
 

 

 

Discussion Papers In Economics 
And Business 

 

 

 

March 2021 

 

 

 

 

 

Graduate School of Economics 

Osaka University, Toyonaka, Osaka 560-0043, JAPAN 

 How should a startup respond to acquirers? A real 

options analysis 

 

 Michi NISHIHARA 
 

 

Discussion Paper 20-24 

 

 

 

 

 



How should a startup respond to acquirers? A real options analysis∗

Michi NISHIHARA†

Abstract

Many startups have recently opted for sellout to large firms with great market power and profit

margins. This paper attempts to understand and guide such startup sellout decisions by developing

a model in which the firm reacts to random approaches of high- and low-type acquirers. Optimally,

the startup takes either a high-price strategy—accepting only a high-type acquirer in a good eco-

nomic state— or a flexible strategy—accepting a high-type acquirer in an intermediate economic

state and either type in a good economic state— based on a tradeoff between sellout pricing and

timing efficiency. With asymmetric information, where the acquirer types are unobservable, the

startup accepts a high-price acquisition more eagerly and a low-price acquisition more restrictively

to reduce the acquirer’s information rent. Then, asymmetric information increases the probability

of a high-price sellout and delays the sellout. A model analysis shows that the market parameters

as well as anticipation of acquirers (i.e., the acquirers’ arrival rate, valuation, and transparency)

greatly affect the sellout price, sellout timing, firm value, and stock price reaction.
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1 Introduction

Over the last few decades, industry concentration has grown, increasing the gap between the prof-

itability of giant firms and others (e.g., Grullon, Larkin, and Michaely (2019), Autor, Dorn, Katz,

Patterson, and Reenen (2020)). For instance, Amazon, Apple, Google, Facebook, and Microsoft,

the “tech giants” in the information technology industry, have greatly increased their market power

and profit margins. In such circumstances, many startups would prefer to be acquired by large

firms, rather than developing themselves as independent firms through initial public offerings and

growth investments (see Poulsen and Stegemoller (2008), Gao, Ritter, and Zhu (2013)). For exam-

ple, Instagram chose to be sold to Facebook in order to expand its business in 2012. This study

tries to understand and guide such startup sellout decisions by developing a real options model as

follows.1

Assume that a startup with stochastic cash flows has an option for sellout to a large acquirer.

The acquirer can pay a higher price than the startup’s standalone value because it can extract

more cash flows from the startup’s assets (e.g., synergies, market power, and economies of scope

and scale). The startup times the sellout considering the irreversibility and sunk costs of the process.

Moreover, the model assumes two novel features. The first is the illiquidity of sellout opportunities

stemming from frictions in the merger and acquisition (M&A) searching and matching process. I

assume that the sellout is feasible only at the acquirers’ arrival time modeled by Poisson jump

times.2 The second feature is the heterogeneity of acquirers. Two acquirer types (hereafter called

high and low types) are considered, where the high type extracts more cash flows from the acquired

assets than the low type.

In the model, I derive the startup’s sellout policy and firm value analytically. The results are

presented in two cases. In the first case, the startup accepts only a high type when the state variable

(i.e., the cash flow level) lies above a certain threshold. This policy is called the high-price strategy.

The firm value and policy in the high-price strategy coincide with those in the benchmark model

with only high types. The high-price strategy pursues the pricing rather than timing efficiency. In

fact, the startup forgoes low-price acquisitions even when the state variable is high. In the second

case, the sellout policy involves two thresholds (the high-price and low-price sellout thresholds).

The startup accepts only a high type when the state variable lies between the two thresholds, and

accepts either type when the state variable lies above the low-price sellout threshold. This policy is

called the flexible strategy. The flexible strategy pursues the timing rather than pricing efficiency.

In fact, the startup chooses sellout for the high state variable even when the sellout price is low. In

the flexible strategy, both the sellout time and price are unpredictable; this is consistent with the

1The real options approach is now widely accepted as an alternative to the net present value method, especially

in decisions involving uncertainty and irreversibility (e.g., see Dixit and Pindyck (1994) and Trigeorgis and Tsekrekos

(2018)).
2The model considers the sellout process through private negotiations, where potential bidders approach the target

sequentially. Firms are sold in their growth stage through private negotiations rather than auction (see Fidrmuc,

Roosenboom, Paap, and Teunissen (2012)).
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empirical evidence of high uncertainty in M&A deals (see Cornett, Tanyeri, and Tehranian (2011)

and Wang (2018)).

The tradeoff between the sellout pricing and timing efficiency determines whether the startup

takes the high-price or flexible strategies. Notably, I derive the explicit condition and show that

the startup is more likely to take the high-price strategy when the high type’s arrival rate and

growth rate of the state process are relatively high. A numerical analysis of the model yields the

following comparative statics results. With lower acquirers’ arrival rate, the startup accepts an

acquisition more eagerly, but this sellout policy does not fully offset the decrease in liquidity of

sellout opportunities. In fact, a lower arrival rate delays the sellout and decreases the firm value.

Contrary to the well-known effect of the growth rate, the low-price sellout threshold increases with

higher growth rate. The startup restricts a low-price acquisition more severely because a higher

growth rate increases the advantage of high-price sellout. The startup with higher growth rate and

lower volatility is more likely to be acquired by a high type (i.e., firm with higher efficiency). To my

knowledge, these are novel predictions that are yet to be tested in the empirical M&A literature.

I extend the baseline results to studies with asymmetric information, where startups are un-

aware of the acquirer types. The asymmetric information model is relevant when the acquirers

are less transparent. The startup with asymmetric information faces the risk of sellout to a high

type at a low price. Then, in contrast to the symmetric information case, the high-type acquirer

gains information rent in acquisition. This result is consistent with the empirical evidence of low

acquisition premiums of less transparent acquirers (e.g., Bargeron, Schlingemann, Stulz, and Zut-

ter (2008), Battigalli, Chiarella, Gatti, and Orlando (2017), and Golubov and Xiong (2020)). The

startup decreases the high-price sellout threshold and increases the low-price sellout threshold to

reduce the information rent.3 Compared to the symmetric information case, this distortion increases

the high-price sellout probability but delays the sellout timing, which results in social inefficiency.

This social loss due to asymmetric information tends to be highest when asymmetric information

changes the startup strategy from the flexible strategy to the high-price strategy.

Furthermore, I examine the firm value jump at the sellout time. This can be interpreted as

acquisition premium or target stock price reaction. A sellout leads to a positive jump in firm

value from the unpredictability of sellout timing (and pricing). This finding is consistent with

the empirical evidence of positive target stock price reactions (e.g., Huang and Walkling (1987),

Boone and Mulherin (2007), and Hackbarth and Morellec (2008)). In the flexible strategy case,

the jump size is not monotonic relative to the state variable because the startup accepts a low-

price acquisition for a high state variable. Similarly, the jump size is not monotonic relative to the

arrival rates because the sellout price can change with the arrival rates. These results show that

the target’s stock price reaction depends on the interactions between the sellout timing and price.

Finally, I explain the contribution of this study to the related literature. From the methodolog-

3This finding is consistent with the intertemporal price discrimination literature (e.g., Stokey (1979), Landsberger and

Meilijson (1985), Nishihara and Shibata (2019)). In different settings, these studies show that a seller delays low-price

sales to reduce the information rent to high types.
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ical perspective, I solve the optimal stopping problem constrained to Poisson jump times. Dupuis

and Wang (2002) first solves this type of constrained optimal stopping problem. By extending

Dupuis and Wang (2002)’s model, Hugonnier, Malamud, and Morellec (2015a), Hugonnier, Mala-

mud, and Morellec (2015b), and Morellec, Valta, and Zhdanov (2015) study the illiquidity effects of

fund-raising on investment, while Nishihara and Shibata (2021) investigate the illiquidity effects of

sellout opportunities on bankruptcy. However, all these studies assume the homogeneity of illiquid

option exercise opportunities. To my knowledge, this is the first study to solve the problem with

two option types arriving randomly at different arrival rates. I also clarify the relationship between

the homogeneous and heterogeneous problems by deriving the explicit condition under which a

two-type problem is reduced to a one-type problem. Note that no asymmetric information problem

occurs for the homogeneous problem. This study first solves the asymmetric information problem.

The study also contributes to the real options literature on M&A. Lambrecht (2004) develops

friendly merger and hostile takeover models, while Morellec and Zhdanov (2008) study the bidder

competition effects on takeover and capital structure decisions. Lukas, Pereira, and Rodrigues

(2019) show that serial acquisition is optimal in certain situations. As regards the M&A of startups,

Nishihara (2017) examines the startup choice between sellout and initial public offerings, whereas

Ferreira and Pereira (2021) examine the entry and exit (trade sale) decisions of venture capitalists.

In these studies with no frictions in the M&A searching and matching process, the M&A timing is

predictable, and hence, there is no shock in the target firm value at the M&A time. In contrast, this

study shows that the illiquidity of sellout opportunities distorts the timing decision and leads to a

shock at the sellout time. Nishihara and Shibata (2021) examine how illiquid sellout opportunities

affect the capital structure and default decisions, although they assume homogeneous acquirers. By

assuming the heterogeneity of acquirers, this study examines the timing as well as pricing decisions

and the effects of asymmetric information.

The remainder of this paper is organized as follows. Section 2 introduces the model setup.

Sections 3.1 shows the benchmark model results with homogeneous acquirers. Sections 3.2 and

3.3 present the main model results with heterogeneous acquirers under symmetric and asymmetric

information, respectively. Section 4 analyzes the results numerically and explains the implications.

Section 5 concludes the paper.

