract. So
far, we tested monetary incentives for the player, analyzing only the fixed parts of the contract.
However, players often sign contracts with an additional bonus according to their performances.
Even though the results in Section 5.2 did not support the existence of incentives in the fixed
salary, it may occur as these additional rewards. Here we present that this hypothesis will be
rejected by showing the specific contracts of some players.

Table 19 shows the specific contents of the MLB position players’ contracts, quoted by Cot’s
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Baseball Contracts from Baseball Prospectus, an open website that discloses information about
that. In addition to signing bonus, fixed payment (we analyzed this part), and other optional
bonus or service, players receive some monetary incentives according to their performance.
They are roughly grouped into two: award bonus and bonus for reaching a certain number of
their stats. While the former includes winning Gold Glove or All-Star Game selection (a match
between the two big leagues of MLB, each of which is composed by players selected by the
manager and the fan’s vote), the latter consists of only round numbers with plate-appearances
or games they attended, neither batting-average, on-base percentage nor home runs. Besides,
there are at most 2 or three position players who sign such contracts. Pitchers are more likely to
agree to ones with performance bonuses, whose trigger stats are also related to attendance: the
number of games appeared, or innings pitched. Therefore, we can conclude that in the additional
bonus parts of their contracts, there are no incentives that encourage them to manipulate their
batting-average, on-base percentage or other batting-stats.

Team managers have to design contracts with limited budget constraints. Plate-appearances
given to single teams are on average constant throughout the year because they play the same
number of games, so the team manager distributes the fixed numbers of plate-appearances to the
players. That is, managers can predict how many players at most achieve their goals. On the other
hand, it is hard for the managers to estimate the total numbers of the players that achieve some
round numbers of batting-average or homerun. If almost all the players reached the benchmarks,
then even if they led the team to win, managers have to owe additional expenditure. This point
can be a supportive discussion of our results.

6.2 Contract Length

Skilled players often sign contracts with a plural-year duration. This is related to why we
analyzed using the sample of players who held the right of free agency. Furthermore, we should
also take account of their contract length, that is, until when the players are insured to play for
the team they signed because it can be considered as the additional monetary bonus.

Krautmann & Oppenheimer(2002) researched this point. They used the salary dataset of
MLB from the 1990 to 1994 seasons and regressed log salary on an interaction term of the
performance proxy and the contract years they signed.

ln(SALit) = β1 + β2PERFit + β3(PERFit ∗ LENGTHit) + β4LENGTHit

The model is employed by Krautmann & Oppenheimer(2002). According to their results, the
coefficient of the interaction term, β3, was estimated to be negative at the 1% of significance.
In words, the longer the contract years at once stretch, the less the return to their performance
becomes. This is caused, they claimed, by the player’s risk-aversive preference that dislikes the
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Table 19: Descriptions of the Contract of the Specific Players
• Ichiro Suzuki, Outfielder, 4-year contract with Seattle Marinars (2004-’07)

– signing bonus- $6M
– fixed payment- 04:$5M, 05:$11M, 06:$11M, 07:$11M
– performance bonuses- $1.25M in performance bonuses for plate appearances

∗ $50,000 each for 400 PAs, 2004-06
∗ $0.1M each for 500 & 600 PAs, 2004-06
∗ $0.1M for 400 PAs, 2007
∗ $0.2M each for 500 & 600 PAs, 2007

– award bonuses: $50,000 each for Gold Glove, All Star selection
– trade-protection (Veto for moving the team without his acceptance):

limited no-trade clause (may block deals to 10 clubs)
– Other

∗ housing allowance: $28,000 in 2004, $29,000 in 2005, $30,000 in 2006, $31,000 in
2007

∗ interpreter, trainer, transportation for spring & regular season
∗ 4 annual round-trip airline tickets from Seattle to Japan

• Eric Sogard, 2nd-baseman, single-year contract with Milwaukee Brewers (2018)
– fixed Payment- $2.4M
– performance bonuses- : $0.15M each for 30, 50, 70, 90 games. $50,000 for 120 games

• Alex Avila, Catcher, two-year contract with Arizona Diamondbacks (2018, 2019)
– Fixed Payment- 18:$4M, 19:$4.25M
– annual performance bonuses: $25,000 each for 350, 400 plate appearances. $50,000 each for

450, 500 PA. $0.1M for 550 PA.
(Quoted from Cot’s Baseball Contracts)

risk of being fired. From a viewpoint of our model, those who achieve their goals, receive an
additional bonus, but instead of getting higher baseline salary, and they, therefore, choose to
sign the contract with a longer duration. For the team manager, it is profitable to propose such
contracts, which may enable them to hold highly skilled players with relatively reasonable costs.
In these days, it is usual that players sign the plural-year package contracts with the right to
opt-out: the player or the manager nullify the contract while it is under duration, for the players
to get some better contract, or for the manager to modify the contract or release the player. So a
more complicated model might be required to describe this situation, but it helps us to consider
these nonmonetary bonuses.

