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We consider the problem of estimating sparse structural vector autoregression (SVAR) processes
via penalized precision matrix. Such matrix is the output of the underlying directed acyclic graph of
the SVAR process, whose zero components correspond to zero SVAR coefficients. The precision matrix
estimators are deduced from the class of Bregman divergences and regularized by the SCAD, MCP
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1 Introduction

The Vector AutoRegressive (VAR) process is a standard model for multivariate time series. From an

inferential viewpoint, the ordinary least squares method is inapplicable once fitted to high-dimensional

data due to a O(pN2) complexity order, where N is the number of variables and p the number of lags.

Numerous studies modelled sparsity among the VAR parameters to tackle the over-fitting issue, which

justified the use of penalized OLS losses: see, e.g., Basu and Michailidis (2015), who considered a penalized

OLS loss for sparse stable Gaussian VAR processes; in the same manner, Wong, Li and Tewari (2020) derived

some consistency results of penalized OLS based estimators for α-mixing Gaussian VAR processes. Rather

than specifying sparse VAR matrix parameters, Alquier, Bertin, Doukhan and Garnier (2020) specified a

low-rank constraint on the VAR transition matrix in the presence of factors, where the motivation is to

improve the prediction accuracy.

Furthermore, the Structural VAR (SVAR) model has been used to accommodate economic theory

within the VAR framework: see, e.g., Blanchard and Quah (1989) and Waggoner and Zha (2003) among

others. Apart from economic theory, Tunnicliffe-Wilson and Reale (2008), Oxley, Reale, Tunnicliffe-Wilson

(2009), and Ahelegbey, Billio and Casarin (2016) discussed the interpretation and identification of SVAR

models in terms of graphical modelling. In this paper, we consider the structure of SVAR models and

their identification based on a graphical representation, extending Sims (1980) and the previous papers

as an approach which is free from the constraints usually assumed in economic theory. We propose a

different procedure for the analysis of the issues related to SVAR inference in high dimension: our analysis

focuses on the relationships between the SVAR parameters and the precision matrix - i.e., the inverse

variance-covariance - of the SVAR process, which allows for a sparse estimation of the SVAR parameters.

More precisely, in this study, we consider the following problem: given T observations of a N -dimensional

SVAR(p) process (Y t), estimate the sparse precision matrix Θ of Xt = (Y >t−p, · · · ,Y
>
t )>, whose compo-

nents provide sparse consistent estimators of the SVAR parameters by the one-to-one matching between the
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zero coefficients of the SVAR parameters and the precision matrix. Such matching between the precision

matrix Θ and the SVAR parameters relies on the so-called directed acyclic graph, where the elements of

Xt form the nodes and past dependence is captured by the directed edges linking the nodes. By such

relationship, we can show that the sparsity on Θ gives a one-to-one correspondence to the zero coefficients

of the SVAR(p) parameters. Moreover, our method ensures the stationarity of the resulting process while

fostering sparsity on the SVAR coefficients. There exist several methods fostering sparsity for the precision

matrix: for example, Bickel and Levina (2008a) considered a thresholding operator for the inverse, which

constrains the parameters toward zero should they exceed a certain threshold. Rothman, Levina, and Zhu

(2009) showed that this estimator satisfies the “sparsistency” property in the sense of Lam and Fan (2007),

that is the true zero parameters are correctly identified with probability tending to one and the sparse

estimator is sign consistent for nonzero elements. Motivated by the structure of some time series data,

Furrer and Bengtsson (2012) focused on banded precision matrices and fostered sparsity by shrinking the

off-diagonal entries based on their distances with respect to the diagonal. Wu and Pourahmadi (2003)

and Huang, Liu, Pourahmadi and Liu (2006) considered a Cholesky decomposition of the precision matrix

with a thresholding procedure and LASSO penalization of the Cholesky factors respectively. For the as-

pect of “regression” in the VAR, we may carry out the latter approach based on the relationship between

regression coefficients and the precision matrix for vector of relevant variables. The Cholesky decomposi-

tion automatically ensures the positive definiteness of the estimated covariance matrix. Bickel and Levina

(2008b) provided the conditions for the statistical consistency of such estimators while highlighting that a

key feature of such decomposition is that the latter depend on the variable ordering and thus the sparse

structure highly depends on such order. Another parsimonious approach consists in assuming a particular

sparse structure on the variance covariance or the precision matrix. In particular, Bickel and Levina (2008a)

applied a thresholding procedure under the sparse row assumption - the `q-sparse assumption -. Finally, a

significant literature is dedicated to the parsimonious analysis of precision matrices under an element-wise

sparsity assumption. Yuan and Lin (2007) or Ravikumar, Wainwright, Raskutti and Yu (2011) assumed an
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element-wise sparse precision matrix and proposed a LASSO Gaussian likelihood estimator. Zhang and Zou

(2014) proposed an alternative LASSO penalized loss, namely the D-trace loss, to estimate such matrix.

In the same vein, Loh and Wainwright (2017) extended the penalization of the Gaussian precision matrix

to non-convex penalties, which allows for relaxing the incoherence - or irrepresentability - condition.

Our setting lies within such sparse element-wise precision matrix for estimating sparse SVAR parameters.

Our main contributions are as follows: first, we provide a novel estimation method for SVAR parameters

under the sparsity assumption; we provide error bounds for a broard range of sparse estimators of Θ

in the `1, `2 and `∞ senses for specific scaling behaviours of (T, d, k0), where d and k0 respectively are

the dimension problem and the cardinality of the true unknown sparse support; finally, we provide the

conditions to satisfy the support recovery property. The estimators of Θ are deduced from the class of

penalized Bregman divergence losses, including the Gaussian, least squares and von Neumann losses, thus

providing new estimators for sparse precision matrices. To the best of our knowledge, this paper is the first

attempt to link general penalized - potentially non-convex - M-estimators and the Bregman divergence-

based inference for sparse precision matrix. Our study shares a similar spirit to that of Ravikumar et al.

(2011) and Loh and Wainwright (2017), who derived the conditions for statistical consistency of component-

wise sparse Gaussian based precision matrix. But our work differs from these studies in two main respects:

we provide bounds on `1-, `2- and `∞- errors and the conditions to satisfy the support recovery property

within the framework of Bregman divergence, thus providing new sparse estimators for precision matrix.

The framework we use to derive such error bounds is related to the study of Poignard and Fermanian

(2021), which covers a broad range of non-convex objective functions for sparse M-estimation. Assuming the

restricted strong convexity (see e.g. Negahban, Ravikumar, Wainwright and Yu, 2012) of the non-penalized

loss function and for suitable regularity conditions of the penalty, they derived some error bounds for the

penalized estimators. To establish the conditions for support recovery, our proof techniques are inspired

from the primal dual witness method of Loh and Wainwright (2017). In our study, we extend these results

to a broad range of sparse precision matrix estimators. We quantify the statistical accuracy and discuss the
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relevance of these theoretical bounds for each M-criterion. The scaling behaviours with respect to (T, d, k0)

that we derive for support recovery highly depend on the regularity of the Bregman divergence.

The organization of the paper is as follows. In Section 2, we describe our approach for sparse SVAR

modelling based on sparse precision matrix. In Section 3, we provide our sparse estimation framework based

on Bregman divergences together with the theoretical properties - error bounds and support recovery - of

the corresponding estimators. Section 4 illustrates these theoretical properties through simulation and real

data experiments. All intermediary results, proofs and figures are contained in Section 5.

Notations. Throughout this paper, we denote the cardinality of a set E by |E|. For a vector v ∈ Rd,

the `p norm is ‖v‖p =
(∑d

k=1 |vk|p
)1/p

for p > 0, and ‖v‖∞ = max
i
|vi|. Let the subset A ⊆ {1, · · · , d},

then vA ∈ R|A| is the vector v restricted to A. We writeMd1×d2(R) the set of d1×d2-dimensional matrices

with real coefficients. For a matrix A, ‖A‖s, ‖A‖∞ and ‖A‖F are the spectral, infinity and Frobenius norms,

respectively, and ‖A‖max = max
i,j
|Ai,j | is the coordinate-wise maximum (in absolute value). We write A>

(resp. v>) to denote the transpose of the matrix A (resp. the vector v). We write vec(A) to denote the

vectorization operator that stacks the columns of A on top of one another into a vector. We denote by

A � 0 (resp. A � 0) the positive definiteness (resp. semi-definiteness) of A and vech(A) the d(d + 1)/2

vector that stacks the columns of the lower triangular part of A ∈ Md×d(R). λmin(A) (resp. λmax(A))

denotes the minimum (resp. maximum) eigenvalue of A. For a function f : Rd → R, we denote by ∇f

the gradient or subgradient of f and ∇2f the Hessian of f . We denote by (∇2f)AA the Hessian of f

restricted to the block A. We write Ac to denote the complement of the set A. The expression with high

probability refers to event occurring with probability approaching one when (T, d, k0) tend to infinity. The

scaling results for (T, d, k0) are expressed as f(T ) ≥ Mg(k0, d) for 0 < M < ∞ some universal constant

and continuous functions f(.), g(.).
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2 High Dimensional VAR

Let (Y t) be an N -dimensional random vector of time series and consider the following VAR model:

Y t = A1Y t−1 + · · ·+ApY t−p + ut, t = 1, . . . , T, (1)

where ut ∈ RN with E[ut] = 0 and Var(ut) = Σu ∈ MN×N (R), where Σu � 0 and for each i = 1, · · · , p,

Ai ∈ MN×N (R). The driving parameters are Ai,Σu. Although we assume that Y t is a mean zero

vector, our setting can straightforwardly include a constant term in (1). Now consider an invertible matrix

B0 ∈ MN×N (R) with diagonal elements being equal to one. Multiplying B0 from the left of both sides of

(1), we obtain the following form:

B0Y t = B1Y t−1 + · · ·+BpY t−p + et, t = 1, . . . , T, (2)

where et = B0ut and Bi = B0Ai. By construction, E[et] = 0, Σe = Var(et) = B0ΣuB
′
0, and Σe is positive

definite. Equation (2) is known as the ‘A-model’ in the literature on structural VAR (SVAR) models: see,

e.g., Lütkepohl (2006, 2017). A challenging task concerns SVAR identification. One way is to assume (i)

Σe is diagonal, (ii) the diagonal elements of B0 are one, and (iii) the number of zeros in B0 is N(N − 1)/2:

these identification restrictions are provided in Proposition 9.1 of Lütkepohl (2006). As pointed out in

Subsection 9.1.4 of Lütkepohl (2006), assuming such restrictions is not necessary, especially due to the lack

of meaningful economic justifications to impose contemporaneous restrictions. For instance, Blanchard and

Quah (1989) developed a framework for imposing long-run restrictions for structural VAR models: such

restrictions are based on long-run neutrality properties.