2 Model setup

Consider a startup (or an entrepreneur in a certain section, with technology, patent, etc.) operating

and generating continuous streams of cash flows X(t), where X(t) follows a geometric Brownian

motion,

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x;

here, B(t) denotes the standard Brownian motion defined in a filtered probability space, (Ω,F ,P, {Ft}),

and µ, σ(> 0) and x(> 0) are constants. The net present value (NPV) of cash flows at time 0 is

equal to π(x) = x/(r − µ).
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Infinitely many high- and low-type acquirers value the firm as aHπ(X(t))−Ia and aLπ(X(t))−Ia,

respectively, where aH > aL > 1 and Ia ≥ 0.4 Throughout this study, H and L stand for high and

low types, respectively, and ∆a = aH − aL. The assumption that ai > 1 indicates that acquirers

extract more cash flows from the business than the startup can. The synergies associated with

acquisition can be included in the parameters ai (i = H,L), while Ia represents the sunk cost in

acquisition. High and low types approach the startup at Poisson jump times with arrival rates λH

and λL, respectively. For model tractability, I assume that the Poisson arrival processes and X(t)

are independent.5

The startup pays the transaction cost Ib(> 0) when acquired. I denote the total costs by

I = Ia + Ib. When the startup is sold at price aiπ(X(t)) − Ia, it gains aiπ(X(t)) − I instead of

losing the future cash flows’ NPV π(X(t)). The total payoff then becomes (ai − 1)π(X(t)) − I. I

assume that the startup is risk-neutral and chooses between accepting and rejecting an acquirer

to maximize the expected firm value. If the firm rejects an acquirer, it has to wait until another

acquirer arrives.

This study examines two types of information structures. In Section 3.2, I explore the symmetric

information case, where the startup can observe the acquirer types. In Section 3.3, I explore the

asymmetric information case, where the startup cannot observe the acquirer types. In reality,

asymmetric information matters more when the acquirers have fewer business relationships with

the startup. It also matters when the acquirers are unlisted and have lower transparency. In case

of symmetric information, the startup can be sold at the fair price aiπ(X(t)) − Ia contingent on

the acquirer type i. In contrast, in case of asymmetric information, the startup cannot post a price

contingent on the acquirer type. For simplicity, I assume that the startup makes a take-it-or-leave-it

price offer. An acquirer would purchase the startup if the offer price is not higher than its valuation,

and would leave it if the price is higher than its valuation. In case of asymmetric information, a

high type can obtain information rent by purchasing the startup at the low price aLπ(X(t)) − Ia

(for details, see Section 3.3).

The model is based on the following empirical observations. Startups tend to sell their growing

businesses to large firms because large firms can extract more profits from them by virtue of their

synergies, market power, economies of scale and scope, speed in bringing products to the market,

and so on (e.g., Poulsen and Stegemoller (2008), Gao, Ritter, and Zhu (2013), Grullon, Larkin, and

Michaely (2019)).6 A startup in the growth stage is typically sold through private negotiations,

with the potential bidders approaching the target firm sequentially, rather than through auctions

4I can solve the problem with more than two types in the same manner. In that case, the number of startup strategies

become more than two, and hence, I cannot derive an explicit condition for each strategy. The main implications in this

paper will remain unchanged.
5Hugonnier, Malamud, and Morellec (2015a), Hugonnier, Malamud, and Morellec (2015b), Morellec, Valta, and

Zhdanov (2015), and Nishihara and Shibata (2021) also assume that the economic state and Poisson processes are

independent. In fact, one cannot analytically derive any solution without independence.
6For a well-known example, Instagram was sold to Facebook in 2012. The sellout process is private negotiation rather

than auction.
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(see Fidrmuc, Roosenboom, Paap, and Teunissen (2012)). Business sellout transactions, unlike the

sellout of financial assets, involve high transaction costs, irreversibility, illiquidity, and price uncer-

tainty. The real options model captures the sunk cost and irreversibility in real asset trading. By

adopting the Poisson arrival processes of acquirers, the model captures the illiquidity (i.e., search-

ing and matching frictions) of the sellout being feasible only when the firm meets a counterparty.7

The model incorporates the heterogeneity of acquirers and asymmetric information, to capture the

transaction price uncertainty.

Finally, I explain how the model differs technically from previous M&A real options models. In

most previous studies, the acquisition is predictable because the timing is endogenously determined

by the acquirer, target firm, or both firms. For example, in the takeover models of Lambrecht

(2004) and Morellec and Zhdanov (2008), the target can precisely predict the acquirer’s takeover

time and optimize the terms (i.e., the price). Hackbarth and Morellec (2008) investigate the

asymmetric information between the firm insiders and outside investors, although the merger timing

is predictable to the target firm and acquirer managers. Unlike these papers, this study assumes

that the target startup optimizes the price but cannot predict the acquirers’ arrival time, modeling

the acquirers’ arrival as an unpredictable and exogenous event. This assumption holds true when

friction exists in the searching and matching process. In fact, some firms fail to reach an agreement

in M&A negotiations. This assumption is also plausible when the acquirers’ arrival timing is

determined by factors unobservable to the target startup (e.g., acquirers’ competitive strategy,

business environment, and long-term plan). Although Nishihara and Shibata (2021) model the

acquirers’ arrival as an unpredictable and exogenous event, their model lacks acquirer heterogeneity

(i.e., price uncertainty). Many papers (e.g., Boone and Mulherin (2007), Cornett, Tanyeri, and

Tehranian (2011), and Wang (2018)) empirically show high uncertainty in M&A deals, and this

study is consistent with them.

3 Model Solutions

3.1 Homogeneous acquirers

As benchmark, this subsection considers a one-type acquirer arrival setup. I fix i ∈ {H,L}, and

assume that λi > 0 and λj = 0, where j = {H,L} \ {i}. Technically, the firm’s optimal sellout

timing problem can be regarded as an optimal stopping problem constrained to Poisson jump times,

which is solved in Dupuis and Wang (2002). I denote the firm value when an acquirer is absent as

Vi(x). When an acquirer arrives, the firm value becomes max{aiπ(X(t)) − I, Vi(X(t))}, because

the firm optimizes the choice between accepting and forgoing the acquirer. As proved in Dupuis

and Wang (2002), the optimal policy becomes a threshold policy, that is, inf{t ≥ 0 | X(t) ≥ xi},

7Rhodes-Kropf and Robinson (2008) examine an M&A market with search frictions similar to those in this study, but

in different contexts.
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and Vi(x) satisfies the ordinary differential equations (ODEs)

µxV ′
i (x) + 0.5σ2x2V ′′

i (x) + x = rVi(x) (0 < x < xi), (1)

µxV ′
i (x) + 0.5σ2x2V ′′

i (x) + λi(aiπ(x)− I − Vi(x)) + x = rVi(x) (x > xi), (2)

where λi(aiπ(x)− I − Vi(x)) in (2) corresponds to the fact that Vi(x) changes to aiπ(x)− I with

probability λidt in infinitesimal time interval dt in the sellout region x > xi.
8 Region x < xi is the

operation region, where the firm operates normally, whereas region x ≥ xi is the sellout region,

where the firm aims for sellout. State process X(t) can cross the threshold xi many times because

the startup may not meet an acquirer in the sellout region.

As shown in Dupuis and Wang (2002), Vi(x) is continuously differentiable at xi
9 and satisfies

boundary conditions

Vi(xi) = aiπ(xi)− I, (3)

lim
x→0

Vi(x) = 0, (4)

lim
x→∞

Vi(x)/x < ∞. (5)

Condition (3) means that the startup is indifferent to whether to accept or reject a proposal at

X(t) = xi (i.e., the optimality of xi). Condition (4) is a standard condition arising from the fact

that if x goes to zero, the stochastic process X(t) will stay at zero, and hence, Vi(xi) goes to 0 (e.g.,

Dixit and Pindyck (1994)). Condition (5) occurs because the firm value is bounded by aiπ(x).

Throughout the paper, I define the notations

βy = 0.5− µ

σ2
+

√( µ

σ2
− 0.5

)2

+
2(r + y)

σ2
(> 1), (6)

γy = 0.5− µ

σ2
−
√( µ

σ2
− 0.5

)2

+
2(r + y)

σ2
(< 0), (7)

for an arbitrary parameter, y > 0, and simplify the notations by β = β0 and γ = γ0 for y = 0. I

also define the zero-NPV thresholds xNPV
i = (r−µ)I/(ai − 1) for i = H,L. By solving (1) and (2)

with boundary conditions (3)–(5), I have the following proposition. For proof of the proposition,

see Appendix A.

Proposition 1 The firm value Vi(x) (i = H,L) is given by

Vi(x) =


π(x) +A1,ix

β (x < xi),

π(x) +
λi(ai − 1)π(x)

r + λi − µ
− λiI

r + λi
+A2,ix

γλi (x ≥ xi),
(8)

8ODEs (1) and (2) are similar to those in the model with operating costs and temporary suspension, where the firm

can freely switch between operation and suspension (see Chapter 6.2 of Dixit and Pindyck (1994)).
9This is not the smooth pasting (i.e., optimality) condition in Dixit and Pindyck (1994), but similar to the piecewise

C2 property of the value function in Morellec, Valta, and Zhdanov (2015). This condition is also used in Chapter 6.2 of

Dixit and Pindyck (1994). Technically, this property follows from Theorem 4.4.9 in Karatzas and Shreve (1998).