6.3 By-Time Analysis

Our research used data from a wide range of time: 62 years for performance stats, 31 years
for salaries. Through such a long time, techniques of the players or the quality of instruments
have evolved, which leads to change in mean or the standard values of the stats: that is, unlike
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the reference point “par” of golf, the reference point of baseball might move over time. Besides,
there may have been a lot of changes in the design of the contract they agreed. Here we
consider time-variable elements in our analysis. Specifically, two main possible effects change
the contract design: one is the relative market power of the players and another change in the
relative importance of each performance stats.

Relative market power has a direct relation to the contract. Before the system of free agency
was introduced, players were forbidden to move to other teams without permission by the team
which they belong to. The 1994 strike by the Players Association of Major League Baseball,
against the team owners to request improvement of their treatment, also may have a great
influence on their contracts (See Appendix about the specific information about free agency and
the Strike).

It is also important to capture the change in the evaluation of each stats. Through the history
of baseball, a lot of stats have been invented to measure the performance/ability of the player,
and it has been argued which stats are the most efficient ones to evaluate them. One of the most
important revolutions was the publication of ’Moneyball’(2003), written by Michael Lewis, a
financial reporter. In this book, he described that batting-average was not appropriate to measure
the quality of the players: on-base percentage is more close correlation with total runs the team
earns in the season. In practice, Oakland Athletics applied this strategy to form the members
of the team, and won the playoff. This story was widely spread and changed the sense of view
about the baseball stats.

The impact of this publication was so great that it was evaluated in an economic article.
Hakes and Sauer (2006) tested Lewis’s claim in the econometric specification. They reported
that on-base percentage gave us a better explanation about the winning percentage of the team
than batting-average, but team managers had been taking batting-average of more importance
when evaluating players. After Moneyball was published, however, their evaluation revolved.
In 2004, a year after its publication, the estimated return to on-base percentage for the players
increased, compared to the previous 4 years.

Then, one possible question occurs: “Does the tendency of manipulation/discontinuous con-
tract design also change through the history of baseball?”

In this section, we replicate the methodologies conducted in the previous sections, but sorting
the sample into periods below:

1. Before Free Agency (1957 - 1975)
2. After Free Agency and Before Strike (1976 - 1994)
3. After Strike and Before Moneyball (1995 - 2003)
4. After Moneyball (2004 - 2017)

30



Sample B does not include data from 1957 to 1986, so in the section of monetary incentive,
We conducted tests for only three parts except for “Before Free Agency.” From here, we focus
on the three important batting stats: batting-average, on-base percentage, and homerun.

6.3.1 Bunching
Table 20 shows the results of the McCrary (2008)’s manipulation tests, for each grouped

samples. Compared to the full-sample analysis conducted in Section 5.1, we observed partly
different results for each stats.

First of all, .300 of batting-average is the most solid benchmarks of the players. Each subsample
shows the bunching at the cutoff point, at least at the 5% level of significance. Although there
exist skeptical discussions on the validity of batting-average as a performance stats, it still works
as an important status for the position players. There are no other stats that show such a consistent
tendency among the samples.

On the other hand, .250 seems not to be regarded as important after Moneyball, as other
previous days. In this term, the bunching at .250 becomes insignificant. Compared to the
samples of the old days, the average level of the batting-average has been increasing. The
mean value of each samples are .259 (samples of ’57-’75), .264 (’76-’94), .271 (’95-2003),
.263 (2004-2018), respectively, median values of which are almost the same. Note that in fact,
restricting the sample to the years until 1965, then the manipulation test shows no statistical
significance at .300 (z = 1.577, p = 11.45%). So as we mentioned in Section 5.1, it may be
because we extended our data range to 1957, that .250 works as a reference point. For samples
before 1965, bunching at .250 was significant at 5% level (z = 2.12).