Rather than imposing the above restrictions a priori on B0 or on long-run representations, we pursue the

direction of Sims (1980) for a data-oriented identification based on a graphical representation, which will

be explained below. We highlight the existence of an alternative SVAR identification method based on sign

restrictions: it consists in dropping doubtful restrictions one after one to identify the most likely admissible

model within the set of structural VAR models that satisfy the assumed sign restrictions. For instance,

6



within the ‘B-model’ described in Subsection 9.1.2 of Lütkepohl (2006), Inoue and Killian (2013) developed

an approach based on all admissible models which satisfy signs of parameters derived by economic theory.

Since our analysis focuses on potentially large dimensional VAR model, we assume sparsity either on

Σu and Ai (i = 0, 1, . . . , p) or on Bi (i = 0, 1, . . . , p). The matrices Ai’s are coefficients for regressing Y t

on Y t−1, ...,Y t−p, while the matrices Bi (i = 1, . . . , p) and IN −B0 are obtained by regressing recursively

an element of Y t on Y t−1, ...,Y t−p and Y t except for the own variable. In other words, the sparsity

on the parameters B0 and Bi (i = 1, . . . , p) corresponds to the absence of contemporaneous effects and

dependence with respect to past observations, respectively. As investigated by Tunnicliffe-Wilson and

Reale (2008), Oxley, Reale, Tunnicliffe-Wilson (2009), and Ahelegbey, Billio and Casarin (2016), Σ−1
u

(or B0) and Bi (i = 1, . . . , p) in the SVAR model (2) can be interpreted in terms of directed acyclic

graph in the graphical modeling. For this reason, we assume the sparsity on Σ−1
u (or B0) and Bi (i =

1, . . . , p). However, rather than fostering sparsity on the Bi’s directly and thus apply a standard regularized

estimation on a OLS/Gaussian MLE loss, we consider sparsity on the precision matrix of the vector Xt =

(Y >t−p, . . . ,Y
>
t−1,Y

>
t )>, whose partial correlation coefficients characterise the coefficients among the Bi’s

and Σu: see, e.g., Section 5.3 of Johnston (1972). Denote Σx = Var(Xt), where Xt is the N(p+ 1) vector

defined above. Then, denoting Γi = E[Y tY
′
t−i] the autocovariance matrix, we obtain

Σx =


Γ0 Γ′1 · · · Γ′p
Γ1 Γ0 · · · Γ′p−1
...

...
. . .

...
Γp Γp−1 · · · Γ0


Applying Example 2.2 of Dahlhaus and Eichler (2000) under the non-Gaussian assumption, equation (5)

of Ahelegbey, Billio and Casarin (2016) indicates the equivalence

σrsu = 0⇐⇒ Corr(Y r,t,Y s,t|{Xt\{Y r,t,Y s,t}}) = 0,

Bi,rs = 0⇐⇒ Corr(Y r,t,Y s,t−i|{Xt\{Y r,t,Y s,t−i}}) = 0,

for i = 0, 1, . . . , p, where σrsu is the (r, s)th element of Σ−1
u . To derive the partial correlation coefficient

between two variables in Xt, we need to use the inverse of Σx. Denoting the (j, k)th element of Σ−1
x as σjkx ,
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the partial correlation coefficient between the jth and the kth elements of Xt is then ρjkx = −σjkx
/√

σjjx σkkx

(j 6= k). It is straightforward to show

σrsu = σNp+r,Np+sx

for r, s = 1, . . . , N . By equation (5.31) of Johnston (1972), we obtain

Bi,rs =
Σx,kk
Σx,jj

ρjkx , j = Np+ r, k = N(p− i) + s,

for i = 0, 1, . . . , p and r, s = 1, . . . , N . In view of such structure, we can impose sparsity on Bi’s and Σ−1
u

through the sparsity of Σ−1
x , the precision matrix of the random vector Xt: if we are in a position to get

a consistent and a positive definite estimator of Σ−1
x , say Σ̂−1

x , then we would obtain consistent estimators

B̂i, Âi (i = 1, . . . , p) and Σ̂u. There is an additional merit for imposing sparsity on Σ−1
x : as we consider

positive definite Σx or Σ−1
x , the parameters satisfy the stationary condition automatically by, e.g., equation

(2.1.43) of Lütkepohl (2006). Such matching between the coefficients of Σ−1
x and the VAR coefficients

allows for a component-wise sparse structure, in the same spirit as in Ravikumar et al. (2011) or Zhang

and Zou (2014). Such element-wise sparsity assumption is a key difference with the Cholesky based sparse

assumption of Huang et al. (2006), which imposes a particular variable ordering as emphasised by Bickel

and Levina (2008b). The sparsity assumption is thus stated for the Bi’s and Σ−1
u parameters, which is

equivalent to assuming a component-wise sparse structure on Σ−1
x . The main contribution of our study is

to propose novel sparse estimators for Θ̂ := Σ̂−1
x based on Bregman divergences and provide error bounds

together with the conditions for support recovery. In particular, the von Neuman and least squares based

estimators of such precision matrix have not been studied. In the rest of the paper, we denote Θ0 := Σ−1
x

the true precision matrix of the N(p+ 1) random vector Xt.

It is worth mentioning the competing estimation techniques for SVAR models. The inference for the

‘A-model’ can be perfomed by maximum likelihood under suitable restrictions as described in Subsection

9.3.1 of Lütkepohl (2005). Lütkepohl (2017) considered the method of moments for estimating B0 using

the OLS residuals from the VAR model. Should one consider a graphical approach for SVAR identification,
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a Bayesian inference procedure can be carried out by Markov chain Monte Carlo method as in Aheleg-

bey, Billio and Casarin (2016). Unlike the latter work, the matching we highlighted between the SVAR

parameters and the precision matrix enables us to carry out a novel sparse inference.

3 SVAR inference through sparse precision matrix

3.1 Framework

Under the sparsity assumption of Bi, i = 0, · · · , p and Σu and thus of Σ−1
x , we aim at recovering the true

sparse support A of the inverse of the variance covariance matrix parameter Θ0 = Σ−1
x ∈ Md×d(R) with

d = N(p+ 1). The sparsity assumption is specified as follows.

Assumption 1. The true parameter θ0 = vec(Θ0) is sparse so that k0 = card(A), where A = {1 ≤ i ≤

d2 : θi,0 6= 0} with k0 < d2 the total number of parameters.

To estimate such sparse Θ0, we rely on a regularized M-estimation problem given by:

Θ̂ = arg min
Θ∈Ω

{
LT (Θ) + p(λT , θ)

}
, (3)

where θ = vec(Θ), p(λT , .) : Rd2 → R is the penalty function, with λT the regularization parameter,

which depends on the sample size, and enforce a particular type of sparse structure in the solution Θ̂.

Here LT : Rd2 × RTN → R is the non-penalized loss function, which evaluates the precision of the fit

with the sample (Y 1, · · · ,Y T ). As stated in Subsections 3.2 and 5.2, the scaling behaviour of (T, d, k0)

together with statistical consistency highly depend on the choice of LT (.) and its regularity. Ω denotes a

d × d-variance convex covariance matrix subset defined as Ω =
{

Θ : Θ � 0, ‖θ‖1 ≤ R
}

. The constraint

through R may be somewhat arbitrary but it enforces the estimated optimum to be close enough to the

theoretical optimum and ensures that LT (.) is lower bounded. Indeed, due to the potential non-convexity of

the criterion, we include the side condition ‖θ‖1 ≤ R, where R is a supplementary regularization parameter

to ensure the existence of local/global optima: more details on this constraint can be found in Section 3 of

Loh and Wainwright (2017) or in Poignard and Fermanian (2021). Alternative presentations of the sparse
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precision matrix setting are possible, where only the off-diagonal entries of Θ are penalized. Similar results

for statistical consistency actually hold in this case. In our framework, we assume that all components are

equally penalized to clarify our arguments. Similar settings are also considered by Loh and Wainwright

(2015) and Fan, Feng and Wu (2009).

As for the loss LT (.) in (3), we consider the general framework of the Bregman divergence criterion

Dφ(Θ,Θ0), defined as a dissimilarity measure between two symmetric positive definite matrices, the can-

didate Θ and the true inverse Θ0, defined as

Dφ(Θ,Θ0) = φ(Θ)− φ(Θ0)− tr(
(
∇φ(Θ0)

)>(
Θ−Θ0

)
),

where φ is a differentiable and strictly convex function over the space of real and symmetric positive definite

matrices. Obviously, such discrepancy can not be optimized with respect to Θ unless Θ0 is replaced by

some known quantity. We propose to replace Θ0 by its empirical version Ŝ−1, the inverse of the sample

variance covariance matrix of Xt, where we assume Ŝ � 0. Thus, replacing Θ0 by Ŝ−1, we consider the

loss function in (3) as LT (.) = LT,η(.) with

LT,η(Θ) = ηDφ(Θ, S−1) + (1− η)Dφ(S−1,Θ),

where 0 ≤ η ≤ 1 is a known scalar value. This loss function is an extension of the standard Bregman

divergence setting. Indeed, the loss function is a balance between the Bregman divergence and its switched

argument version. As it will be emphasised in our theoretical analysis, suitable choices of η will enable us

to provide the probability for which statistical accuracy holds. We propose the following specifications of

φ and hence of LT (.):

(i) φ(Θ) = − log(|Θ|), so that the corresponding Bregman divergence can be written as

LT,η(Θ) = (1− 2η) log(|Θ|) + tr
(
ηŜΘ + (1− η)Θ−1Ŝ−1

)
,

where the terms independent of Θ are discarded. This function is known as Stein’s loss, and is closely

related to the standard Gaussian QML criterion up to some constants. When η = 0, one obtain the
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standard Gaussian QML criterion for inverse variance covariance estimation.

(ii) φ(Θ) = tr(Θ2), then the Bregman divergence is a least squares loss defined as LT,η(Θ) = ‖Θ− Ŝ−1‖2F ,

which is η independent: in that case, the dependence of LT,η(.) on η is simply skipped. We use LT (.)

as the notation for the least squares case.

(iii) φ(Θ) = tr(Θ log(Θ) − Θ), then the derivative becomes ∇Θφ(Θ) = tr(log(Θ)) (see exercise 13.31 of

Abadir and Magnus, 2005, for the matrix logarithm derivative) and the Bregman divergence becomes

the von Neumann. Then, our loss is defined as

LT,η(Θ) = (2η − 1)tr
(
Ŝ−1 −Θ

)
+ ηtr

(
Θ log(Θ)

)
+ (1− η)tr

(
Ŝ−1 log(Ŝ−1)

)
−ηtr

(
log(Ŝ−1)Θ

)
− (1− η)tr

(
log(Θ)Ŝ−1

)
.