7



where the sellout threshold xi and coefficients A1,i, A2,i are defined by

xi =
(r + λi − µ)((β − γλi)r + βλi)x

NPV
i

(r + λi)((β − γλi
)(r − µ) + (β − 1)λi)

, (9)

A1,i =
(ai − 1)π(xi)− I

xβ
i

, (10)

A2,i =
1

x
γλi
i

(
(ai − 1)xi

r + λi − µ
− rIi

r + λi

)
. (11)

The startup’s optimal sellout policy is to accept an acquisition only if the offer arrives at time

t satisfying X(t) ≥ xi. As in the standard real options argument, if sunk cost I is present, the firm

waits for a sufficiently good economic environment for sellout. By (9), I can show that limλi→0 xi =

xNPV
i and limλi→∞ xi = xNPV

i β/(β − 1). In fact, the sellout threshold xi monotonically increases

in the arrival rate λi. Intuitively, this means that in case of lower acquisition offer frequency, the

startup accepts an acquisition offer more eagerly in order to alleviate the illiquidity effect. However,

as the numerical examples in Section 4 show, this earnest sellout policy does not fully offset the

illiquidity effects; in fact, the sellout timing is delayed with lower λi. Note that the sellout time is

not the same as, but comes after, the first hitting time to the sellout threshold xi, because the firm

has to wait for a Poisson jump.10 Thus, a lower λi decreases xi but delays the sellout time.

Next, I explain the firm value Vi(x) in Proposition 1. From the problem definition, Vi(x)

monotonically increases in λi. By (8), I can show that limλi→0 Vi(x) = max{π(x), aiπ(x) − I}

(i.e., the NPV) and that limλi→∞ Vi(x) agrees with the real options value in the liquid model.

That is, a lower acquisition offer frequency decreases the firm value by the embedded sellout option

value. This is consistent with the empirical observations of Song and Walkling (2000) and Cornett,

Tanyeri, and Tehranian (2011). Next, I explain expression (8) in more detail. For x < xi, π(x)

is the NPV of perpetual cash flows, and A1,ix
β represents the value of the sellout option. In this

region, where the firm does not accept an acquirer, Vi(x) > aiπ(x)− I holds. For x ≥ xi, the first

three terms represent the expected payoff of sellout as soon as an acquirer arrives, and the last

term A2,ix
γλi represents the value of the option to postpone sellout when an acquirer arrives for

X(t) < xi. In this region, where the firm accepts an acquirer, Vi(x) ≤ aiπ(x)− I holds.

Proposition 1 shows how the illiquidity of sellout opportunities affects the startup’s sellout

policy and option value. However, owing to the homogeneity of acquirers, this proposition entails

no implication about the startup’s pricing policy (i.e., which type acquires the startup and how

much the acquirer pays). In the next section, I incorporate acquirer heterogeneity into the model

and explore the startup’s timing and pricing decisions simultaneously.

3.2 Symmetric information case

This subsection assumes that λi > 0 (i = H,L), and that the acquirer types are observable to the

startup. I denote the firm value when an acquirer is absent as V (x). When an i-type acquirer

10Mathematically, the probability of a Poisson jump occurring at the first hitting time is zero.
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arrives, the firm value becomes max{aiπ(X(t)) − I, V (X(t))}, because the startup optimizes the

choice between accepting and not accepting the i-type acquirer. As in Dupuis and Wang (2002), I

can show that the optimal policy is a threshold policy. In other words, the acceptance region for

an i-type acquisition becomes {x ≥ x∗
i }, where x∗

H < x∗
L ≤ ∞, and V (x) satisfies ODEs:

µxV ′(x) + 0.5σ2x2V ′′(x) + x = rV (x) (0 < x < x∗
H), (12)

µxV ′(x) + 0.5σ2x2V ′′(x) + λH(aHπ(x)− I − V (x)) + x = rV (x) (x∗
H < x < x∗

L), (13)

µxV ′(x) + 0.5σ2x2V ′′(x) + λ̄(āπ(x)− I − V (x)) + x = rV (x) (x > x∗
L), (14)

where I define λ̄ = λH+λL and ā = (λHaH+λLaL)/λ̄. In (13), λH(aHπ(x)−I−V (x)) corresponds

to the fact that V (x) becomes aHπ(x)− I with probability λHdt in infinitesimal time interval dt,

and in (14), λ̄(āπ(x) − I − V (x)) corresponds to the fact that V (x) becomes aHπ(x) − I with

probability λHdt and aLπ(x) − I with probability λLdt in infinitesimal time interval dt. As in

Vi(x) in Section 3.1, V (x) is continuously differentiable at x∗
i by Theorem 4.4.9 in Karatzas and

Shreve (1998), and V (x) satisfies boundary conditions

V (x∗
i ) = aiπ(x

∗
i )− I (i = H,L), (15)

lim
x→0

V (x) = 0, (16)

lim
x→∞

V (x)/x < ∞. (17)

Condition (15) corresponds to condition (3) in Section 3.1, meaning that the startup is indifferent

to whether to accept or not accept an i-type acquirer at X(t) = x∗
i (i.e., the optimality of x∗

i ).

Conditions (16) and (17) correspond to conditions (4) and (5) in Section 3.1.

If

VH(x) ≥ aLπ(x)− I (x ≥ 0), (18)

which is equivalent to condition (19) in the following proposition, the startup takes the high-price

strategy, that is, x∗
L = ∞, where the startup always rejects a low type. This is because the firm

cannot increase the firm value beyond VH(X(t)) by gaining payoff aLπ(X(t))− I for any X(t). In

this case, the firm value V (x) and sellout threshold x∗
H agree with VH(x) and xH in Proposition

1. Otherwise, the startup would take the flexible strategy, that is, x∗
L < ∞, where the startup

accepts even a low type for X(t) ≥ x∗
L. This is because the firm can increase the firm value

beyond VH(X(t)) by accepting a low type. In this case, by solving ODEs (12)–(14) with boundary

conditions (15)–(17), I have the following proposition. For proof of the proposition, see Appendix

B.

Proposition 2 If condition

aL − 1 ≤ λH(aH − 1)

r + λH − µ
(19)

holds, the startup takes the high-price strategy, that is, x∗
L = ∞. The firm value V (x) and sellout

threshold x∗
H agree with VH(x) and xH in Proposition 1.
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If condition (19) does not hold, the startup takes the flexible strategy, that is, x∗
L < ∞. The

firm value V (x) is given by

V (x) =


π(x) +B1x

β (x < x∗
H),

π(x) +
λH(aH − 1)π(x)

r + λH − µ
− λHI

r + λH
+B2x

βλH +B3x
γλH (x ∈ [x∗

H , x∗
L)),

π(x) +
λ̄(ā− 1)π(x)

r + λ̄− µ
− λ̄I

r + λ̄
+B4x

γλ̄ (x ≥ x∗
L),

(20)

where coefficients Bi (i = 1, 2, 3, 4) and sellout thresholds x∗
i (i = H,L) are as defined in Appendix

B.

In case of heterogeneity of acquirers, the startup faces the dilemma of choosing sellout at a

high price as well as with good timing efficiency. By Proposition 2, the startup’s policy can be

classified into two cases, the high-price strategy and flexible strategy based on the tradeoff between

sellout pricing and timing efficiency. In the high-price strategy, the startup forgoes low types and

waits for a high type even in case of very good economic environment. In this sense, the high-

price strategy pursues pricing efficiency rather than timing efficiency. In contrast, in the flexible

strategy, the startup accepts even a low-price acquisition in a very good economic environment (i.e.,

X(t) ≥ x∗
L). That is, the flexible strategy purses timing efficiency rather than pricing efficiency.

Note that Proposition 2 shows the explicit condition (19) under which the startup takes the

high-price strategy. Condition (19) can be rewritten as

λ̄(ā− 1)

r + λ̄− µ
≤ λH(aH − 1)

r + λH − µ
, (21)

where the left- and right-hand sides of (21) correspond to the second terms of equation (20) for

x ≥ x∗
L and equation (8) for x ≥ xH , respectively. Condition (21) means that the discounted

present value of aH − 1 at a high type’s first arrival time is not lower than the discounted present

value of ā − 1 at either type’s first arrival time. From (19), higher aH and λH as well as lower

aL and r − µ are likely to lead to the high-price strategy. The reason is as follows. Higher aH

and lower aL increase the advantage of high-price sellout over low-price sellout. Lower r − µ also

increases the advantage of high-price sellout, because r− µ is the denominator of π(x). Higher λH

decreases the timing inefficiency of waiting for only a high type. Thus, with higher aH and λH as

well as lower aL and r − µ, the startup purses the pricing efficiency stemming from the high-price

strategy.

Next, I discuss the flexible strategy and its value, because the high-price strategy has already

been explained after Proposition 1. In the flexible strategy case, the startup accepts only a high

type in an intermediate economic environment, that is, X(t) ∈ [x∗
H , x∗

L). In this region, the

startup pursues the pricing efficiency stemming from high-price sellout. However, if X(t) rises

beyond x∗
L, the startup accepts even a low type because the timing efficiency from accepting either

type dominates the pricing efficiency. In this region, the sellout timing as well as sellout price is

unpredictable because it depends on the acquirer type. This result is consistent with the empirical

evidence of high uncertainty in M&A deals (e.g., Cornett, Tanyeri, and Tehranian (2011) and Wang

(2018)).
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I cannot derive closed-form expressions of x∗
i (i = H,L), but by the monotonic increase of V (x)

with respect to λi (i = H,L) and x∗
i = inf{x ≥ 0 | V (x) ≤ aiπ(x) − I}, I can readily show that

x∗
i (i = H,L) monotonically increases in λi (i = H,L). This means that with lower frequency of

acquisition offers, the startup is more eager to accept an acquisition and alleviate the illiquidity

effect. However, as shown in the numerical examples in Section 4, this earnest sellout policy does

not fully offset the illiquidity effects; in fact, the sellout timing is delayed with lower λi. These

results are in line with Proposition 1.