Excess mass of homerun was significant only in the latest subsample. After the publication
of Moneyball, SABRmetrics argue that extra-base-hits (double, triple and home run) have a
significant effect on an increase in the runs their team earns (Information of SABRmetrics is
provided in Appendix). Besides, on-base percentage, surprisingly, showed no evidence for
bunching in the subsample level. Thus, as we mentioned above, players consider these stats
as less important ones to evaluate players than .300 of batting-average. Otherwise, we have to
consider the possibility that there may have existed some different design of contracts. In the
next section, we describe an analysis of these results, showing that there also did not exist any
monetary incentive to achieve these points.
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Table 20: Bunching Test for the Grouped Sample by Time

stats, cutpoint ’57-’75 ’76-’94 ’95-2003 2004- full sample

AVG, .300 bw .023 .020 .022 .019 .019
θ .573 .566 .310 .403 .499

(.146) (.120) (.130) (.120) (.067)
z 3.934*** 4.732*** 2.393* 3.376*** 7.442***

AVG, .250 bw .028 .028 .032 .027 .024
θ .250 .151 .306 .121 .212

(.080) (.069) (.094) (.076) (.042)
z 3.149** 2.188* 3.242** 1.595 5.061***

OBP, .350 bw .031 .030 .036 .030 .024
θ .137 .149 -.035 .137 .139

(.089) (.081) (.093) (.082) (.049)
z 1.538 1.846 -.380 1.672 2.854**

HR, 20 bw 6.313 6.677 10.165 7.273 5.309
θ .222 .214 .145 .315 .259

(.150) (.123) (.129) (.112) (.075)
z 1.479 1.751 1.117 2.819** 3.465***

Note ***: p < 0.1%, **: p < 1%, *: p < 5%.
Bandwidth is optimized following the method of McCrary(2008).

6.3.2 Monetary Incentive
Table 21 shows the results of the local-linear regression conducted in Section 5.2 for the

restricted samples. Each column shows the statistics for the subsamples, and the far-right edge
column displays the result using the full sample, the same one as Table 4. Each result includes the
other controls (that is, results correspond to “Yes” in “other control” of Table 4). Results of the
analysis including the interaction terms are shown in Table 24 to 25 (for .300 of batting-average.
Analysis for other cutoffs show the same results). According to these results, they are consistent
with the analysis in Section 5.2 for all the stats: Any notch or kink in the players’ monetary
rewards was not observed. Additionally, we describe the same analysis for the players with free
agency in Table 22 that again shows the same results. All the statistics that stand for the notch
are insignificant to their fixed part of the salaries. Therefore, we repeat the same conclusion as
Section 5: there are no monetary incentives that verify the reason that players bunch their stats.
It implies that the players have preferences that lead to excess mass, or that the utility functions
of the players have kink or notch at each cutoff point, which works as a reference point for the
player.

In sum, we obtain the additional conclusion of this section: there may have some factors
that cause a change in the players’ attitude to their stats about bunching. On the other hand,
it is consistent over time that team managers do not make the reward function f (.) that leads
players to bunching. That is, it is caused by the players’ reference point dependent preferences,
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Table 21: Local-Linear Regression for the Grouped Sample by Time

stats, cutpoint bw, type ’87-’94 ’95-2003 2004- full sample

AVG, .300 Optimal bw .024 .042 .030 .045
Obs. 697 1806 1872 5930

estimate -.034 .064 .066 .034
(.137) (.092) (.103) (.056)

z -.250 .697 .637 .615

AVG, .250 Optimal bw .036 .043 .075 .048
Obs. 1482 1806 3991 7271

estimate .154 .064 .076 .070
(.084) (.092) (.060) (.052)

z 1.825 .697 1.277 1.340

HR, 20 Optimal bw 4.183 3.685 2.46 3.30
Obs. 341 371 475 1307

estimate -.255 -.348 .343 -.002
(.228) (.218) (.264) (.141)

z -1.122 -1.600 1.300 -.015

OBP, .350 Optimal bw .031 .025 .027 .045
Obs. 1098 1281 2042 6525

estimate .109 -.151 -.030 -.013
(.106) (.120) (.093) (.049)

z 1.031 -1.262 -.323 -.272

Note: ***: p < 0.1%, **: p < 1%, *: p < 5%.
Bandwidth is optimized following the method of Imbens-Kalyanaraman (2009).

supporting Pope and Simonsohn (2011)’s interpretation.