It is interesting to compare the above losses with the D-trace loss function LT (Θ) = 1
2 tr
(

Θ2Ŝ − 2Θ
)

that

was proposed by Zhang and Zou (2014), who performed a LASSO regularization to obtain a sparse precision

matrix. We will extend their framework to non-convex penalty functions, which will in particular allow for

relaxing their so-called incoherence condition when analysing the support recovery property.

To summarize, the loss function LT (.) in (3) will be taken as the Stein’s and von Neumann losses with

switched arguments LT,η(.), the least squares loss and the D-trace loss. As for the penalty function p(λT , .)

in (3), we rely on the following assumption.

Assumption 2. We consider penalty functions that are assumed to be amenable regularizers defined as

follows. We denote p(., .) : R+ × Rq, with q denoting the dimension problem, the penalty function -

or regularizer -, which is assumed to be coordinate-separable with respect to θ ∈ Rq, idest p(λT , θ) =

q∑
k=1

p(λT , θi). Furthermore, let µ ≥ 0, and p(λT , .) is µ-amenable if

(i) x 7→ p(λT , x) is symmetric around zero and p(λT , 0) = 0.

(ii) x 7→ p(λT , x) is non-decreasing on R+.

(iii) x 7→ p(λT ,x)
x is non-increasing on R+

? .
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(iv) x 7→ p(λT , x) is differentiable for any x 6= 0.

(v) lim
x→0+

∂xp(λT , x) = λT .

(vi) x 7→ p(λT , x) + µ
2x

2 is convex for some µ ≥ 0.

The regularizer p(λT , .) is (µ, ζ)-amenable if in addition

(vii) There exists ζ ∈ (0,∞) such that ∂xp(λT , x) = 0 for x ≥ λT ζ.

Let q : R+ × Rq → R be q(λT , x) = λT ‖x‖1 − p(λT , x) so that the function µ
2 ‖x‖

2
2 − q(λT , x) is convex.

Assumption 1 implies that the true support (unknown) is sparse, that is the matrix Θ0 contains zero

components. The regularization - or penalization - procedure provides an estimator of A. To derive our

theoretical properties, assumption 2 provides regularity conditions that potentially encompass non-convex

functions. These regularity conditions are the same than Loh and Wainwright (2015, 2017) or Poignard

and Fermanian (2021). In this paper, we focus on the LASSO, the SCAD due to Fan and Li (2001) and

the MCP due to Zhang (2010), respectively defined as

LASSO : p(λT , ρ) = λT |ρ|,

MCP : p(λT , ρ) = sign(ρ)λT

∫ |ρ|
0

(1− z/(λT bmcp))+dz,

SCAD : p(λT , ρ) =


λT |ρ|, for |ρ| ≤ λT ,
−(ρ2 − 2bscadλT |ρ|+ λ2

T )/(2(bscad − 1)), for λT ≤ |ρ| ≤ bscadλT ,

(bscad + 1)λ2
T /2, for |ρ| > bscadλT ,

where bscad > 2 and bmcp > 0 are fixed parameters for the SCAD and MCP respectively. The LASSO is a

µ-amenable regularizer, whereas the SCAD and the MCP are (µ, ζ)-amenable. More precisely, µ = 0 (resp.

µ = 1/(bscad − 1), resp. µ = 1/bmcp) for the Lasso (resp. SCAD, resp. MCP). The parameter µ can be

interpreted as a coefficient of non-convexity level: the larger, the more non-convex the penalty becomes.

The penalized problem (3) may not be convex depending on the choice of the penalty - SCAD or MCP

- and/or for a specific Bregman divergence. Therefore, we would like to weaken the convexity assumption

so that we could evaluate the accuracy of Θ̂. To do so, the restricted strong convexity is a key ingredient
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to handle non-convex loss functions. Intuitively, we would like to handle a loss function that locally admits

some curvature. To ensure this property, we rely on the strong convexity (local) of the loss function.

The strong convexity of a differentiable loss function corresponds to a strictly positive lower bound on the

eigenvalues of the Hessian matrix uniformly valid over a local region around the true parameter. This

amounts to a curvature condition. More precisely, we are interested in a particular direction, that is the

difference ∆ = θ̂− θ0. Hence the notion of restricted strong convexity weakens the (local) strong convexity

by adding a tolerance term. A detailed explanation is provided in Negahban et al. (2012).

Slightly extending the definition of Loh and Wainwright (2017), we say that an empirical loss function

GT (.) satisfies the restricted strong convexity condition (RSC) at θ ∈ Rq if there exist two positive functions

α1, α2 and two nonnegative functions τ1, τ2 of (θ, T, q) such that, for any ∆ ∈ Rq,

〈∇θGT (θ + ∆)−∇θGT (θ),∆〉 ≥ α1‖∆‖22 − τ1
log(q)

T
‖∆‖21, if ‖∆‖2 ≤ 1,

〈∇θGT (θ + ∆)−∇θGT (θ),∆〉 ≥ α2‖∆‖2 − τ2

√
log(q)

T
‖∆‖1, if ‖∆‖2 ≥ 1.

The RSC property is fundamentally local and αk, τk, k = 1, 2 depend on the chosen θ. The RSC condition

of Loh and Wainwright (2015) is similar but uniform with respect to (T, q). Moreover, to weaken notations,

we simply write αk and τk, k = 1, 2, by skipping their implicit arguments (θ, T, q). The threshold for ‖∆‖2

has been set for convenience and one can reparameterize the model with θ̄ := rθ for some r > 0.

3.2 Error bounds

We first provide some error bounds for the estimator (3) assuming that LT (.) satisfies the RSC condition

and the penalty is µ-amenable. We assume that the population risk function L(Θ) = E[LT (Θ)] is assumed

to be uniquely minimized at θ0 = vec(Θ0) ∈ Rd2 . Then we have the following Theorem.

Theorem 3.1. Assume θ ∈ Rd2 and the objective function LT (.) : Rd2 7→ R satisfies the RSC condition

and p(λT , .) is µ-amenable, with 3
4µ ≤ α1. Choose

4 max
{
‖∇θLT (θ0)‖∞, α2

√
log(d2)

T

}
≤ λT ≤

α2

6R
, (4)

13



and assume T ≥
16R2 max{τ2

1 , τ
2
2 }

α2
2

log(d2). Let θ̂ be a stationary point of (3). Then θ̂ satisfies

‖θ̂ − θ0‖2 ≤
6λT
√
k0

4α1 − 3µ
, ‖θ̂ − θ0‖1 ≤

6(16α1 − 9µ)

(4α1 − 3µ)2
λT k0.

Remark. (i) This result is based on an optimization reasoning only and is obtained in a deterministic

way; the proof can be found in Poignard and Fermanian (2021), Theorem 1. As will be clarified in

the following Corollaries, to apply Theorem 3.1, we will need to check the conditions for which the

loss function LT (.) satisfies the RSC condition. Moreover, we will show that suitable choices of λT

and R provide the probability to satisfy the conditions of Theorem 3.1 with high probability.

(ii) About (α1, µ): the tightness of the error bounds are sensitive to the difference 4α1 − 3µ, assuming

λT , k0 fixed. Here, α1 should be thought as the curvature of LT : the bigger α1 is, the larger the

curvature becomes. On the other hand, µ measures the non-convexity of the penalty function: the

larger µ is, the more non-convex p(λT , .) becomes. Thus, there is a trade-off between α1 and µ when

satisfying the constraint 4α1 > 3µ.

One of the purposes of the paper is to answer the following points: given LT (.) - Stein’s and von

Neumann loss with LT := LT,η, least squares and D-trace loss -, is the RSC condition satisfied? Can we

apply Theorem 3.1 and evaluate the probability of (4)? To tackle the latter issue, we derive an exponential-

type inequality. To do so, we rely on a Bernstein-type based inequality applied to the difference ‖Ŝ−Σx‖max.

Such quantity is key when bounding the gradient of LT (.). The sample variance covariance matrix is defined

as Ŝ := 1
T

∑T
i=1 XtX

>
t . Suitable assumptions on the variables are required to adapt the exponential bound

to the data dependent setting. This is the motivation of the next assumptions. To do so, we consider

standard assumptions on the reduced form VAR equation (1) that can be written as
∑p
i=0 L(i)Y t−i = ut,

with L(0) = IN and L(i) = −Ai. We assume:

Assumption 3. The absolute values of the zeros of the polynomial det(P (z)) with P (z) =
p∑
i=1

L(i)zi, z ∈ C

are strictly greater than one.
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Assumption 4. The probability distribution of ut is absolutely continuous with respect to the Lebesgue

measure on RN .

Equipped with assumptions 3 and 4, the process (Y t) is a geometrically completely regular process by

Theorem 1 of Mokkadem (1988): thus (Y t) is a strongly mixing process. Hence, setting p finite, (Xt) is

also strongly mixing by, e.g., Theorem 3.49 of White (2001). The mixing condition will be crucial in our

analysis to evaluate the probability of the discrepancy ‖Ŝ − Σx‖max exceeding a certain threshold.

Assumption 5. (Xt) is strongly mixing with mixing coefficient α(τ) ≤ exp(−cτγ1) with γ1 and c positive

constants. Moreover, ∃γ2 > 0, b > 0 such that ∀δ > 0 and ∀i ≤ d, P(|Xi,t| ≥ δ) ≤ exp(−
(
δ
b

)γ2
).

The latter assumption requires the exponential-type tails for the distribution of (X1,t, · · · ,Xd,t). This

allows us to derive an exponential bound on 1
T

T∑
t=1

Xi,tXj,t − Σij,x. We have the following lemma.

Lemma 3.2. Let γ < 1 with 1/γ = 1/γ1 + 3/γ2. Under assumptions 3, 4 and 5, assume T ≥ 4, there exist

positive constants C1, C2, C3, C4, C5 depending only on b, γ1, γ2 such that ∀ε > 0,

P(‖Ŝ − Σx‖max ≥ ε) ≤ d2
{
T exp

(
− (Tε)γ

C1

)
+ exp

(
− (Tε)2

C2(1 + TC3)

)
+ exp

(
− (Tε)2

C4T
exp

( (Tε)γ(1−γ)

C5(log(Tε))γ
))}

.

In particular, let L > 0, then P(‖Ŝ − Σx‖max ≥ L
√

log(d2)
T ) = O( 1

d2 ).

Remark. (i) This concentration inequality will be applied when bounding the random quantity ‖LT,η(Σ)‖∞,

where the difference Ŝ − Σx will typically be bounded in this score function.

(ii) The choice of ε proportional to
√

log(d2)
T is motivated by condition (4) in Theorem 3.1, where we aim

at evaluating the probability of satisfying such condition.

(iii) Alternatively, we can use exponential bounds for separately Lipschitz functions such as Dedecker and

Fan (2015) or Alquier et al. (2020). To do so, some contraction property on the data generating

process of the reduced form VAR would be necessary.
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Indeed, Theorem 3.1 is stated in a deterministic manner. We show that for suitable parameter choices

(λT , R), the conditions of Theorem 3.1 hold with high probability. To do so, this requires bounding the

random quantity ‖∇θLT,η(Θ0)‖∞ and verifying the RSC conditions. This motivates the use of Lemma 3.2.