Now, I explain the firm value (20) in Proposition 2. For x < x∗
H , term B1x

β stands for the

value of sellout option. In this case, where the firm rejects any acquirer, V (x) > aHπ(x)− I holds.

For x ∈ [x∗
H , x∗

L), the first three terms represent the expected payoff of sellout to the high type that

arrives first. In this case, where the firm accepts only a high type, aLπ(x)−I < V (x) ≤ aHπ(x)−I

holds. The terms B2x
βλH + B3x

γλH represent the option value to change the policy when X(t)

passes either x∗
H or x∗

L before the arrival of a high type. For x ≥ x∗
L, the first three terms represent

the expected payoff of sellout to the acquirer that arrives first. In this case, where the firm accepts

either type, V (x) ≤ aLπ(x)− I holds. The last term B4x
γλH represents the option value to change

the policy when X(t) passes x∗
L before the acquirer’s arrival.

From a technical viewpoint, Proposition 2 extends the results of Dupuis and Wang (2002)

(or equivalently Proposition 1) to the case with heterogeneity in option payoffs. Proposition 2 also

clarifies the relationship between heterogeneous and homogeneous problems by deriving the explicit

condition (19) under which the heterogeneous problem reduces to the homogeneous problem. The

solution in the flexible strategy case is novel, but is similar to that in Morellec, Valta, and Zhdanov

(2015) and Nishihara and Shibata (2021). In the investment and financing model of Morellec,

Valta, and Zhdanov (2015), for intermediate levels of the state variable, a firm invests only when

a private financing opportunity is available, but invests with public debt financing when the state

variable exceeds a certain threshold. In the bankruptcy model of Nishihara and Shibata (2021), for

intermediate levels of the state variable, a firm exits only when sellout is feasible, but bankrupts

when the state variable decreases to a certain threshold. Unlike this paper, previous studies consider

two options, one (i.e., private debt finance, sellout) feasible only at Poisson jump times, and the

other (i.e., public debt finance, default) feasible at any time.

3.3 Asymmetric information case

This subsection assumes that λi > 0 (i = H,L) and the acquirer types are unobservable to the

startup. I denote the firm value when an acquirer is absent as U(x). When an acquirer arrives,

the startup makes a take-it-or-leave-it price offer. The startup posts a price from among aLπ(x)−

Ia, aHπ(x) − Ia, and ∞ (i.e., rejection), because it cannot increase the firm value by any other

price. The acquirer then purchases the firm if the posted price is not higher than its evaluation. As

in Sections 3.1 and 3.2, the optimal policy becomes a threshold policy. In other words, the i-type
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pricing region becomes {x ≥ x∗∗
i }, where x∗∗

H < x∗∗
L ≤ ∞, and U(x) satisfies ODEs:

µxU ′(x) + 0.5σ2x2U ′′(x) + x = rU(x) (0 < x < x∗∗
H ), (22)

µxU ′(x) + 0.5σ2x2U ′′(x) + λH(aHπ(x)− I − U(x)) + x = rU(x) (x∗∗
H < x < x∗∗

L ), (23)

µxU ′(x) + 0.5σ2x2U ′′(x) + λ̄(aLπ(x)− I − U(x)) + x = rU(x) (x > x∗∗
L ). (24)

ODEs (22) and (23) are the same as ODEs (12) and (13) in Section 3.2, respectively, but the third

term in ODE (24) is different from that in ODE (14). Indeed, λ̄(aLπ(x)− I −U(x)) indicates that

U(x) becomes aLπ(x) − I with probability λ̄dt in infinitesimal time interval dt. In this region,

unlike in the symmetric information case, the sellout price is low even for a high type because the

startup cannot determine the price contingent on the acquirer type.

As in Sections 3.1 and 3.2, U(x) is continuously differentiable at x∗∗
i , and U(x) satisfies boundary

conditions

U(x∗∗
H ) = aHπ(x∗∗

H )− I, (25)

U(x∗∗
L ) = (aL −∆aλH/λL)π(x

∗∗
L )− I, (26)

lim
x→0

U(x) = 0 (27)

lim
x→∞

U(x)/x < ∞. (28)

Boundary conditions (25), (27), and (28) are the same as (3), (4), and (5) in Section 3.2, respectively,

but (26) is different from (3). The term ∆aλH/λLπ(x
∗∗
L ) in (26) stands for the opportunity cost of

the low-price sale, that is, the loss from sellout to a high type at a low price. Here, condition (26)

is derived as follows. Suppose that an acquirer arrives at the threshold x∗∗
L . By setting a low price,

the firm value becomes aLπ(x
∗∗
L )−I because the acquirer would purchase the startup. By setting a

high price, the firm value becomes (aHπ(x∗∗
L )− I)λH/λ̄+U(x∗∗

L )λL/λ̄ because the acquirer would

purchase the startup if and only if it is a high type. Note that the acquirer is a high type with

probability λH/λ̄. By solving equation

aLπ(x
∗∗
L )− I = (aHπ(x∗∗

L )− I)λH/λ̄+ U(x∗∗
L )λL/λ̄,

I obtain the boundary condition (26), which ensures that the startup is indifferent to whether to

set a high or low price at X(t) = x∗∗
L (i.e., the optimality of x∗

L).

If

(aHπ(x)− I)λH/λ̄+ VH(x)λL/λ̄ ≥ aLπ(x)− I (x ≥ 0) (29)

holds, which is equivalent to condition (31) in the following proposition, the startup takes the

high-price strategy, that is, x∗∗
L = ∞, where the startup posts only the high price. This is because

the expected payoff by the high-price strategy (i.e., the left-hand side of (29)) dominates the low

payoff (i.e., the right-hand side of (29)) for any X(t). In this case, the firm value U(x) and sellout

threshold x∗∗
H agree with VH(x) and xH in Proposition 1. Condition (29) can be rewritten as

VH(x) ≥ aLπ(x)− I −∆aπ(x)λH/λL (x ≥ 0). (30)
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Compared to (18), (30) has an extra term −∆aπ(x)λH/λL, which is the opportunity cost of the

low-price sale, that is, the loss from sellout to a high type at a low price. If (29) (or equivalently

(30) or (31)) does not hold, the startup takes the flexible strategy, that is, x∗∗
L < ∞, where the

startup allows the low-price sale for X(t) ≥ x∗∗
L . In fact, the firm can increase the firm value

beyond VH(X(t)) by setting the low price. In this case, by solving ODEs (22)–(24) with boundary

conditions (25)–(28), I have the following proposition. For proof of the proposition, see Appendix

C.

Proposition 3 If condition

aL − 1− ∆aλH

λL
≤ λH(aH − 1)

r + λH − µ
(31)

holds, the firm takes the high-price strategy, that is, x∗∗
L = ∞. The firm value U(x) and sellout

threshold x∗∗
H agree with VH(x) and xH in Proposition 1.

If condition (31) does not hold, the firm takes the flexible strategy, that is, x∗∗
L < ∞. The firm

value U(x) is given by

U(x) =


π(x) + B̃1x

β (x < x∗∗
H ),

π(x) +
λH(aH − 1)π(x)

r + λH − µ
− λHI

r + λH
+ B̃2x

βλH + B̃3x
γλH (x ∈ [x∗∗

H , x∗∗
L )),

π(x) +
λ̄(aL − 1)π(x)

r + λ̄− µ
− λ̄I

r + λ̄
+ B̃4x

γλ̄ (x ≥ x∗∗
L ),

(32)

where the coefficients B̃i (i = 1, 2, 3, 4) and sellout thresholds x∗∗
i (i = H,L) are as defined in

Appendix C.

As in Proposition 1 in Section 3.2, Proposition 2 shows that the startup chooses either the

high-price strategy, abandoning the low-price sellout to pursue pricing efficiency, or the flexible

strategy, adopting the low-price sellout to pursue timing efficiency. The choice is determined by

whether condition (31) holds or not. Compared to condition (19), the left-hand side of (31) has an

extra term −∆aλH/λL. As with the difference between (18) and (30), the extra term represents

the opportunity cost of the low-price sellout, that is, the loss from sellout to a high type at a low

price. In other words, with asymmetric information, the pricing inefficiency stemming from the

flexible strategy increases, and the startup is more likely to choose the high-price strategy.

Condition (31) can be rewritten as

λ̄(aL − 1)

r + λ̄− µ
≤ λH(aH − 1)

r + λH − µ
, (33)

where the left- and right-hand sides of (21) correspond to the second terms of equation (32) for

x ≥ x∗∗
L and equation (8) for x ≥ xH , respectively. As in the symmetric information case, with

higher aH and λH as well as lower aL and r − µ, the startup is more likely to take the high-price

strategy. Note that from condition (31), the firm tends to take the high-price strategy with higher

∆a and lower λL. This is explained by the opportunity cost of the low-price sellout. The pricing

inefficiency increases with higher ∆a, and the probability of the acquirer type being high (i.e.,

λH/λ̄) increases with lower λL. Hence, with higher ∆a and lower λL, the startup tends to take the

high-price strategy in order to remove the pricing inefficiency.
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In the region aL − 1 ≤ λH(aH − 1)/(r+λH −µ), the startup takes the high-price strategy, that

is, the strategy with only high type (i.e., Proposition 1), regardless of the information structure.