7 Conclusion

This paper has considered the possible existence of monetary incentives behind the behavior
that appears to be related to reference-point dependent preference.

Three important findings are obtained. First, MLB position players adjust their effort level
so that their performance stats to achieve their internal goals. These internal goals are round
numbers, but not all of them work as such benchmarks. As a result, around the cutoff points,
excess mass or bunching are observed. Second, at least in the fixed part of their contracts, there
is no clear evidence that supports the existence of monetary incentives. Although there remains
a room for discussion in stolen-bases, the salary scheme did not kink or jump at the cutoff points
where bunching was observed. That is, players try to reach the benchmark of each performance
stats, even though there are not any monetary incentives that lead them to do so. Thus, these
observed efforts are likely to be caused by their reference-point dependent preferences, as Pope
and Simonsohn argued. Finally, repeating the analysis with subsamples divided by time, the
players’ attitude to the cutoff points has been changing over time, and it results in the change in
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Table 22: Local-Linear Regression for the Grouped Sample Including FA Players

stats, cutpoint bw, type ’87-’94 ’95-2003 2004- full sample

AVG, .300 Optimal bw .060 .032 .039 .026
Obs. 218 229 354 509

estimate -.026 -.309 -.186 -.253
(.247) (.182) (.182) (.138)

z -.108 -1.700 -1.020 -1.832

AVG, .250 Optimal bw .018 .023 .078 .058
Obs. 123 227 716 1367

estimate .425 .293 .047 .084
(.281) (.230) (.103) (.082)

z 1.512 1.272 -.448 1.020

HR, 20 Optimal bw 5.35 3.504 3.566 3.50
Obs. 47 70 102 206

estimate .004 -.701 -.337 -.273
(.284) (.492) (.513) (.296)

z -1.600 -1.423 -.657 -.924

OBP, .350 Optimal bw .034 .042 .031 .043
Obs. 154 344 395 1044

estimate .080 -.174 .115 .021
(.291) (.179) (.188) (.107)

z .276 -.971 .616 .196

Note: ***: p < 0.1%, **: p < 1%, *: p < 5%.
Bandwidth is optimized following the method of Imbens-Kalyanaraman (2009).

Table 23: Before Strike
(1) (2) (3) (4)

(Intercept) 12.995 *** -1.050 0.524
(1.807) (2.009) (2.032)

PA 0.003 *** 0.003 *** 0.002 ** 0.003 ***
(0.000) (0.000) (0.001) (0.001)

AVG -3.036 1.653 -2.244 -2.713
(6.324) (5.534) (5.580) (5.109)

AVG_300 -4.805 -3.749 -4.037 -0.368
(3.422) (2.961) (2.908) (2.499)

AVG * AVG_300 16.754 12.832 13.842 1.628
(11.329) (9.808) (9.641) (8.317)

Age 0.769 *** 0.744 *** 0.683 ***
(0.088) (0.086) (0.080)

Age^2 -0.011 *** -0.011 *** -0.010 ***
(0.001) (0.001) (0.001)

Other Controls X X
Fixed effects Season, Team, Position
#observations 703 703 697 697
R squared 0.214 0.409 0.432 0.631
F statistic 64.346 99.546 57.617
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).
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Table 24: After Strike, Before ‘Moneyball’
(1) (2) (3) (4)

(Intercept) 11.421 *** -4.372 *** -2.434 *
(0.663) (1.091) (1.092)

PA 0.004 *** 0.004 *** 0.003 *** 0.002 ***
(0.000) (0.000) (0.001) (0.001)

AVG 2.574 2.412 -2.747 -1.072
(2.428) (2.078) (2.070) (2.021)

AVG_300 -1.630 -0.863 -0.684 -0.492
(1.482) (1.323) (1.304) (1.271)

AVG * AVG_300 5.779 3.288 2.691 1.895
(4.859) (4.332) (4.270) (4.157)

Age 0.968 *** 0.944 *** 0.972 ***
(0.060) (0.060) (0.059)

Age^2 -0.014 *** -0.014 *** -0.014 ***
(0.001) (0.001) (0.001)

Other Controls X X
Fixed effects Season, Team, Position
#observations 1782 1782 1771 1771
R squared 0.320 0.515 0.554 0.606
F statistic 226.726 360.087 246.146
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