We are in a position to provide the conditions for consistency of the Bregman divergence based sparse

estimators. First, let us consider the Stein’s loss case. For φ(Θ) = − log(|Θ|), the statistical criterion is Θ̂g = arg min
Θ∈Ω

{
LT,η(Θ) + p(λT , θ)

}
, with

LT,η(Θ) = (1− 2η) log(|Θ|) + tr
(
ηŜΘ + (1− η)Θ−1Ŝ−1

)
.

(5)

Here, the loss function is optimized over the convex set Ω = Ω =
{

Θ : Θ � 0, ‖θ‖1 ≤ R
}

. The side

constraint in Ω is in the same spirit as in Loh and Wainwright (2015).

Corollary 3.3. Assume the regularizer is µ-amenable, under the sample size T ≥ CR2α−2
2 log(d2),

with C > 0 a sufficiently large constant, with α2 = (2η − 1)
{
λmax(Θ0) + 1

}−2
+ 2(1 − η)

{
λmax(Θ0) +

1
}−3

λmin(Ŝ−1), if the regularization parameter satisfies

4 max
{
‖(1− 2η)Θ−1

0 + ηŜ − (1− η)Θ−1
0 Ŝ−1Θ−1

0 ‖max, α2

√
log
(
d2
)

T

}
≤ λT ≤

α2

6R
, (6)

where Θ0 ∈ Ω, suppose 3
4µ < α1 with α1 = α2. Then any local optimum Θ̂g of program (5) satisfies

‖Θ̂g −Θ0‖F ≤
6λT
√
k0

4α1 − 3µ
, ‖vec(Θ̂g)− vec(Θ0)‖1 ≤

6(16α1 − 9µ)λT k0

(4α1 − 3µ)2
, (7)

with α1 = α2, k0 = |A| and A = {1 ≤ i ≤ d2 : θi,0 := vec(Θ0)i 6= 0}.

Furthermore, for η = 1, under assumptions 3, 4 and 5 so that the sample variance-covariance estimator

satisfies the bound in Lemma 3.2, if (λT , R) are chosen so that C1

√
log(d2)/T ≤ λT ≤ C2/R and for a

sample size T ≥ L
{

log(d2) max
(
R2, k0

)
∨ log(d2)2/γ−1

}
, for C1, C2, L large constants, then (7) hold with

probability at least 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Remark. (i) The proof relies on the following two steps: first, we verify the RSC condition for LT (Θ),

derive the quantities α1, α2, τ1, τ2 by lower bounding λmin(∇2
θθ>LT (Θ)) and obtain the error bounds

(7) applying Theorem 3.1; second, we bound ‖∇θLT (Θ0)‖∞ using Lemma 3.2 for a fixed ε proportional

to
√

log(d2)/T . In that case, the required rate becomes max
(
R2, k0

)
log(d2) = O(T ).

16



(ii) Should we consider the Stein’s loss for estimating the variance-covariance Σx = Θ−1
0 , the regularity

of the loss is significantly altered. The RSC parameters would involve the minimum eigenvalue

λmin(2Ŝ −Σx), which thus must be assumed positive to ensure positive RSC parameters α1, α2: see,

e.g., Poignard and Terada (2020), who considered the RSC property for the Gaussian QML estimator

of the factor model based variance covariance matrix.

(iii) The RSC parameters are sample dependent through Ŝ−1. Actually, using the exponential bound on

‖Ŝ − Σx‖max, we could express α1, α2 with respect to λmax(Σx) = λmax(Θ−1
0 ) as:

λmin(Ŝ−1) ≥ λmax(Ŝ)−1 ≥
(
‖Ŝ − Σx‖s + ‖Σx‖s

)−1

≥
(
L

√
d2

log(d2)

T
+ ‖Σx‖s

)−1

,

with high probability using Lemma 3.2 with L > 0 and for a suitable sample size.

(iv) When p(λT , θ) = λT ‖θ‖1, then setting λT ≥ L
√

log(d2)/T and R = m0

√
k0 with a constant m0 ≥

‖θ0‖2, we have the scaling T ≥Mk0 log(d2).

We now consider the consistency of the least squares estimator Θ̂ls (case φ(Θ) = tr(Θ2)) that satisfies: Θ̂ls = arg min
Θ∈Ω

{
LT (Θ) + p(λT , θ)

}
, with

LT (Θ) = ‖Θ− Ŝ−1‖2F , Ω =
{

Θ : Θ � 0, ‖θ‖1 ≤ R
}
.

(8)

Corollary 3.4. Assume the regularizer is µ-amenable, under the sample size T ≥ C max(R2, k2
0)α−2

2 log(d2),

with C > 0 a sufficiently large constant, with α2 = 2, if the regularization parameter satisfies

4 max
{
‖2
(

Θ0 − Ŝ−1
)
‖max, α2

√
log
(
d2
)

T

}
≤ λT ≤

α2

6R
, (9)

where Θ0 ∈ Ω, suppose 3
4µ < α1 with α1 = α2. Then any local optimum Θ̂ls of program (8) satisfies

‖Θ̂ls −Θ0‖F ≤
6λT
√
k0

8− 3µ
, ‖vec(Θ̂ls)− vec(Θ0)‖1 ≤

6(32− 9µ)λT k0

(8− 3µ)2
, (10)

with k0 = |A| and A = {1 ≤ i ≤ d2 : θi,0 := vec(Θ0)i 6= 0}.

Furthermore, under assumptions 3, 4 and 5 so that the sample variance-covariance estimator satisfies

the bound in Lemma 3.2, if (λT , R) are chosen so that C1

√
d2 log(d2)/T ≤ λT ≤ C2/R and for a sample
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size T ≥ L
{
d2 log(d2) max(R2, k0) ∨ log(d2)2/γ−1

}
, for C1, C2, L > 0 large constants, then (10) hold with

probability at least 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Remark. Evaluating the probability of (9) requires upper bounding ‖Σ−1
x − Ŝ−1‖max. Using the exponen-

tial bound on ‖Σx − Ŝ‖max of Lemma 3.2, one can get a bound on ‖Σ−1
x − Ŝ−1‖max at a cost d.

Let us focus on the von Neumann estimator Θ̂vn. To analyse its properties, we rely on the power series

expansion log(A) = −
∞∑
k=1

1
k (Id − A)k, where A is a d-square symmetric positive definite matrix, to handle

the matrix logarithm part. This expression is valid when ‖Id − A‖s < 1. In our case, instead of assuming

‖Id −Θ‖s < 1 for expanding log(Θ), which might be restrictive, we consider Θ/ν, where ν is the constant

ν > λmax(Θ) and integrate such constraint in the parameter space. Thus, we consider the criterion
Θ̂vn = arg min

Θ∈Ωvn

{
LT,η(Θ) + p(λT , θ)

}
, with

LT,η(Θ) = (2η − 1)tr
(
Ŝ−1 −Θ

)
/ν + ηtr

(
Θ log(Θ/ν)

)
/ν + (1− η)tr

(
Ŝ−1 log(Ŝ−1/ν)

)
/ν

−ηtr
(

log(Ŝ−1/ν)Θ
)
/ν − (1− η)tr

(
log(Θ/ν)Ŝ−1

)
/ν.

(11)

where Ωvn is defined as Ωvn =
{

Θ : Θ � 0, ‖Θ‖s < ν, ‖θ‖1 ≤ R
}

.

Corollary 3.5. Assume the regularizer is µ-amenable, under the sample size T ≥ CR2α−2
2 log(d2), with

C > 0 large enough, let k0 = |A| and A = {1 ≤ i ≤ d2 : θi,0 := vec(Θ0)i 6= 0}, then

(i) η = 1: α2 = 1/(νd), if the regularization parameter satisfies

4 max
{
‖1

ν

(
log(Θ0/ν)− log(Ŝ−1/ν)

)
‖max, α2

√
log
(
d2
)

T

}
≤ λT ≤

α2

6R
, (12)

with Θ0 ∈ Ωvn, suppose 3
4µ < α1 with α1 = α2. Then any local optimum Θ̂vn of (11) satisfies

‖Θ̂vn −Θ0‖F ≤
6λT
√
k0

4/(νd)− 3µ
, ‖vec(Θ̂vn)− vec(Θ0)‖1 ≤

6(16/(νd)− 9µ)λT k0

(4/(νd)− 3µ)2
. (13)

(ii) η = 0: α2 = λmin(Ŝ−1/ν){λmax(Θ0) + 1}−2, if the regularization parameter satisfies

4 max
{
‖1

ν
Θ−1

0

(
Θ0 − Ŝ−1

)
‖max, α2

√
log
(
d2
)

T

}
≤ λT ≤

α2

6R
, (14)
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with Θ0 ∈ Ω, suppose 3
4µ < α1 with α1 = α2. Then any local optimum Θ̂vn of (11) satisfies

‖Θ̂vn −Θ0‖F ≤
6λT
√
k0

4
(
λmin(Ŝ−1/ν){λmax(Θ0) + 1}−2

)
− 3µ

,

‖vec(Θ̂vn)− vec(Θ0)‖1 ≤
6(16

(
λmin(Ŝ−1/ν){λmax(Θ0) + 1}−2

)
− 9µ)λT k0

(4
(
λmin(Ŝ−1/ν){λmax(Θ0) + 1}−2

)
− 3µ)2

.

(15)

Furthermore, under assumptions 3, 4 and 5 so that the sample variance-covariance estimator satisfies

the bound in Lemma 3.2, if (λT , R) are chosen so that C1

√
d2 log(d2)/T ≤ λT ≤ C2/R and for a

sample size T ≥ L
{
‖Θ−1

0 /ν‖2sd2 log(d2) max(R2, k0)∨log(d2)2/γ−1
}

, for C1, C2, L > 0 large constants,

then (15) hold with probability at least 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Remark. (i) As in Corollary 3.3, the RSC parameters are sample dependent through Ŝ−1 and can be

expressed with respect to λmax(Σx).

(ii) For η = 1, ∇ΘLT,1(Θ0) = 1
ν

(
log(Θ0/ν)−log(Ŝ−1/ν)

)
. Then upper bounding log(Θ0/ν)−log(Ŝ−1/ν)

is challenging. For instance, should we use power series expansion, we would need to control for

‖
∞∑
k=1

1

k

{
(Id − Ŝ−1/ν)k − (Id −Θ0/ν)k

}
‖max ≤

∞∑
k=1

1

k
‖(Id − Ŝ−1/ν)k − (Id −Θ0/ν)k‖s.

Thus, unless we assume further conditions such as Θ0 and Ŝ−1 commuting, deriving an exponential

bound is a challenging task.