Here, asymmetric information does not affect the sellout policy and option value, i.e., U(x) =

V (x) = VH(x). In the region aL − 1−∆aλH/λL ≤ λH(aH − 1)/(r+λH −µ) < aL − 1, the startup

takes the high-price strategy under asymmetric information and flexible strategy under symmetric

information. Thus, asymmetric information changes the strategy and reduces the firm value, i.e.,

U(x) = VH(x) < V (x). In the region λH(aH − 1)/(r + λH − µ) < aL − 1−∆aλH/λL, the startup

takes the flexible strategy irrespective of the information structure. However, the sellout thresholds

x∗∗
i (i = H,L) are different from x∗

i (i = H,L), and the firm value decreases with asymmetric

information, i.e., U(x) < V (x).

I cannot derive closed-form expressions of x∗∗
i (i = H,L), but by the monotonic increase of

U(x) with respect to λi (i = H,L), x∗∗
H = inf{x ≥ 0 | U(x) = aHπ(x)− I}, and x∗∗

L = inf{x ≥ 0 |

U(x) = (aL −∆aλH/λL)π(x) − I}, I can show that x∗∗
H monotonically increases in λi (i = H,L)

and x∗∗
L monotonically increases in λH . By U(x) < V (x), I can also show that x∗∗

H < x∗
H . Although

I cannot analytically prove this, I find that x∗∗
L monotonically decreases in λL, and x∗∗

L > x∗
L holds

in the numerical examples in Section 4.

From these results, in case of lower frequency of high type arrivals, the startup accepts an

acquisition more eagerly to alleviate the illiquidity effect. These results agree with Propositions 1

and 2. More notably, in case of lower frequency of low type arrivals, the startup accepts a high-

price acquisition more eagerly and a low-price acquisition more restrictively. This is because the

opportunity cost of a low-price sellout increases with a lower λL. Then, despite decreased liquidity,

the startup restricts the low-price sellout more severely. This is a key difference from the symmetric

information case. In case of asymmetric information, the startup extends the gap between the high-

price sellout threshold x∗∗
H and low-price sellout threshold x∗∗

L to reduce the high type’s information

rent. This result agrees with the previous literature on intertemporal price discrimination (e.g.,

Stokey (1979), Landsberger and Meilijson (1985), Nishihara and Shibata (2019)). In fact, Stokey

(1979) and Landsberger and Meilijson (1985) show that a seller can delay sales at low prices to

discriminate between buyer types, while Nishihara and Shibata (2019) show that a firm can delay

sellout or the default timing for a low type to decrease the acquirer’s information rent.

Proposition 3 technically contributes to the literature on the optimal stopping problem con-

strained to Poisson jump times. Indeed, previous papers (e.g., Dupuis and Wang (2002), Morellec,

Valta, and Zhdanov (2015), Nishihara and Shibata (2021)) lack in heterogeneity and hence do not

consider any problem under asymmetric information. To my knowledge, Proposition 3 first solves

the problem involving heterogeneity of option payoffs and asymmetric information.

Although the acquirer’s surplus is zero under symmetric information, a high type can obtain

information rent by acquiring the firm at a low price under asymmetric information. The following

corollary derives the expected acquirer payoff at time 0 (denoted by W (x)). For proof of the

corollary, see Appendix D.
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Corollary 1 If condition (31) is satisfied, W (x) = 0. If condition (31) is not satisfied, W (x) is

given by

W (x) =


D1x

β (x < x∗∗
H ),

D2x
βλH +D3x

γλH (x ∈ [x∗∗
H , x∗∗

L )),

λH∆aπ(x)

r + λ̄− µ
+D4x

γλ̄ (x ≥ x∗∗
L ),

(34)

where the sellout thresholds x∗∗
i (i = H,L) and coefficients Di (i = 1, 2, 3, 4) are defined as in

Appendices C and D.

The positive acquirer’s information rent is consistent with empirical evidence. In fact, many studies

such as Bargeron, Schlingemann, Stulz, and Zutter (2008), Battigalli, Chiarella, Gatti, and Orlando

(2017), and Golubov and Xiong (2020) show that private and less transparent firms pay lower

acquisition premiums. I define the social loss due to asymmetric information as L(x) = V (x) −

U(x) − W (x). In the next section, I examine L(x) to study the welfare effects of asymmetric

information.

Throughout this study, I assume that the acquirer pays cash to acquire the startup. Although

the results under symmetric information (i.e., Propositions 1 and 2) hold true regardless of the

acquirer’s payment method, the results under asymmetric information (i.e., Proposition 3 and

Corollary 1) depend on the payment method. In fact, using of stock and payment contingent

on the post-merger performance (e.g., Lukas, Reuer, and Welling (2012)) decreases the acquirer’s

information rent. The startup would then prefer such a contract, whereas the acquirer would prefer

cash payment to maximize its information rent. The conflict over payment method is beyond the

scope of this study, but would be an interesting topic for a future research.

4 Numerical analysis

In this section, I carry out numerical analysis, including comparative statics of the arrival rates

λi (i = H,L), cash flow growth rate µ, and volatility σ. I set the baseline parameter values as in

Table 1. The values of r, µ, and σ are typical to the real options literature (e.g., Dixit and Pindyck

(1994)). In particular, I set µ and σ so as to satisfy µ−0.5σ2 > 0, meaning that X(t) has a growing

trend, and focus on the startup in the growth stage.

Figure 1 shows how the startup’s sellout strategy changes with the expected waiting time

1/λi (i = H,L). With sufficiently frequent high type arrivals (i.e., 1/λH ≤ 5), the startup takes

the high-price strategy regardless of the information structure. In the region between the black and

blue dashed lines, the firm takes the high-price strategy only with asymmetric information, whereas,

in the right-hand side region, the firm takes the flexible strategy regardless of the information

structure. I set the baseline parameters λH = 0.125 and λL = 0.375 (see the baseline point

in Figure 1) so as to satisfy conditions (19) and (31), and examine mainly the flexible strategy

case and the effects of asymmetric information. These values mean that on average, an acquirer
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approaches the startup every two years (i.e., 1/λ̄ = 2), and low types arrive three times more

frequently than high types (i.e., λL/λH = 3).

For the baseline parameter values, I have x∗
H = 1.504, x∗

L = 5.472, and V (x) = 22.382 under

symmetric information and x∗∗
H = 1.5, x∗∗

L = 24.606, and U(x) = 22.374 under asymmetric infor-

mation. As explained after Proposition 3, with asymmetric information, the startup increases the

gap between the high- and low-price sellout thresholds to decrease the acquirer’s information rent.

In particular, the firm takes x∗∗
L much higher than x∗

L. The difference between V (x) and U(x) may

look very small because the NPV of cash flows with no sellout, that is, π(x) = 20, accounts for

most of V (x) and U(x).

4.1 Impacts of high type arrival rate

Figure 2 plots the thresholds x∗
i , x

∗∗
i , firm values V (x), U(x), and social loss L(x) with varying

levels of expected waiting time for the high type, 1/λH . The other parameter values are set as

in Table 1. In addition, the figure plots the probability of high-price sellout (denoted by PH(x)

and QH(x) under symmetric and asymmetric information, respectively) and state price of sellout

(denoted by S(x) and T (x) under symmetric and asymmetric information, respectively). The state

prices, defined by S(x) = E[e−rτ ] and T (x) = E[e−rτ̃ ], where τ and τ̃ denote the sellout time under

symmetric and asymmetric information, respectively, measure the time until sellout.

Condition (19) in Proposition 2 holds for 1/λH ≤ 5, whereas condition (31) in Proposition 3

holds for 1/λH ≤ 7.6. In these regions, the startup takes the high-price strategy, where x∗
L and x∗∗

L

are infinity, and PH(x) and QH(x) are equal to 1. As explained after Propositions 2 and 3, in the

top panels, x∗
i and x∗∗

i (i = H,L) decrease in 1/λH . In particular, I find the effects of 1/λH on

x∗
L and x∗∗

L very large, meaning that the firm’s response to a low-price acquisition depends greatly

on the frequency of high type arrivals. These results show that with lower frequency of high type

arrivals, the startup accepts an acquisition more eagerly (especially of a low type) to alleviate the

illiquidity effect.

The center-right panel shows that PH(x) and QH(x) decrease in 1/λH ; this implies that low-

price sellout is more likely to occur with lower frequency of high type arrivals. Note that the large

decrease in x∗
L and x∗∗

L with higher 1/λH also contributes to this result. The bottom-left panel

shows that S(x) and T (x) decrease in 1/λH , meaning that lower frequency of high type arrivals

lengthens the expected time until sellout. To summarize, with lower frequency of high type arrivals,

the firm accepts an acquirer more eagerly, but this earnest sellout policy does not fully offset the

decreased frequency effect. In fact, lower frequency of high type arrivals delays the sellout time

and reduces the high-price sellout probability and firm value.

Next, I examine the differences between the results under symmetric and asymmetric informa-

tion. In the top panels of Figure 2, as explained after Proposition 3, x∗∗
H ≤ x∗

H and x∗∗
L > x∗∗

H

hold. The center-right panel shows that QH(x) is higher than PH(x), while the bottom-left panel

shows that T (x) is lower than S(x). These results are interpreted as follows. With asymmetric

information, the startup accepts a high-price sellout more eagerly and a low-price sellout more
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restrictively to reduce the acquirer’s information rent. Thus, the startup can keep the sellout price

high, but this delays the sellout timing.