Table 25: After ‘Moneyball’
(1) (2) (3) (4)

(Intercept) 13.262 *** -2.952 * -1.635
(1.056) (1.229) (1.213)

PA 0.004 *** 0.004 *** 0.003 *** 0.002 ***
(0.000) (0.000) (0.001) (0.001)

AVG -1.601 1.583 -2.049 -0.004
(3.742) (3.031) (2.981) (2.924)

AVG_300 -0.990 -1.307 0.113 0.212
(2.142) (1.752) (1.703) (1.644)

AVG * AVG_300 3.990 4.638 -0.132 -0.539
(7.079) (5.784) (5.620) (5.425)

Age 0.922 *** 0.912 *** 0.942 ***
(0.059) (0.057) (0.056)

Age^2 -0.013 *** -0.013 *** -0.013 ***
(0.001) (0.001) (0.001)

Other Controls X X
Fixed effects Season, Team, Position
#observations 1880 1880 1872 1872
R squared 0.217 0.476 0.511 0.585
F statistic 143.016 338.800 224.065
P value 0.000 0.000 0.000

Linear regressions on loggarithm of players’ salary next season.
Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are in the
parentheses. The bandwidth in each sample is chosen following to Imbens and
Kalyamanaran (2009).

the tendency of bunching. Among the argued cutoffs, however, .300 of batting-average remained
consistent bunching over time. Thus, we conclude that it works as a solid benchmark for the
players. On the other hand, there are no monetary incentives in the reward functions for all the
subsamples. This result supports the second finding.

Our results indicate that professional sports players seem to have preferences that yield utility
not only by the monetary rewards but also by their performance situationally. It may suggest
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that dealing with the cases of professional occupation requires some assumption that workers
do not consider the time for leisure and works as a tradeoff. For the team managers, on the
other hand, our analyses help make better contract packages that attract the skilled players more,
or search the player relatively underestimated, to get the players more “efficiently.” We should
pay attention to the opposite-side approach: where kink or notch observed about the reward
function, even though any bunching does not exist. Although players do not feel important
as their reference points, there may be some cutoff points that the team managers regard as
reference points for evaluating players.

Simultaneously, as we described, we are required to continue the analysis of monetary incen-
tives for performance stats. In Section 6.1, we suggested that contract durations be substituted
into direct monetary rewards. Rewards may work in the stage before signing contracts: players
who achieve the cutoff points may be likely to be offered by MLB teams than those who do
not. Furthermore, although we do not include them in this paper, we might obtain another
implication by considering the rewards they may receive after their retirement: “reaching .300
of batting-average 4 times in his career,” should be some outstanding signals to get jobs as a
coach of the baseball team, or a commentator in the TV show.

We can apply our results to design a more efficient contract in the situation of labor economics.
The relative importance of the stats with expected runs or winning-percentages differs from one
another. For example, On-base percentage is more closely correlated to them than batting-
average. Besides, the number of stolen-base has little correlation with them (the correlation is
as weak as r = 0.07). For the team managers, then, players’ too much adherence to the stats
that do not affect winning-percentage or ones that may be tradeoff-relation with more important
stats (for example, batting-average and on-base percentage). To prevent such inefficiency, they
are sometimes required to make contracts that lead players to pay more attention to the prior
stats. Of course, our analysis presents some implications for them. This viewpoint can also be
availed in other contract design.

As we mentioned above, in MLB, the performance stats have been recorded for almost 150
years, and thanks to the community of the fans, we can fairly compare the players played in the
different generations. As we used in this paper, rich information about their contracts has been
published. There exist only a few studies for international comparison: Many countries around
the world, Japan, Germany, Italy or Australia and so on, have their professional leagues. Of
course, there are several amateur players, those who do not receive any reward for their plays,
there also exists room for comparison among them.