(iii) When η = 0, the scaling behaviour (T, d, k0) in the von Neumann case is similar to the least squares

case. Indeed, evaluating (14) requires controlling for 1
ν

(
Θ0− Ŝ−1

)
= 1

ν

(
Σ−1
x − Ŝ−1

)
. For this reason,

we are able to provide the probability for which inequalities in (15) hold.

We finally investigate the D-trace loss based sparse estimator Θ̂dt, which satisfies the criterion Θ̂dt = arg min
Θ∈Ω

{
LT (Θ) + p(λT , θ)

}
,

LT (Θ) = 1
2 tr
(

Θ2Ŝ
)
− tr

(
Θ
)
, Ω = Ω =

{
Θ : Θ � 0, ‖θ‖1 ≤ R

}
.

(16)

This loss function was proposed by Zhang and Zou (2014). We then have the following error bounds.
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Corollary 3.6. Assume the regularizer is µ-amenable, under the sample size T ≥ C max(R2, k2
0)α−2

2 log(d2),

with C > 0 a sufficiently large constant, with α2 = λmin(Ŝ), if the regularization parameter satisfies

4 max
{
‖1

2
Θ0

(
Ŝ −Θ−1

0

)
+

1

2

(
Ŝ −Θ−1

0

)
Θ0‖max, α2

√
log(d2)

T

}
≤ λT ≤

α2

6R
, (17)

where Θ0 ∈ Ω, suppose 3
4µ < α1 with α1 = α2, then any local optimum Θ̂dt of program (16) satisfies

‖Θ̂dt −Θ0‖F ≤
6λT
√
k0

4λmin(Ŝ)− 3µ
, ‖vec(Θ̂dt)− vec(Θ0)‖1 ≤

6(16λmin(Ŝ)− 9µ)λT k0

(4λmin(Ŝ)− 3µ)2
, (18)

with k0 = |A| and A = {1 ≤ i ≤ d2 : θi,0 := vec(Θ0)i 6= 0}.

Furthermore, under assumptions 3, 4 and 5 so that the sample variance-covariance estimator satisfies the

bound in Lemma 3.2, if (λT , R) are chosen so that C1

√
d2 log(d2)/T ≤ λT ≤ C2/R and for a sample size

T ≥ L
{
‖Θ0‖2sd2 log(d2) max

(
R2, k0

)
∨ log(d2)2/γ−1

}
, for C1, C2, L > 0 large constants, then (18) hold with

probability at least 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Remark. (i) As in remark (i) following Corollary 3.5, the RSC parameters can be expressed with respect

to λmin(Σx) using the exponential bound of Lemma 3.2.

(ii) Zhang and Zou (2014), in their Theorem 2, obtained a similar rate for the ‖.‖F consistency of the

D-trace estimator; and our scaling behaviour (T, d, k0) shares the same sample size order as theirs.

However, contrary to their result, our upper bound explicitly links the regularity of the D-trace loss

with the non-convexity degree of the penalty function through the RSC property. In another context,

using the D-Trace loss function, Wu and Li (2020) focused on the consistency of the LASSO penalized

precision matrix difference ∆̂ = Θ̂Y − Θ̂X , where ΘY = Σ−1
Y ,ΘX = Σ−1

X are the precision matrices of

the two state vectors Y,X assumed sub-Gaussian. In their Theorem 2, they also obtained a similar

‖.‖F consistency but with much larger dimension dependent constants.

All else being equal, the curvature of the loss LT (.) in (3) significantly influences how informative the

theoretical upper bounds are. For the Stein’s loss, the curvature parameter α1 involves the spectral norm

of the true parameter Θ0: λmax(Θ0) determines the convexity degree of LT (.). As it will be highlighted in
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Section 4, a small α1 value requires a low degree of non-convexity in the penalty to satisfy 4α1 > 3µ: the

smaller µ is, the less non-convex p(λT , .) should be. The dimension impacts also the von Neumann and

D-trace losses. Interestingly, the least squares loss involves a dimension free expression for α1.

3.3 Support recovery

Based on the Karush-Kuhn-Tucker optimality conditions, Wainwright (2009) developed the primal dual

witness (PDW) approach to derive selection consistency for convex problems. There exist similar approaches

in Candès and Plan (2009) or Zhao and Yu (2006). The PDW approach consists in plugging the true subset

model A in the KKT optimality conditions, which are necessary and sufficient if the problem is convex,

and checking if they can be satisfied. It means that any solution of the non restricted problem (the original

problem providing A) is also a solution to the restricted problem (the regularized one). Loh and Wainwright

(2017) showed that this approach can be extended to a nonconvex problem and thus to any stationary

point, which is their key contribution. They prove that all stationary points are consistent for variable

selection via a strict dual feasibility condition and second-order conditions. To obtain the support recovery

property, the RSC condition of the loss function with parameters (αk, τk)k=1,2 and the µ-amenability of

the penalty are key assumptions. More details can be found in Subsection 5.2: there, in Theorem 5.1,

we provide the conditions of Loh and Wainwright (2017) to ensure the success of the PDW construction -

corresponding to Step 3. -, that is the scaling of (λT , R) and the so-called strict feasibility condition, which

characterize the solution of the PDW construction; Theorem 5.2 establishes the support recovery property

together with consistency in the ‖.‖∞-sense under the RSC condition, µ-amenable penalties and strict dual

feasibility; finally, two sufficient conditions in Proposition 5.3 ensure that strict dual feasibility holds for

(µ, ζ)-amenable penalties. Within this setting, we provide `∞-guarantees for the regularized Θ̂ together

with the conditions to satisfy the support recovery property: for the Stein’s loss, we restrict our analysis

to η = 1, the most commonly used loss for sparse precision matrix estimation; η = 0 for the von Neumann

case. Rather than stating the support recovery property in a deterministic manner, we directly evaluate
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the probability of satisfying the latter property. For all Bregman losses, we show that any local/global

optimum of (3) corresponds to the oracle estimator with high probability. The latter is given as

Θ̂O := arg min
θ∈R|A|:Θ∈Ω

{
LT (Θ)

}
, (19)

with vec(Θ̂O) = (vec(Θ̂OA),0Ac). We denote the Fisher information matrix K0 = E[∇2
θθ>LT (Θ0)]. The

conditions we derive hold for all stationary points of (3), idest for local/global optimum. LT (Θ) is the

non-penalized loss of problem (3). Thus, we denote Θ̂g,O, Θ̂ls,O, Θ̂vn,O, Θ̂dt,O the oracle estimators of (19)

respectively for the Stein, least squares, von Neumann and D-trace loss.

For the Stein’s loss, we consider η = 1 so that the Fisher information matrix becomes K0 = E[∇2
θθ>LT,1(Θ0)] =(

Θ−1
0 ⊗Θ−1

0

)
. The conditions for support recovery for the Stein case are given as follows:

Corollary 3.7. Assume T ≥ L
{
‖Σx‖4∞k2

0 log(d2)∨ log(d2)2/γ−1
}

with L > 0 large enough, the regulariza-

tion parameters (λT , R) are chosen so that ‖vec(Θ0)‖1 ≤ R
2 and C1

√
log(d2)
T ≤ λT ≤ C2

R , for C1, C2 > 0,

assume ‖K−1
0 ‖∞ ≤ β∞ and assumptions 3, 4 and 5 hold. Then:

(i) Assume p(λT , .) is µ-amenable penalty and ‖
(

Θ−1
0 ⊗Θ−1

0

)
AcA

(
Θ−1

0 ⊗Θ−1
0

)−1

AA
‖∞ ≤ ω < 1 (incoher-

ence condition), then with probability at least 1−O(exp
(
− log(d2

)
− o(exp

(
− log(d2)

)
, the objective

function (5) admits a unique optimum so that Â ⊆ A and for a sufficiently large L̃ > 0

‖Θ̂g −Θ0‖max ≤ L̃
√

log(d2)

T
+ λTβ∞.

(ii) Assume p(λT , .) is (µ, ζ)-amenable and min
i∈A
|vech(Θ0)i| ≥ λT (ζ + 2β∞) + L̃

√
log(d2)
T for a sufficiently

large L̃ > 0, then with probability 1 − O(exp
(
− log(d2)

)
− o(exp

(
− log(d2)

)
, (5) admits a unique

optimum Θ̂g, which agrees with the oracle estimator Θ̂g,O so that

‖Θ̂g −Θ0‖max ≤ L̃
√

log(d2)

T
·

Remark. (i) The proof relies on the use of Theorem 5.2. To do so, strict dual feasibility must be proved

(since Theorem 5.2 relies on the conditions of Theorem 5.1 and strict dual feasibility). To establish
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strict dual feasibility, we use Theorem 5.1 for µ-amenable penalty functions and Proposition 5.3 for

(µ, ζ)-amenable penalty functions. The main proof steps can be summarized as:

(a) Establishing strict dual feasibility by upper bounding the quantities ‖∇θLT,1(Θ0)A‖∞ and

‖K̂AcAK̂
−1

AA∇θLT,1(Θ0)‖∞ by (1 − δ)/2λT for δ ∈ [0, 1] defined in Theorem 5.1 - with τ1 = 0

since the RSC condition for the Gaussian loss is satisfied with τ1 = τ2 = 0; here K̂ is defined

as in Theorem 5.2 for the Gaussian loss. These bounds correspond to inequalities (27) and

(28) in Proposition 5.3. Note that for the µ-amenable penalty case, the additional quantity

‖K̂AcAK̂
−1

AA‖∞ must be upper-bounded. Once strict dual feasibility is established, we compute

the upper bound of ‖Θ̂g −Θ0‖max in point (i) of Theorem 5.2.

(b) Establishing point (ii) of Corollary 3.7 uses the exact same steps as in point (i), except that

the (µ, ζ)-amenability allows for a simplification in the upper bound of ‖Θ̂g−Θ0‖max: the term

involving ‖K̂AcAK̂
−1

AA‖∞ can be discarded as well as the incoherence condition.

(ii) Corollary 3.7 is not expressed in a deterministic manner since we evaluate the probability of satisfying

the inequalities (24) and (25) in Theorem 5.1. This implies controlling, among others, for the infimum

norm of the score function evaluated at Θ0. We thus obtain λT proportional to
√

log(d2)/T .

(iii) The scaling behaviour we obtained is in the same vein as in Loh and Wainwright (2017) or Ravikumar

et al. (2011). Loh and Wainwright (2017) require n > L‖Γ−1
AA‖2∞‖Σx‖6∞r2

0 log(d2) in their Corollary 4

for i.i.d. data, for L > 0 a large constant, where ‖.‖∞ denotes the `∞ operator norm, r0 the number

of nonzero entries per row and Γ = ∇2
θθLT,1(Θ0). Such scaling is obtained for the side constraint

‖Θ‖s ≤ κ rather than ‖vec(Θ)‖1 ≤ R, which allows their sparsity assumption to be stated at a

row/column level rather than over the whole matrix, which is the main difference with our setting.