The welfare effects of asymmetric information are not monotonic with respect to 1/λH . In

fact, the bottom-right panel shows that social loss L(x) has an inverted U-shape in 1/λH . The

reason is that asymmetric information matters most for intermediate levels of 1/λH . For 1/λH ≤ 5,

there is no difference between the symmetric and asymmetric information cases, i.e., x∗∗
H = x∗

H =

xH , x∗∗
L = x∗

L = ∞, U(x) = V (x) = VH(x), PH(x) = QH(x) = 1, and L(x) = 0. For 1/λH → ∞,

the firm does not meet a high type, and therefore asymmetric information does not matter, i.e.,

x∗∗
L = x∗

L = xL, U(x) = V (x) = VL(x), PH(x) = QH(x) = 0, and L(x) = 0. For intermediate

levels of 1/λH , especially in the region of 5 < 1/λH ≤ 7.6, where the startup takes the high-price

strategy only in the presence of asymmetric information, the effects of asymmetric information

become relatively large, leading to high L(x).

4.2 Impacts of low type arrival rate

Figure 3 plots x∗
i , x

∗∗
i , V (x), U(x), PH(x), QH(x), S(x), T (x), and L(x) with varying levels of ex-

pected waiting time for a low type, 1/λL. The other parameter values are set as in Table 1. In all

the depicted regions, the startup takes the flexible strategy under symmetric information, and the

flexible strategy for 1/λL ≤ 3.3 and high-price strategy for 1/λL > 3.3 under asymmetric infor-

mation. As explained after Proposition 3, the opportunity cost of low-price sellout increases with

higher 1/λL, and the startup would then be more likely to choose the high-price strategy.

As explained after Proposition 2, with symmetric information, x∗
i (i = H,L) decrease in 1/λL

in the top panels and S(x) decreases in 1/λL in the bottom-left panel. This can be interpreted

as follows. With lower frequency of low type arrivals, the startup would accept an acquisition

more eagerly to alleviate the decreased frequency effect. However, this earnest policy will not fully

offset the decreased frequency effect and delay the sellout. These impacts of 1/λL under symmetric

information are similar to but weaker than those of 1/λH in Section 4.1.

More interestingly, a higher 1/λL decreases x∗∗
H but increases x∗∗

L under asymmetric information.

The effect of 1/λL on x∗∗
L is quite large and different from that of 1/λH or the symmetric information

case. As explained after Proposition 3, this result stems from the opportunity cost of low-price

sellout. In fact, the probability of high acquirer type increases with higher 1/λL. Then, with higher

1/λL, the startup would restrict low-price sellout more severely to mitigate the risk of sellout to

a high type at a low price, although it would accept a high-price sellout more eagerly. By this

sellout policy under asymmetric information, the high-price sellout probability QH(x) increases

more sharply than PH(x) in the center-right panel of Figure 3, but the state price T (x) decreases

more sharply than S(x) in the bottom-left panel. In other words, the startup optimizes the sellout

policy with a tradeoff between sellout pricing and timing efficiency.

As in 1/λH in Section 4.1, the welfare effects of asymmetric information are not monotonic with

respect to 1/λL. For 1/λL → 0, the firm meets a low type at a low-price sellout threshold, and

hence asymmetric information does not matter, i.e., x∗∗
L = x∗

L, U(x) = V (x),, and L(x) = 0. For
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1/λL → ∞, a low type never arrives, and therefore asymmetric information does not matter, i.e.,

x∗∗
H = x∗

H = xH , U(x) = V (x) = VH(x), PH(x) = QH(x) = 1, and L(x) = 0. For intermediate levels

of 1/λL, the effects of asymmetric information become relatively large. Note that V (x)−U(x) and

L(x) are highest especially for 1/λL ≈ 3.3, where the firm takes the high-price strategy only with

asymmetric information.

4.3 Impacts of cash flow growth rate

Figure 4 plots x∗
i , x

∗∗
i , V (x), U(x), PH(x), QH(x), S(x), T (x), and L(x) with varying cash flow growth

rate levels, µ. The other parameter values are set as in Table 1. The startup takes the flexible

strategy for µ < 0.033 and high-price strategy for µ ≥ 0.033 under symmetric information, and the

flexible strategy for µ < 0.049 and high-price strategy for µ ≥ 0.049 under asymmetric information.

As conditions (19) and (31) explain, a higher µ, which magnifies the gap between high and low

valuations, intensifies the pricing inefficiency stemming from the flexible strategy, and hence the

startup is more likely to take the high-price strategy.

In Figure 4, x∗
H and x∗∗

H decrease in µ, whereas V (x), U(x), S(x), and T (x) increase in µ.11

These comparative static results are consistent with the standard results (e.g., Dixit and Pindyck

(1994)). In fact, a higher µ is known to accelerate the option exercise timing and increases the

project value. More notably, x∗
L and x∗∗

L increase in µ in the top-right panel, in contrast to the

standard result. A higher µ expands the gap between the high and low sellout prices, and therefore

the startup accepts a high-price sellout more eagerly and a low-price sellout more restrictively.

Thus, the high-price sellout probabilities PH(x) and QH(x) increase in µ. These results lead to

the empirical prediction that startups with higher growth rates are more likely to be acquired by

higher-efficiency firms. To my knowledge, this prediction has not been tested empirically.

The welfare effects of asymmetric information are not monotonic with respect to µ. For

µ ≥ 0.049, where the startup takes the same high-price strategy regardless of information struc-

tures, asymmetric information makes no difference to welfare. As in the previous subsections, for

intermediate levels of µ, especially µ ≈ 0.033, where the firm changes the flexible strategy to the

high-price strategy under asymmetric information, L(x) becomes relatively high.

4.4 Impacts of cash flow volatility

Figure 5 plots x∗
i , x

∗∗
i , V (x), U(x), PH(x), QH(x), S(x), T (x), and L(x) with varying levels of cash

flow volatility, σ. The other parameter values are set as in Table 1. Neither condition (19) nor

condition (31) depends on σ, and the startup therefore takes the flexible strategy in all areas.

In Figure 5, x∗
i , x

∗∗
i , V (x), and U(x) increase in σ, whereas S(x) and T (x) decrease in σ. These

comparative static results are consistent with the standard result (e.g., Dixit and Pindyck (1994))

11In the figure, x∗
H , V (x), and S(x) almost align with x∗

H , U(x), and T (x), respectively, because the impacts of µ on

these values are much stronger than those of asymmetric information.
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that a higher σ delays the option exercise timing and increases the value of waiting.12 More notably,

the high-price sellout probabilities PH(x) and QH(x) decrease in σ, in the center-right panel. This

is because a higher σ, which makes the dynamics of X(t) more volatile, increases the probability

that X(t) passes through interval [x∗
H , x∗

L) (or [x∗∗
H , x∗∗

L )) without meeting a high type. In other

words, higher volatility can rapidly improve the economic environment such that the startup can

gain sufficiently high proceeds even from a low-price sellout. These results lead to the empirical

prediction that startups with higher volatility are more likely to be acquired by lower-efficiency

firms. To my knowledge, this prediction has not been tested empirically.

Figure 5 shows that the impacts of asymmetric information increase monotonically in σ. In fact,

the differences, x∗
H −x∗∗

H , x∗∗
L −x∗

L, V (x)−U(x), PH(x)−QH(x), and S(x)−T (x), as well as social

loss L(x), increase in σ. The reason seems to be the same as discussed above. That is, with higher σ,

which has the potential to increaseX(t) rapidly, a low-price sellout matters more. This increases the

inefficiency due to asymmetric information because a low-price sellout with asymmetric information

leads to loss from sellout to a high type at a low price. To alleviate the increased inefficiency,

the startup adjusts the sellout policy more, leading to x∗
H − x∗∗

H , x∗∗
L − x∗

L, PH(x) − QH(x), and

S(x)−T (x) increasing in σ. However, this adjustment does not fully offset the increased inefficiency,

and V (x)− U(x) and L(x) therefore increase in σ.

4.5 Stock price reaction at sellout

Figure 6 shows the expected jump in startup value at the sellout time under symmetric and asym-

metric information. With symmetric information, acquisition changes the firm value from V (X(t))

to aHπ(X(t)) − I for X(t) ∈ [x∗
H , x∗

L), and to aiπ(X(t)) − I for X(t) ≥ x∗
L. Then, the expected

jump size becomes (aHπ(X(t))− I − V (X(t)))/V (X(t)) for X(t) ∈ [x∗
H , x∗

L), and (āπ(X(t))− I −

V (X(t)))/V (X(t)) for X(t) ∈ [x∗
H , x∗

L). Under asymmetric information, the jump size becomes

(aHπ(X(t))− I−U(X(t)))/U(X(t)) for X(t) ∈ [x∗∗
H , x∗∗

L ) and (aLπ(X(t))− I−U(X(t)))/U(X(t))

for X(t) ∈ [x∗
H , x∗

L). The jump size can be interpreted as the target stock price reaction or acqui-

sition premium.

From Figure 6, the jump size for the flexible strategy is not monotonic with respect to X(t).

In fact, the jump size at acquisition with symmetric information increases monotonically in X(t)

for X(t) ∈ [x∗
H , x∗

L), and X(t) > x∗
L, but falls at X(t) = x∗

L. This same result can be found under

asymmetric information. This can be explained as follows. At the threshold x∗
L (or x∗∗

L ), the startup

changes its sellout strategies and accepts a low-price acquisition. By allowing a low-price acquisition,

the sellout probability increases, whereas the sellout price decreases. Then, despite better economic

environment, the jump size decreases. In particular, under asymmetric information, the jump size

reduces more sharply at the threshold x∗∗
L . This result leads to the empirical prediction that

asymmetric information intensifies stock price reactions at acquisition.

Figure 6 also shows that a higher 1/λH leads to larger jump sizes as long as the sellout region

12In contrast, Sarkar (2021) shows that the relationship between uncertainty and investment is not monotonic in the

optimal investment timing and size problem.
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does not change. This is because the firm values V (X(t)) and U(X(t)) decrease with higher 1/λH .