To conclude our paper, we state that it is worth continuing analysis of baseball, both for the
sports itself and economics.
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Appendix

A. Theoretical Frameworks

Many sports are so rich in performance stats that record plays in variable viewpoints. Among
them, especially, baseball performance stats can distribute individual-separable evaluation to
the players, as well as units of the whole team. Thus, baseball performance stats are interpreted
as reliable proxies for the skills of the players. Here we assume that the players are trying to
maximize them, subject to their internal costs depending on their talented skills. After observing
the stats the players, team managers evaluate them and propose contracts of the next year (they
also include the player-specific characteristics: age, position and so on). Then, the players’
monetary rewards are given by the following benefit function:

fit+1 = f (Xit, Zit),

where F stands for the monetary reward function to the player i at time t + 1, and Xit and Zit

express the value of the stats and other player-specific characteristics, respectively.
We assume that Xit is determined by the effort level of each player. To increase the effort level,

they have to pay additional intrinsic costs. Let eit be an effort level of the player i at season t,
and cit(.) be an continuous, increasing and convex intrinsic cost function. Note that the required
cost to achieve the same level of X varies by players, according to their skills. Therefore, the
maximization problem of the players are described as follows:

max
eit

Uit = f (X(eit), Zit)− cit(eit).

We assume the additive separable function of the utility.
An alternative specification is that each player evaluates himself as an athlete: he directly

yields benefit by his value of the performance stats. That is, players decide according to their
benefit function

bit = b(Xit, Zit).

In this model, the player no longer pays attention to his future monetary rewards. In this model,
we again assume the intrinsic cost determined by the player’s skill and effort level. Another
specification of the maximization problem is described as follows:

max
eit

Uit = b(X(eit), Zit)− cit(eit).

These two ways of the specification are different only in the first terms of the utility function
U(.).
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Then, we consider the functional features of f (.) or u(.), which cause bunching of the
histograms of the stats. In this paper, we suppose f (.) or b(.) satisfy at least one of the two
assumptions quoted in Section 2: one is “kink” at the reference point, and the other is “notch”
of the function.

1. “notch” at r (Figure 20)
The first possible assumption is a discontinuity at a certain cutoff point of the function,
described as follows:

lim
ϵ→0

br(r + ϵ) , lim
ϵ→0

br(r − ϵ)

lim
ϵ→0

fr(r + ϵ) , lim
ϵ→0

fr(r − ϵ)

This is the discontinuous form of the function at the cutoff point r, introduced by Diecidue
and Van de Ven (2008).

2. “kink” at r (Figure 21)

lim
ϵ→0

b′r(r + ϵ) , lim
ϵ→0

b′r(r − ϵ)

lim
ϵ→0

f ′r(r + ϵ) , lim
ϵ→0

f ′r(r − ϵ)

u′(.) and f ′(.) stand for the first-order differential of u(.) and f (.), respectively (u(.)
and f (.) are assumed to be continuous differential). As we explained in Section 2, this is
the primitive form of reference dependence, introduced in Kahneman and Tversky (1979)
and Tversky and Kahneman (1992).

X

f (X), b(X)

O r

Figure 20: "notch" at the reference point

X

f (X), b(X)

r

Figure 21: "kink" at the reference point

Allen et al. (2016) also utilized these types of model, and specified bunching of the marathon
runners’ finish time around the round numbers.

We cannot determine which model is appropriate to interpret the observed behavior of the
players: bunching around the possible reference points. Our interest is that which of the two
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assumptions are observed. If the players’ reference-dependent preferences for the performance
stats cause bunching, then b(.) has functional features that represent reference dependence. On
the other hand, if their contracts are designed to lead them to the bunching around some possible
reference point, now we can regard that f (.) has the features described.

Both two possible assumptions result in bunching at the cutoff point: in our paper, we consider
that these cutoffs are the round numbers of the performance stats, such as .300 of batting-average.
3 In words, the players’ salary scheme might be designed such that players make an effort to
meet their cutoff points. In the rest of this subsection, we explain the possible design of the
contracts.

Let us consider the first case: the monetary reward “jumps” at the possible reference point.
Then, the salary function is decomposed into two terms as follows.

fit+1(.) = a(Xit, Zit) + DitBonus(Xit)

f (.) is determined by the number of the performance stats X and other player-specific char-
acteristics Z, note that this term is continuous in X. D is the dummy variable that depends
on X: to indicate if the player’s stats are above the cutoff point, but otherwise zero. If the
players achieve the cutoff point like .300 of batting-average, then f discontinuously rises by the
appearance of Bonus term. And as a result, the salary scheme with this form of function causes
the excess mass around the cutoff, by the players who desire the additional monetary rewards.