(iv) We emphasize that there is an alternative method for constructing vec(Θ̂g)A such that supp(Θ̂g
A) ⊆ A

and vec(Θ̂g)A is a zero-subgradient point of the program (22) in Step 1 of the Primal Dual Witness

method: this method is based on the Brouwer’s fixed point Theorem. Intuitively, the idea is to prove
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that if there is a zero sub-gradient vector of the penalized estimator LT,1(Θ) + p(λT ; vec(Θ)) within

the set {Θ ∈ Ωg, supp(Θ) ⊆ supp(Θ0)}, then this vector is the unique optimum. Then Brouwer’s

fixed point Theorem is used to show that such optimum lies in a neighbourhood of the true value

vech(Θ0) in the ‖.‖∞-sense. Such method was developed by Ravikumar et al. (2011) for LASSO

penalized Θ or Loh and Wainwright (2017) for LASSO/SCAD/MCP penalized Θ.

We now consider the least squares estimator Θ̂ls. The oracle Θ̂ls,O satisfies (19) with LT (Θ) = ‖Θ− Ŝ−1‖2F .

Corollary 3.8. Under assumptions 3, 4 and 5, assume T ≥ Lmax
{

[(d2 − k0)∨ k0] log(d2), log(d2)2/γ−1
}

with L > 0 large enough, assume the regularization parameters (λT , R) are chosen so that ‖vec(Θ0)‖1 ≤

R
2 and C1

√
log(d2)
T ≤ λT ≤ C2

R with C1, C2 > 0. Assume p(λT , .) is a (µ, ζ)-amenable penalty and

min
i∈A
|vech(Θ0)i| ≥ λT (ζ + 2) + L

√
log(d2)
T for L > 0 large enough, then with probability 1 − O(exp

(
−

log(d2)
)
− o(exp

(
− log(d2)

)
, (8) admits a unique optimum Θ̂ls, which agrees with the oracle estimator

Θ̂ls,O so that

‖Θ̂ls −Θ0‖max ≤ L
√

log(d2)

T
·

Remark. (i) The proof follows the same steps as in Corollary 3.7: establishing inequalities (27) and

(28) in Proposition 5.3 to use Theorem 5.2. Note that upper bounding ‖∇θLT (Θ0)Ac‖∞ and

‖K̂AcAK̂
−1

AA∇θLT (Θ0)A‖∞ by (1− δ)/2λT , for δ ∈ [0, 1] defined in Theorem 5.1 - with τ1 = 0 since

the RSC condition for the least squares loss is satisfied with τ1 = τ2 = 0, is more straightforward due

to the linearity of the least squares loss, contrary to the case φ(Θ) = − log(|Θ|).

(ii) If the Lasso is considered, which is a µ-amenable regularizer, then the mutual incoherence condition

does not hold since ‖K̂AcAK̂
−1

AA‖∞ = 1. Consequently, strict dual feasibility can not be established

for µ-amenable penalties when the least squares type loss function is considered.

Let us consider the conditions for support recovery for the von Neumann case, where we restrict our analysis

to η = 0 to clarify our arguments. The matrix K0 = E[∇2
θθ>LT,0(Θ0)] is given by (31) in the Appendix.
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Corollary 3.9. Assume T ≥ Lmax
{

1
ν2

[
(d2−k0)∨ k

9
0

ν2 ‖Σx‖4s
(

1−‖Θ0/ν‖s
)−2]

‖Σx‖2s log(d2), log(d2)2/γ−1
}

with L > 0 large enough, assume E[Ŝ−1] <∞, choose the regularization parameters (λT , R) as ‖vec(Θ0)‖1 ≤

R
2 and C1

√
log(d2)
T ≤ λT ≤ C2

R , suppose ‖K−1
0 ‖∞ ≤ β∞ and assumptions 3, 4 and 5 hold. Then:

(i) Assume p(λT , .) is a µ-amenable penalty and ‖K0,AcAK
−1
0,AA‖∞ ≤ ω < 1 (incoherence condition),

then with probability at least 1 − O(exp
(
− log(d2)

)
− o(exp

(
− log(d2)

)
, the objective function (11)

admits a unique optimum so that Â ⊆ A and for a sufficiently large L̃ > 0

‖Θ̂vn −Θ0‖max ≤ L̃
√

log(d2)

T
+ λTβ∞.

(ii) Assume p(λT , .) is (µ, ζ)-amenable and min
i∈A
|vech(Θ0)i| ≥ λT (ζ+2β∞)+L̃

√
d2 log(d2)

T for a sufficiently

large L̃ > 0, then with probability 1 − O(exp
(
− log(d2)

)
− o(exp

(
− log(d2)

)
, (11) admits a unique

optimum Θ̂vn, which agrees with the oracle estimator Θ̂vn,O so that

‖Θ̂vn −Θ0‖max ≤ L̃
√

log(d2)

T
·

Remark. The scaling behaviour (T, d, k0) is less favorable compared to the Stein’s loss: this is because

the Hessian of the Von Neumann loss requires the control of ‖Ŝ−1/ν‖, a quantity, which does not appear

in the Hessian of the Stein’s loss for η = 1.

Finally, we consider the D-trace loss case. The Fisher information matrix is K0 = E[∇2
θθ>LT (Θ0)] =

1
2

(
Θ−1

0 ⊗Id+Id⊗Θ−1
0

)
. Our analysis extends the setting of Zhang and Zou (2014) to non-convex penalties

allowing for relaxing their incoherence condition in point (ii) of the following Corollary.

Corollary 3.10. Assume T > Lmax
{
k2

0

[
‖Σx‖2∞ ∨ ‖Θ0‖2s

]
log(d2), (d2 − k0)‖Θ0‖2s log(d2), log(d2)2/γ−1

}
,

choose the regularization parameters (λT , R) so that ‖vec(Θ0)‖1 ≤ R
2 and C1

√
log(d2)
T ≤ λT ≤ C2

R for

C1, C2 > 0, assume ‖K−1
0 ‖∞ ≤ β∞ and assumptions 3, 4 and 5 hold. Then:

(i) Assume p(λT , .) is µ-amenable and ‖
(

Θ−1
0 ⊗Id+Id⊗Θ−1

0

)
AcA

(
Θ−1

0 ⊗Id+Id⊗Θ−1
0

)−1

AA
‖∞ ≤ ω < 1

(incoherence condition), then with probability at least 1−O(exp(− log(d2)))− o(exp(− log(d2))), the
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objective function (16) admits a unique optimum with Â ⊆ A and for L > 0 large enough

‖Θ̂dt −Θ0‖max ≤ L
√

log(d2)

T
+ λTβ∞.

(ii) Assume p(λT , .) is (µ, ζ)-amenable and min
i∈A
|vech(Θ0)i| ≥ λT (ζ + 2β∞) +L

√
log(d2)
T for a sufficiently

large L̃ > 0, then with probability 1 − O(exp(− log(d2))) − o(exp(− log(d2))), (16) admits a unique

optimum Θ̂dt, which agrees with the oracle estimator Θ̂dt,O so that

‖Θ̂dt −Θ0‖max ≤ L̃
√

log(d2)

T
·

Remark. Our scaling involves k0, which represents the total sparsity over the whole precision matrix.

In their Theorem 2, Zhang and Zhou (2014) obtain a similar ‖.‖max consistency rate, but their scaling

condition for support recovery for i.i.d. data is such that n > Lr2
0 log(d), with r0 the maximum number of

nonzero off-diagonal entries in any row (or column), a rate similar to Corollary 4 of Loh and Wainwright

(2017).

4 Empirical applications

In all our simulation experiments, we simulate the N -dimensional VAR model

∀1 ≤ t ≤ T, Y t =

p∑
i=1

AiY t−i + ut, ut ∼ NRN (0,Σu), (20)

where the matrix coefficients Ai’s are deduced from the sparse matrices B0 and Bi, 1 ≤ i ≤ p. The

matrix coefficients are simulated so that the conditions of assumption 3 are satisfied. The object of interest

is the sparse inverse variance covariance matrix Θ0, deduced from the sparse Σ−1
u , Bi’s coefficients. To

recover such sparse element, we consider problems (5), (8), (11) and (16) with SCAD, MCP and LASSO

penalization, providing 12 estimators. To solve the penalized optimization problem under the positive-

definite constraint, we apply the numerical optimization fmincon on Matlab with Ŝ−1 for initialization.

Alternatively, one can follow the composite gradient descent procedure of Loh and Wainwright (2015) - see

their section 4 -, which consists in a three step updating procedure of the optimized parameter. To manage
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the positive-definitness constraint of Θ, one could include an alternating direction method of multipliers

step in the same spirit than the ADMM algorithm provided in Appendix 3 of Bien and Tibshirani (2011).

4.1 Sensitivity analysis

We propose a sensitivity analysis of the statistical consistency and the theoretical error bound with respect

to λT . We consider two penalization rates: 4.5
√

log(d2)
T and 6.5

√
log(d2)
T , where d = N(p + 1). As for

the side constraint parameter R, we select R = 2
λT

p(λT , vec(Θ0)) to ensure the feasibility of Θ0 following

Loh and Wainwright (2015, 2017). For general data sets, R cannot be computed since the true underlying

model is unknown, so that a data-driven method such as cross-validation is required. We set N = 15 and

p = 2 so that d = 45 and the total number of parameters in Θ is 2025 (idest 1035 distinct elements).

The total number of zero components is 1508 so that k0 = 517, and ‖vec(Θ0)‖1 = 91.12, ‖Θ0‖F = 7.81,

‖Θ0‖max = 1.013, ‖Θ0‖s = 2.101. The Stein’s (resp. von Neumann) loss is calibrated for η = 1 (resp.

η = 0). As for the RSC parameters, to satisfy 4α1 > 3µ, we consider the setting:

(i) Stein’s loss: bscad = 30, bmcp = 20. When η = 1, then α1 = (λmax(Θ0) + 1)−2 = 0.104. For the

SCAD, 4α1 − 3µ = 0.313; for the MCP, 4α1 − 3µ = 0.266; for the Lasso, 4α1 − 3µ = 0.4159.

(ii) Least squares loss: α1 = 2. We choose bscad = 30, bmcp = 20. For the SCAD, 4α1 − 3µ = 7.896; for

the MCP 4α1 − 3µ = 7.850; for the Lasso, 4α1 − 3µ = 8.

(iii) von Neumann loss: for η = 0, then α1 = λmin(Ŝ−1/ν)(λmax(Θ0) + 1)−2 = 0.0167, with d = 45. We

set ν = 1 for the sake of clarification to compute the theoretical bounds. To evaluate λmin(Ŝ/ν),

we simulated 100 times the DGP for T = 20000 and took the average of these hundred minimum

eigenvalues, so that λmin(Ŝ−1/ν) = 0.079 and α = 0.0082. To satisfy 4α1 > 3µ, we chose bscad =

110, bmcp = 100 so that: for the SCAD, 4α1 − 3µ = 0.0051; for the MCP 4α1 − 3µ = 0.0026; for the

Lasso, 4α1 − 3µ = 0.0326.