In other words, with higher 1/λH , the firm value includes less sellout option values, and the sellout

therefore brings a larger shock to the firm value. This result is consistent with the empirical

findings of Cornett, Tanyeri, and Tehranian (2011) that a lower merger anticipation increases the

target stock price reaction at merger announcement. More notably, the jump size is not monotonic

when the sellout region changes with 1/λH . For instance, see the reactions for X(t) = 10. Under

symmetric information, the jump size increases with 1/λH = 8, 6, and 10. Under asymmetric

information, the jump size increases with 1/λH = 10, 8, and 6. These results show the ambiguous

relationship between merger anticipation and target stock price reaction. Indeed, a lower merger

anticipation does not necessarily increase the stock price reaction because it may also decrease the

price that the target firm aims for. I omit a figure with respect to 1/λL because the same results

hold true.

Most of the M&A real option models (e.g., Lambrecht (2004), Morellec and Zhdanov (2008),

and Lukas, Pereira, and Rodrigues (2019)) do not consider the friction in the M&A searching

and matching process. Hence, those models can predict the M&A timing, and therefore no jump

occurs in firm value at the time of M&A. Hackbarth and Morellec (2008) consider the asymmetric

information between firm insiders and outside investors, and examine the jump in firm value, but

the target and acquirer managers in their models precisely predict the merger timing and price.

Nishihara and Shibata (2021) consider the illiquidity of sellout opportunities, but do not consider

the heterogeneity in sellout prices. This study can better account for the empirical findings of high

uncertainty in M&A deals (e.g., Cornett, Tanyeri, and Tehranian (2011) and Wang (2018)), positive

target stock price reactions (e.g., Huang and Walkling (1987) and Boone and Mulherin (2007)),

and lower acquisition premiums offered by less transparent acquirers (e.g., Bargeron, Schlingemann,

Stulz, and Zutter (2008), Battigalli, Chiarella, Gatti, and Orlando (2017), and Golubov and Xiong

(2020)).

5 Conclusion

This study develops a model in which a startup optimizes the sellout timing and price for high-

and low-type acquirers approaching randomly and sequentially. Under symmetric and asymmetric

information on acquirer type, I analytically derive the startup’s sellout policy and firm value. In

particular, the startup takes either the high-price strategy—accepting only a high type— or flexible

strategy—accepting even a low type in a very good economic environment—based on a tradeoff

between sellout pricing and timing efficiency. The model analysis yields the following results.

The startup tends to take the high-price strategy when the high type’s arrival rate and cash flow

growth rate are high. With lower acquirers’ arrival rate, the startup accepts an acquisition more

eagerly, but this policy does not fully offset the decrease in liquidity. In fact, lower arrival rates

delay the sellout timing and decrease the firm value. A higher growth rate increases the low-price

sellout threshold because it magnifies the gap between high and low valuations. Higher growth
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rate and lower volatility increase the high-price sellout probability and accelerate the sellout. With

asymmetric information, the high-type acquirer can collect information rent by purchasing the

startup at a low price. To reduce the acquirer’s information rent, the startup decreases the high-

price sellout threshold and increases the low-price sellout threshold, especially for low arrival rates

of low types. This policy adjustment maintains the sellout price, but delays the sellout time, leading

to social loss. This social loss due to asymmetric information tends to be high when asymmetric

information changes the startup’ strategy from flexible to high-price strategy. The model can also

explain the positive target stock price reactions (or acquisition premiums) at acquisition. The jump

size can be non-monotonic with respect to either the state variable or acquirer arrival rate due to

the interaction between the sellout price and timing.

A Proof of Proposition 1

The general solution to ODE (1) with (4) is expressed as Vi(x) = π(x) + A1,ix
β , where A1,i is an

unknown coefficient. Then, by (5) and the continuity of Vi(x), I have the expression (10). The

general solution to ODE (2) with (5) is expressed as

Vi(x) = π(x) +
λi(ai − 1)π(x)

r + λi − µ
− λiI

r + λi
+A2,ix

γλi ,

where A2,i is an unknown coefficient. Then, by (3) and the continuity of Vi(x), I have the expression

(11). By the continuous differentiability of Vi(x) at xi, I have

βA1x
β
i =

λi(ai − 1)π(xi)

r + λi − µ
+ γλi

A2x
γλi
i . (35)

By substituting (10) and (11) into (35), I have

β((ai − 1)π(xi)− I) =
λi(ai − 1)π(xi)

r + λi − µ
+ γλi

(
(ai − 1)xi

r + λi − µ
− rI

r + λi

)
xi =

(r + λi − µ)((β − γλi
)r + βλi)x

NPV
i

(r + λi)((β − γλi)(r − µ) + (β − 1)λi)
,

where xNPV
i = (r − µ)I/(ai − 1).

B Proof of Proposition 2

First, assume that (19) holds. Now, I can show that VH(x) > aLπ(x) − I (x ≥ 0) as follows. For

x < xH , I have

VH(x) > aHπ(x)− I ≥ aLπ(x)− I. (36)

By A2,H > 0 in (8), I have, for x ≥ xH ,

VH(x) > π(x) +
λH(aH − 1)π(x)

r + λH − µ
− λHI

r + λH

≥ aLπ(x)−
λHI

r + λH
(37)

> aLπ(x)− I, (38)
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where (37) follows from (19). By (36) and (38), I have VH(x) > aLπ(x) − I for all x ≥ 0. I also

have V (x) > aLπ(x) − I for all x ≥ 0 because of V (x) ≥ VH(x). Then, there is no acceptance

region for a low type, and V (x) = VH(x) holds.

Next, assume that (19) does not hold. From (8), I have VH(x) < aLπ(x) − I when x is

sufficiently large. Hence, I have V (x) ̸= VH(x), meaning that the firm accepts a low type. Assume

that the value function V (x) exists. Then, I can straightforwardly show that an optimal policy

exists among threshold policies specified by thresholds x∗
i (i = H,L), where x∗

H < x∗
H , and that

V (x) is an increasing, convex, and continuously differentiable function satisfying ODEs (12)–(14)

with boundary conditions (15)–(17).

The solution to ODE (12) with boundary conditions (15) for i = H and (16) becomes (20) for

x < x∗
H . Similarly, the solution to ODE (13) with boundary condition (15) for i = H,L is (20) for

x ∈ (x∗
H , x∗

L), while the solution to ODE (14) with boundary conditions (15) for i = L and (17) is

(20) for x > x∗
L. Notations Bi (i = 1, . . . , 7) are defined by

B1 = (x∗
H)−β((aH − 1)π(x∗

H)− I),

B2 =
(x∗

H)γλHB6 − (x∗
L)

γλHB5

(x∗
L)

βλH (x∗
H)γλH − (x∗

H)βλH (x∗
L)

γλH

,

B3 =
(x∗

L)
βλHB5 − (x∗

H)βλHB6

(x∗
L)

βλH (x∗
H)γλH − (x∗

H)βλH (x∗
L)

γλH

,

B4 = (x∗
L)

−γλ̄B7,

B5 =
(aH − 1)x∗

H

r + λH − µ
− rI

r + λH
,

B6 = (aL − 1)π(x∗
L)−

λH(aH − 1)π(x∗
L)

r + λH − µ
− rI

r + λH
,

B7 = (aL − 1)π(x∗
L)−

λ̄(ā− 1)π(x∗
L)

r + λ̄− µ
− rI

r + λ̄
.

Because of the continuous differentiability of V (x) at x∗
i (i = H,L), (x∗

H , x∗
L) becomes a solution13

to

λH(aH − 1)π(x∗
H)

r + λH − µ
+ βλH

B2(x
∗
H)βλH + γλH

B3(x
∗
H)γλH = β((aH − 1)π(x∗

H)− I), (39)

λH(aH − 1)π(x∗
L)

r + λH − µ
+ βλH

B2(x
∗
L)

βλH + γλH
B3(x

∗
L)

γλH =
λ̄(ā− 1)π(x∗

L)

r + λ− µ
+ γλ̄B7. (40)

C Proof of Proposition 3

First, assume that (31) holds. In this case, I can show that

(aHπ(x)− I)λH/λ̄+ VH(x)λL/λ̄ ≥ aLπ(x)− I (x ≥ 0) (41)

13I find a unique solution to the nonlinear system (39) and (40) in all numerical examples, although I cannot analytically

prove its existence and uniqueness.
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as follows. For x < xH , I have VH(x) > aHπ(x)− I, and hence

(aHπ(x)− I)λH/λ̄+ VH(x)λL/λ̄ > aHπ(x)− I

≥ aLπ(x)− I. (42)

By A2,H > 0 in (8), I have, for x ≥ xH ,

(aHπ(x)− I)λH/λ̄+ VH(x)λL/λ̄

>(aHπ(x)− I)λH/λ̄+

(
π(x) +

λH(aH − 1)π(x)

r + λH − µ
− λHI

r + λH

)
λL/λ̄

≥aHπ(x)λH/λ̄+

(
aL − ∆aλH

λL

)
λL/λ̄− λH(r + λ̄)I

λ̄(r + λH)
(43)

=aLπ(x)−
λH(r + λ̄)I

λ̄(r + λH)

>aLπ(x)− I, (44)

where (43) follows from (31). By (44) and (42), I have (41). I also have (aHπ(x) − I)λH/λ̄ +

U(x)λL/λ̄ ≥ aLπ(x) − I for all x ≥ 0 because U(x) ≥ VH(x). Then, the firm value under the

high-price strategy dominates the payoff by low-price sellout, and U(x) = VH(x) holds.