The second case, on the other hand, expresses the “kink” of f as follows:

fit+1(.) = (1 − Iit)g(Xit, Zit) + Iith(Xit, Zit)

I is the same indicator as D, which indicates 1 if X is larger than the cutoff, but 0 otherwise.
Two salary schemes are depending on the players’ performance stats, represented by g and h.
g is applied for the players with the stats below the cutoff, and h is for those with above there.
Furthermore, h consists of two terms: h(., .) = g(c, Zit) + k(Xit − c). c stands for the given
cutoff. In words, players receive the continuous reward in their performance stats, but the return
to the stats changes after they achieve the cutoff: in our assumption, decrease. More directly,
the marginal rate of return to their performance stats discontinuously diminishes: kinks at the
reference point.

While we cannot observe bit directly, fit can be observed as the contracts that players agreed.
If fit has the discussed functional features, then we conclude that the contracts’ contribution to
bunching. In the next section, we describe how to specify them.

3 Therefore, it is not so important to determine which of the two is appropriate to describe the bunching itself: that
is, our interest is whether f (.) has these types of functional features in the number of performance stats.
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B. Reference to the stats

Here we describe the details of the stats used in the paper.
• Definition

– Batting-Average (AVG)

AVG =
Base-Hit
At-Bat

The rate of base-hit. At-Bat(AB) is calculated as AB = PA−Base-on-Balls−Hit-by Pitch−
Sacrifice-Bunt − Catcher-Interferance.
AVG depends only on the number of base-hit, so when players intend to manipulate AVG,
they try to get base-hit, not base-on-balls. Moreover, AVG does not identify the number of
bases they get at one base-hit: single, double, triple, and a home run.

– On-Base Percentage (OBP)

OBP =
Base-Hit + Base-on-Balls + Hit-by-Pitch

PA − Sacrifice-Bunt − Catcher-Interferance

OBP is different from AVG in that it takes base-on-balls and hit-by-pitch into account. Money-
ball and Society of American Baseball Research (SABR) argues that OBP is more correlated
to the runs the team earns than AVG.

– Batting, Fielding, BaseRun
SABRmetrics, which considers baseball by the scientific approaches, have argued that which
player is more important for the team. You measure Players’ contribution in the following
procedure:

1. Convert each play (base-hit, strike-out, sacrifice-bunt, . . . ) into runs-value.
2. Convert runs-value into a contribution to the number of wins the team obtains from the

contribution of the player.
Batting, Fielding, and BaseRun stand for the first step of the identification: the estimated
number of runs the player produces by his batting, fielding, and base-running above the average.
For the team they play for, they are kinds of clear indicators of the players’ contribution.

– WPA (Win-Probability-Added)
By the statistics of the games, SABRmetrics have obtained the winning percentage at each
specific situation of the game: scores (2-runs forward, 3-runs behind and so on) inning,
runners on-base. Then, we can define the change in the win-percentage generated by the
single play. WPA is a cumulative stats that stands for the summation of this change that a
single-player produced.
Most studies by SABRmetrics evaluate only the result of each play, excluding the context
then: for example, if players hit a home run, then we treat it equally. That is, it does not matter
the home run was a walk-off homer occurred when the game was tied, or solo-homer when
the game had been broken. This is because this type of skill called “clutch” does not correlate
between a year to year.
However, it may be the case that team managers evaluate this type of skills in the contracts, so
our regression analysis for monetary incentives (Section 5.2 and 6.3.2), we employed WPA
as a regressor. We include the stats, distinguishing positive (raises the winning-percentages)
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plays and negative (decline) ones, and each value divided by the plate-appearance. And
actually, the results of each regression supported that these terms affect the monetary rewards.

C. Important Events Related to Section 6.4

• Free Agency
Free agency, the right for players to negotiate and choose any teams he wants, was regulated in
1975. Until then, players were forced to play for the team serving, except for the manager fired
him. Thanks to this rule, now any players who have been serving in MLB for about 6 seasons, are
eligible to get a free agent. By this procedure, they are free from the monopsony contract with the
team playing for. And so, players got more likely to be evaluated accurately with his actual skills.
The right to arbitration is the same kind of this.

• Strike by the Players Association (1994)
In 1994, the Players Association of MLB declared to make Strike, to stop the owners’ cartel. These
days, because of the increased salary of the skilled players, they are suffered from keeping their
payroll in their budget constraint. So to resist this, they are tried to make cartels that refrain from
proposing any or sufficient contract to the super-skilled players. This results in such cases that
players who have enough skills chose to go to Nippon Professional Baseball (NPB).
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