(iv) D-trace loss: α1 = λmin(Ŝ); based on 100 simulations of the DGP for T = 20000, we obtained 100

estimates Ŝ and computed the average of these 100 minimum eigenvalues and obtained α1 = 0.557.
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We set bscad = 30, bmcp = 20. For the SCAD, 4α1 − 3µ = 2.005; for the MCP, 4α1 − 3µ = 1.958; for

the Lasso, 4α1 − 3µ = 2.108.

We consider samples with sizes T = 500, 1000, 1500, · · · , 20000, and for each sample size, we simulate 100

times the process (Y t). For each of these 100 simulated paths, we consider the sample variance covariance

matrix Ŝ = 1
T

T∑
t=1

XtX
>
t . Thus, for each sample size, we obtain 100 LASSO/SCAD/MCP sparsity-based

estimators Θ̂g, Θ̂ls, Θ̂vn, Θ̂dt. For the Stein (resp. von Neumann) case, we set η = 1 (resp. η = 1). The

‖.‖2 (resp. ‖.‖1) consistency patterns and the theoretical upper bounds for λT = 4.5
√

log(d2)/T and

λT = 6.5
√

log(d2)/T are reported in Panels 1a-1f (resp. Panels 2a-2f). For all cases, the consistency is

more favorable when using the rate 2
√

log(d2)/T , which is in line with the theoretical upper bounds that

depend on λT : using a tighter rate provides tighter bounds as depicted in our figures. In small samples,

the least squares based estimator is less precise but performs well for large samples. Note that for the

`1-consistency and λT = 4.5
√

log(d2)/T , only the theoretical upper bound for the LASSO is reported:

for all other cases, a large sample size T >> 20000 would be required to reach from above ‖vec(Θ0)‖1.

Panels 3a-3c report the consistency patterns for all loss based estimators for λT = 4.5
√

log(d2)/T . The

von Neumann based estimators are close to each other since the bscad, bmcp parameters are large so that the

resulting penalization rate behaves as a LASSO one. A significant issue is how ”informative” these error

bounds are. Their rates depend on the regularization parameter λT , on the curvature of the loss function

through the RSC parameters α1 and the non-convexity of the penalty, where the trade-off expressed through

the constraint 4α1 > 3µ is key in our theoretical analysis. For the von Neumann loss, 4α1 > 3µ is satisfied

for significantly large values of bscad and bmcp so that µ is small enough compared to α1. Hence the

denominator for the von Neumann case implies that the upper bounds for both the ‖.‖1 and ‖.‖2 errors are

the least informative. For the `2-consistency, it would require a dramatically large sample size T for the

LASSO theoretical upper bound to cut the ‖Θ0‖F line from above. As for the Stein’s loss, it would require

a sample size T > 200000 for the LASSO theoretical upper bound to cut the ‖Θ0‖F line from above and
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is thus not reported in Panels 1a-1f. This feature changes when considering the least squares and D-trace

loss functions, where the RSC parameter α1 is large enough so that the denominator becomes larger and

the theoretical upper bounds become informative.

4.2 An illustration of the support recovery property

In this subsection, the number of zero and non-zero coefficients are expressed with respect to vech(Θ0).

We set N = 30 and p = 2 so that d = 90 and the total number of parameters in Θ is 8100 (idest 4095

distinct elements). The total number of zero components in vech(Θ) is 3676 so that the number of non-zero

coefficients in vech(Θ) is 419. Here, ‖vec(Θ0)‖1 = 141.35, ‖Θ0‖F = 10.28, ‖Θ0‖max = 1.001, ‖Θ0‖s = 2.30.

Note that the total number of parameters in B0 (resp. B1, B2; resp. vech(Σu)) is 788 (resp. 1664; resp.

394). Using the proposed sparse estimation to recover A, for a sample size T , we simulated (20) a hundred

times and assess the ability to correctly identify the support. We report in Table 1 the variable selection

performance through the number of zero coefficients correctly estimated, denoted as C, the number of zero

coefficients incorrectly estimated (i.e. an estimated zero coefficient whereas the true parameter is non-

zero), denoted as IC1, the number of nonzero coefficients incorrectly estimated (i.e. an estimated non-zero

coefficient whereas the true parameter is zero), denoted IC2, averaged for these hundred batches. The

mean squared error is reported as an estimation accuracy measure. The Stein’s (resp. von Neumann) loss

is calibrated with η = 1 (resp. η = 0). The bscad, bmcp are set so that 4α1 − 3µ > 0 is still satisfied:

bscad = 50, bmcp = 45 (resp. 30, 20, resp. 150, 155, resp. 50, 45) for the Stein’s (resp. Least squares, resp.

von Neumann, resp. D-Trace) loss. The regularization parameter λT is set as c
√

log(d2)/T , with c = 4

a value calibrated by a cross-validation (CV) procedure and selected as optimal for the Stein’s loss and

D-Trace loss for T = 30000. For the sake of clarification, we set the same value for all losses. We used

the data-dependent hv-CV procedure devised by Racine (2000), which consists in leaving a gap between

the test sample and the training sample, on both sides of the test sample. Our simulation results show the

challenge to perfectly recover the sparse model for all sparse estimators. First, Θ0 contains a large number
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of small non-zero coefficients, where min
i∈A
|vech(Θ0)| = 0.0022 and the number of coefficients in absolute

value smaller than 0.05 is 223. This mainly justifies the IC1 figures. For all cases, the LASSO provides

higher MSE, which agrees with the property that the LASSO penalizes all coefficients with the same rate,

thus generating a larger bias. We note that for larger sample sizes, the recovery becomes more precise since

both IC1 and IC2 diminish.

4.3 Application to real data

To assess the relevance of the new estimation technique, we consider a VAR model based on a vector of

squared stock returns to obtain forecasts using the three loss functions with the three penalties. We use

the stocks listed in the Dow Jones Industrial Average, excluding Dow Inc. (N = 29) for the period starting

from February 18, 2010 to June 19, 2018, providing 2100 observations. Dow Inc. is left aside since it went

public on April 1st, 2019. The last 100 observations are used to carry out the forecasting analysis, where

we apply a rolling window with sample size T = 2000. We selected the regularization parameters λT =√
log((p+ 1)2N2)/T for the Gaussian and the D-Trace loss functions and λT = 0.2

√
log((p+ 1)2N2)/T

for the LS and von Neumann loss functions: to do so, we applied a cross validation over the 2000 first

observations and then applied the same regularization rate over the next 100 forecasting periods. As

a benchmark, we estimated the VAR model (1) with p = 1, . . . , 5 by the ordinary least squares (OLS)

method. Table 2 presents the number of parameters in the model and AIC, indicating that the VAR(1)

model has the minimum AIC.

We obtained the one-step-ahead forecasts for the VAR(1) model in order to provide the mean squared

forecast error (MSFE) and the sample mean of the number of non-zero parameter estimates in B0 and

B1 for the 100 forecasting period. 3 shows the forecasting results. The minimum number of non-zero

parameters is represents less than 15 percent of the standard non-sparse OLS case. On the other hand, the

sparse modelling of SVAR models have smaller MSFEs than the traditional VAR has. Among the proposed

penalized losses, the von Neumann with SCAD has the minimum MSFE. Furthermore, to examine the
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significance of the forecast loss, Table 3 presents p-value for the Model Confidence Set (MCS) of Hansen,

Lunde and Nason (2011). The MCS procedure selects a set of models that contains the best model with

95%. Except for OLS and the Gaussian loss function with LASSO, all approaches are included in the same

confidence set. Except for these LASSO cases, the new approach provides significantly superior results

than the OLS does. The results for the real data analysis support the relevance of the method over the

standard OLS method.
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5 Technical appendix

5.1 Figures and Tables

(a) SCAD - λT = 4.5
√

log(d2/T ) (b) SCAD - λT = 6.5
√

log(d2/T )

(c) MCP - λT = 4.5
√

log(d2/T ) (d) MCP - λT = 6.5
√

log(d2/T )

(e) LASSO - λT = 4.5
√

log(d2/T ) (f) LASSO - λT = 6.5
√

log(d2/T )

Figure 1: ‖.‖2 consistency for the setting of Subsection 4.1 for λT = 4.5
√

log(d2)/T and λT =

6.5
√

log(d2)/T . The Stein, least squares, von Neumann and D-trace cases are represented in solid red,
blue, black and gray respectively. Each point represents an average of 200 trials for each sample size. The
corresponding theoretical upper bounds are in dashed-dotted lines.
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(a) SCAD - λT = 4.5
√

log(d2/T ) (b) SCAD - λT = 6.5
√

log(d2/T )

(c) MCP - λT = 4.5
√

log(d2/T ) (d) MCP - λT = 6.5
√

log(d2/T )

(e) LASSO - λT = 4.5
√

log(d2/T ) (f) LASSO - λT = 6.5
√

log(d2/T )

Figure 2: ‖.‖1 consistency for the setting of Subsection 4.1 for λT = 4.5
√

log(d2)/T and λT =

6.5
√

log(d2)/T . The Stein, least squares, von Neumann and D-trace cases are represented in solid red,
blue, black and gray respectively. Each point represents an average of 200 trials for each sample size. The
corresponding theoretical upper bounds are in dashed-dotted lines.
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(a) ‖.‖2-consistency

(b) ‖.‖1-consistency

(c) ‖.‖∞-consistency

Figure 3: ‖.‖2, ‖‖1, ‖.‖∞ consistencies for the setting of Subsection 4.1 for λT = 4.5
√

log(d2)/T . The Stein,
least squares, von Neumann and D-trace cases are represented in red, blue, black and gray color respectively.
For each loss, the SCAD (resp. MCP, resp. LASSO) is in solid (resp. dashed, resp. dashed-dotted) line.
Each point represents an average of 200 trials for each sample size.
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Table 1: Model selection and precision accuracy for N = 30 and p = 2 based on 100 replications. For each penalized Stein, Least squares, Von
Neumann and D-trace, the penalty cases are reported according to the order: SCAD, MCP and LASSO

Truth Stein Least-squares von Neumann D-trace

T = 5000
C 3676 3469.1− 3458.8− 3464.8 3535.4− 3523.2− 3535.1 3432.9− 3422.5− 3426.6 3462.6− 3463.6− 3462.3

IC1 0 222.5− 221.3− 222.5 217.8− 218.6− 218.5 222.6− 220.9− 221.8 223.7− 222.2− 224.9
IC2 0 206.9− 217.1− 211.2 140.6− 152.8− 140.9 243.1− 253.5− 249.4 213.4− 212.7− 213.7