Next, assume that (31) does not hold. From (8), (aHπ(x)− I)λH/λ̄+VH(x)λL/λ̄ < aLπ(x)− I

when x is sufficiently large. Hence, I have U(x) ̸= VH(x), meaning that the startup posts a low

price. Assume that value function U(x) exists. As in Appendix B, I can derive the value function

U(x) and thresholds x∗∗
i (i = H,L), and hence omit the derivation details. By solving ODEs (22)–

(24) with boundary conditions (25)–(28), I have Proposition 3, where coefficients B̃i (i = 1, . . . , 7)

are defined by

B̃1 = (x∗∗
H )−β((aH − 1)π(x∗∗

H )− I),

B̃2 =
(x∗∗

H )γλH B̃6 − (x∗∗
L )γλH B̃5

(x∗∗
L )βλH (x∗∗

H )γλH − (x∗∗
H )βλH (x∗∗

L )γλH

,

B̃3 =
(x∗∗

L )βλH B̃5 − (x∗∗
H )βλH B̃6

(x∗∗
L )βλH (x∗∗

H )γλH − (x∗∗
H )βλH (x∗∗

L )γλH

,

B̃4 = (x∗∗
L )−γλ̄B̃7,

B̃5 =
(aH − 1)x∗∗

H

r + λH − µ
− rI

r + λH
,

B̃6 = (aL − 1−∆aλH/λL)π(x
∗∗
L )− λH(aH − 1)π(x∗∗

L )

r + λH − µ
− rI

r + λH
,

B̃7 = (aL − 1−∆aλH/λL)π(x
∗∗
L )− λ̄(aL − 1)π(x∗∗

L )

r + λ̄− µ
− rI

r + λ̄
,

and (x∗∗
H , x∗∗

L ) becomes a solution14 to

λH(aH − 1)π(x∗∗
H )

r + λH − µ
+ βλH

B̃2(x
∗∗
H )βλH + γλH

B̃3(x
∗∗
H )γλH = β((aH − 1)π(x∗∗

H )− I), (45)

λH(aH − 1)π(x∗∗
L )

r + λH − µ
+ βλH

B̃2(x
∗∗
L )βλH + γλH

B̃3(x
∗∗
L )γλH =

λ̄(aL − 1)π(x∗∗
L )

r + λ− µ
+ γλ̄B̃7. (46)

14I found a unique solution to the nonlinear system (45) and (46) in all numerical examples, although I cannot

analytically prove its existence and uniqueness.
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D Proof of Corollary 1

If condition (31) is satisfied, I readily have W (x) = 0. Assume that (31) does not hold. Now, W (x)

satisfies ODEs

µxW ′(x) + 0.5σ2x2W ′′(x) = rW (x) (0 < x < x∗∗
H ), (47)

µxW ′(x) + 0.5σ2x2W ′′(x) + λH(−W (x)) = rW (x) (x∗∗
H < x < x∗∗

L ), (48)

µxW ′(x) + 0.5σ2x2W ′′(x) + λ̄(∆aπ(x)λH/λ̄−W (x)) = rW (x) (x > x∗∗
L ), (49)

with boundary conditions

lim
x→0

W (x) = 0, (50)

lim
x→∞

W (x)/x < ∞, (51)

and W (x) continuously differentiable at thresholds x∗∗
i (i = H,L). In ODE (48), λH(−W (x))

corresponds to W (x) becoming 0 with probability λHdt in infinitesimal time interval dt in region

x∗∗
H < x < x∗∗

L , whereas λ̄(∆aπ(x)λH/λ̄ − W (x)) in ODE (49) corresponds to W (x) becoming

∆aπ(x)λH/λ̄ (information rent) with probability λ̄dt in infinitesimal time interval dt in region

x > x∗∗
L . The general solutions to ODE (47) with boundary condition (50), and ODEs (48) and (49)

with boundary condition (51) become (34) for x < x∗∗
H , x ∈ (x∗∗

H , x∗∗
L ), and x > x∗∗

L , respectively.

By the continuous differentiability of W (x) at thresholds x∗∗
i (i = H,L), I have

D1(x
∗∗
H )β = D2(x

∗∗
H )βλH +D3(x

∗∗
H )γλH , (52)

D1β(x
∗∗
H )β = D2βλH

(x∗∗
H )βλH +D3γλH

(x∗∗
H )γλH , (53)

D2(x
∗∗
L )βλH +D3(x

∗∗
L )γλH =

λH∆aπ(x∗∗
L )

r + λ̄− µ
+D4(x

∗∗
L )γλ̄ , (54)

D2βλH
(x∗∗

L )βλH +D3γλH
(x∗∗

L )γλH =
λH∆aπ(x∗∗

L )

r + λ̄− µ
+D4γλ̄(x

∗∗
L )γλ̄ . (55)

By (52) and (53), I have

D2(βλH
− β)(x∗∗

H )βλH +D3(γλH
− β)(x∗∗

H )γλH = 0. (56)

By (54) and (55), I have

D2(βλH
− γλ̄)(x

∗∗
L )βλH +D3(γλH

− γλ̄)(x
∗∗
L )γλH =

(1− γλ̄)λH∆aπ(x∗∗
L )

r + λ̄− µ
. (57)

By (56) and (57), I have

D2 =
(γλH

− β)(x∗∗
H )γλH (1− γλ̄)λH∆aπ(x∗∗

L )

D5(r + λ̄− µ)
(58)

D3 = − (βλH
− β)(x∗∗

H )βλH (1− γλ̄)λH∆aπ(x∗∗
L )

D5(r + λ̄− µ)
(59)

D5 = (βλH
− γλ̄)(γλH

− β)(x∗∗
L )βλH (x∗∗

H )γλH − (βλH
− β)(γλH

− γλ̄)(x
∗∗
H )βλH (x∗∗

L )γλH . (60)

Coefficients D1 and D4 immediately follows from (52) and (54).
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Table 1: Baseline parameter values

r µ σ λH λL aH aL I x
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Asym: high price Sym: flexible

Asym: high price

Sym: flexible
Asym: flexible

Baseline

Figure 1: Strategy choice with respect to expected waiting time 1/λi (i = H,L). The other parameter

values are set as in Table 1. With symmetric information, the firm takes the high-price strategy for

1/λH ≤ 5, whereas with asymmetric information, the firm takes the high-price strategy in the area

on the left-hand side of the blue dashed line. In the region between the black and blue dashed lines,

asymmetric information changes the sellout strategy.
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Figure 2: Comparative statics with respect to expected waiting time for high type, 1/λH . The

other parameter values are set as in Table 1. The figure plots the sellout thresholds x∗i , x
∗∗
i , firm

values V (x), U(x), high-price sellout probabilities PH(x), QH(x), state prices S(x), T (x), and social

loss L(x).

28



5 10 15 20

1/
L

1.5

1.502

1.504

1.506

x
H

x
H

5 10 15 20

1/
L

0

10

20

30

40

x
L

x
L

5 10 15 20

1/
L

22.374

22.376

22.378

22.38

22.382

22.384 V(x)
U(x)

5 10 15 20

1/
L

0.94

0.96

0.98

1

P
H

(x)

Q
H

(x)

5 10 15 20

1/
L

0.1985

0.199

0.1995

S(x)
T(x)

5 10 15 20

1/
L

0

2

4

6

8
10-3

L(x)

Figure 3: Comparative statics with respect to expected waiting time for low type, 1/λL. The other

parameter values are set as in Table 1. The figure plots the sellout thresholds x∗i , x
∗∗
i , firm values

V (x), U(x), high-price sellout probabilities PH(x), QH(x), state prices S(x), T (x), and social loss L(x).

29



0.02 0.03 0.04 0.05
1.2

1.3

1.4

1.5

1.6 x
H

x
H

0.02 0.03 0.04 0.05
0

10

20

30

40
x

L

x
L

0.02 0.03 0.04 0.05

20

25

30

35

40
V(x)
U(x)

0.02 0.03 0.04 0.05
0.92

0.94

0.96

0.98

1

P
H

(x)

Q
H

(x)

0.02 0.03 0.04 0.05

0.15

0.2

0.25

0.3 S(x)
T(x)

0.02 0.03 0.04 0.05
0

2

4

6

8
10-3

L(x)

Figure 4: Comparative statics with respect to growth rate µ. The other parameter values are set as

in Table 1. The figure plots the sellout thresholds x∗i , x
∗∗
i , firm values V (x), U(x), high-price sellout

probabilities PH(x), QH(x), state prices S(x), T (x), and social loss L(x).
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Figure 5: Comparative statics with respect to volatility σ. The other parameter values are set as

in Table 1. The figure plots the sellout thresholds x∗i , x
∗∗
i , firm values V (x), U(x), high-price sellout

probabilities PH(x), QH(x), state prices S(x), T (x), and social loss L(x).
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Figure 6: Jump sizes at the sellout time for 1/λH = 6, 8, and 10. The other parame-

ter values are set as in Table 1. The black lines plot the symmetric information cases, i.e.,

(aHπ(X(t)) − I − V (X(t)))/V (X(t)) for X(t) ∈ [x∗H , x∗L) and (āπ(X(t)) − I − V (X(t)))/V (X(t))

for X(t) ∈ [x∗H , x∗L), while the blue dotted line plots the asymmetric information cases, i.e.,

(aHπ(X(t)) − I − U(X(t)))/U(X(t)) for X(t) ∈ [x∗∗H , x∗∗L ) and (aLπ(X(t)) − I − U(X(t)))/U(X(t))

for X(t) ∈ [x∗H , x∗L).
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