MSE 3.291− 3.342− 3.549 7.085− 7.522− 7.058 1.462− 1.459− 1.418 3.267− 3.347− 3.598

T = 10000
C 3676 3603.4− 3610.2− 3609.9 3602.1− 3601.9− 3607.7 3583.5− 3574.2− 3579.8 3612.6− 3601.8− 3602.1

IC1 0 216.1− 214.7− 217.2 210.3− 206.5− 219.6 215.9− 211.7− 220.8 217.7− 208.1− 221.9
IC2 0 72.5− 65.8− 66.0 73.9− 74.1− 68.3 92.5− 101.7− 96.2 63.4− 74.2− 73.9

MSE 2.332− 2.341− 2.787 5.663− 6.014− 6.405 0.970− 0.967− 1.211 1.951− 1.955− 2.329

T = 20000
C 3676 3643.5− 3643.6− 3650.3 3639.1− 3637.4− 3644.3 3649.9− 3650.9− 3648.7 3653.5− 3654.2− 3657.3

IC1 0 192.4− 183.8− 203.7 193.6− 180.2− 196.1 189.3− 179.8− 196.2 184.2− 171.8− 193.6
IC2 0 32.4− 32.3− 35.7 36.9− 38.6− 41.6 26.1− 25.0− 27.3 22.5− 21.8− 28.6

MSE 1.446− 1.491− 1.964 2.554− 2.514− 3.242 0.643− 0.637− 0.758 0.961− 1.012− 1.391

T = 30000
C 3676 3665.1− 3670.2− 3674.9 3668.6− 3673.4− 3674.4 3675.7− 3675.5− 3675.6 3665.1− 3665.9− 3675.8

IC1 0 172.8− 161.8− 188.2 187.7− 170.2− 188.9 182.3− 171.1− 191.3 178.1− 163.4− 186.7
IC2 0 16.9− 17.7− 19.1 7.4− 2.5− 1.6 0.3− 0.5− 0.8 10.9− 7.3− 0.2

MSE 0.185− 0.226− 0.396 0.254− 0.156− 0.293 0.113− 0.110− 0.163 0.102− 0.117− 0.202
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Table 2: OLS Results

VAR(p) p = 1 p = 2 p = 3 p = 4 p = 5
# of parameters 1276 2117 2958 3799 4640

AIC 16673.7 16841.8 17009.9 17178.1 17346.2

Table 3: Sparse VAR Forecasts

Loss Penalty # of Non-Zero MSFE MCS
Gaussian SCAD 180.0 448.01 0.080
Gaussian MCP 181.8 443.88 0.080
Gaussian LASSO 180.5 451.76 0.035

LS SCAD 479.0 442.37 0.080
LS MCP 477.3 441.44 0.080
LS LASSO 488.1 441.77 0.080

D-Trace SCAD 359.7 435.42 0.454
D-Trace MCP 356.7 436.31 0.080
D-Trace LASSO 359.7 435.27 0.454

von Neumann SCAD 296.6 431.94 1.000
von Neumann MCP 289.9 432.63 0.454
von Neumann LASSO 291.9 432.02 0.911

OLS — 1276 457.65 0.035

Note: The results are based on the one-step-ahead forecasts for the last 100 observations using the rolling window with the

sample size T = 2000. ‘# of Non-Zero’ indicates the sample mean of the number of non-zero estimates for B0 and B1 in the

(sparse) VAR(1) model. ‘MSFE’ denotes the mean squared forecasts error. The column labeled MCS presents the p-values

associated with the Model Confidence Set of Hansen et al. (2011).
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5.2 Intermediary results

We provide the primal dual witness method as in Loh and Wainwright (2017), an approach that relies on

the following steps. Here, the parameter of interest is θ ∈ Rq and q denotes the dimension. The problem

of interest is a regularized M-estimation one, where a generic loss GT (.) is penalized by p(λT , .):

θ̂ = arg min
θ∈Ω

{
GT (θ) + p(λT , θ)

}
, Ω =

{
θ ∈ Θ ⊆ Rq, ‖θ‖1 ≤ R

}
. (21)

The loss function GT (.) satisfies the RSC condition and p(λT , .) assumption 2.

Step 1. We define the estimator

θ̂A = arg min
θ∈R|A|:g(θ)≤R,θ∈Ω

{
GT (θ) + p(λT , θ)

}
. (22)

We solve problem (22), under the constraint Â ⊆ A and prove ‖θ̂A‖1 < R.

Step 2. Defining ẑA ∈ ∂‖θ̂A‖, we choose ẑAc satisfying the orthogonality condition

∇θGT (θ̂)−∇θq(λT , θ̂) + λT ẑ = 0, (23)

with ẑ = (ẑA, ẑAc), θ̂ = (θ̂A, 0Ac), q(λT , ρ) = λT ρ−p(λT , ρ). We prove strict dual feasibility ‖ẑAc‖∞ < 1.

Step 3. We prove that θ̂ is a local optimum of (21) and that any stationary point of (21) satisfies

supp(θ̂) ⊆ A.

The PDW procedure does not allow for practically solving the regularization problem (21) as step 1

requires to know the true subset modelA. However, this approach is useful as a proof method to characterize

the optimal solution Θ̂. In Step 1, the criterion (22) is striclty convex under the RSC condition. This

implies that for ‖θ̂A‖1 < 1, the subgradient condition (23) must hold at θ̂A for the restricted problem (22).

Loh and Wainwright (2017) proves that, although problem (22) may be non-convex, the RSC condition

and regularity conditions on the penalty function allow them to prove that the optimum obtained in Step

3 is a local optimum: see in particular their Lemma 10.
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Using optimization reasoning, Loh and Wainwright (2017) provide conditions on λT , R to ensure the

success of the PDW technique, which depends on Step 3, under the assumption that GT (.) satisfies the

RSC condition with parameters (αk, τk)k=1,2 and 4α1 > 3µ. Indeed, these conditions guarantee that the

support of θ̂ satisfying (23) in Step 2 is the unique stationary point of the criterion (21): to be precise, the

first condition concerns the suitable scaling of λT and R; the second condition ensures strict dual feasibility

- that is ‖ẑAc‖∞ < 1 in Step 2. This is the object of the following Theorem.

Theorem 5.1. Loh and Wainwright (Theorem 1, 2017)

Suppose GT (.) satisfies the RSC condition with (αk, τk)k=1,2 parameters and p(λT , .) is a µ-amenable

penalty, with 0 ≤ µ < α1. Suppose

(i) The parameters (λT , R) satisfy

4 max
{
‖∇θGT (θ0)‖∞, α2

√
log(k0)

T

}
≤ λT ≤

√
(4α1 − 3µ)α2

384k0
, (24)

max
{

2‖θ0‖1,
48k0λT

4α1 − 3µ

}
≤ R ≤ min{

α2

8λT
,
α2

τ2

√
T

log(q)
}. (25)

(ii) For some δ ∈ [
4Rτ1 log(q)

TλT
, 1], the vector ẑ from the PDW construction satisfies the strict dual feasi-

bility condition

‖ẑAc‖∞ ≤ 1− δ. (26)

Then for any k0-sparse vector θ0, the program (21) with a sample size T ≥ 2τ1
2α1−µk0 log q has a unique

stationary point given by the primal output θ̂ of the PDW construction.

Suitable calibrations of λT and R, and thus proper scaling behaviours (T, q, k0), are necessary. Using

exponential bounds, it is possible to evaluate the probability of satisfying (24) and (25) and thus the

probability of the PDW success. In all their applications of interest - linear model, generalized linear

model, Gaussian graphical Lasso - Loh and Wainwright (2017) obtain the upper bound ‖∇θGT (θ0)‖∞ ≤

C
√

log(q)/T with high probability. This motivates the choice λT proportional to
√

log(q)/T to satisfy
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(24). Finally, it is worth noting that the trade-off between the curvature of the loss function through α1

and the non-convexity degree of the penalty function through µ appears. As our simulations emphasize

this trade-off for the Stein or von Neumann loss in particular, significantly large values for bscad, bmcp are

necessary to ensure 4α1 > 3µ.

In their Theorem 2, Loh and Wainwright (2017) provide an additional error bound under the conditions

of Theorem 5.1. It also provides the guarantees that the unique optimum - local or global - (21) is the

oracle estimator. The latter is defined as the non-penalized estimator obtained from minimizing the criterion

GT (θ) over the true support A. This is the object of the following Theorem.

Theorem 5.2. Loh and Wainwright (Theorem 2, 2017)

Under the conditions of Theorem 5.1, suppose strict dual feasibility (26) holds, suppose p(λT , .) is µ-

amenable with µ ∈ [0, α1). Then the unique stationary solution of (21) satisfies

(i)

‖θ̂ − θ0‖∞ ≤ ‖K̂
−1

AA∇θGT (θ0)A‖∞ + λT ‖K̂
−1

AA‖∞,

with K̂ =
∫ 1

0
∇2
θθ>GT (θ0 + u(θ̂ − θ0))du.

(ii) If p(λT , .) is (µ, ζ)-amenable and if the lower bound

min
i∈A
|θ0,i| ≥ λT

(
ζ + ‖K̂

−1

AA‖∞
)

+ ‖K̂
−1

AA∇θGT (θ0)A‖∞,

holds, then θ̂ agrees with the oracle estimator θ̂O and we have the bound

‖θ̂ − θ0‖∞ ≤ ‖K̂
−1

AA∇θGT (θ0)A‖∞.

These inequalities are expressed in a deterministic manner. As in Theorem 5.1, exponential bounds allow

for upper bounding ‖∇θGT (θ0)A‖∞, which will provide explicit convergence rates over the ‖.‖∞-error. The

application of Theorem 5.2 requires that strict dual feasibility holds under the RSC condition. In their

Proposition 1, Loh and Wainwright (2017) provide sufficient conditions to satisfy strict dual feasibility
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for (µ, ζ)-amenable penalties, which thus allows for using Theorem 5.2. These conditions are given in the

following Proposition.

Proposition 5.3. Loh and Wainwright (Proposition 1, 2017)

Under the conditions of Theorem 5.1, suppose p(λT , .) is (µ, ζ)-amenable. Suppose

θ0,min ≥ λT (ζ + ‖K̂
−1

AA‖∞) + ‖K̂
−1

AA∇θGT (θ0)A‖∞,

with θ0,min = min
i∈A
|θi| and K̂ =

∫ 1

0
∇2
θθ>GT (θ0 + u(θ̂ − θ0))du. Then strict dual feasibility holds provided

‖∇θGT (θ0)‖∞ ≤
1− δ

2
λT , and (27)

‖K̂AcAK̂
−1

AA∇θGT (θ0)A‖∞ ≤
1− δ

2
λT . (28)

6 Proofs

Proof of Lemma 3.2. Under assumptions 3, 4 and 5, by Lemma A.2 of Fan, Liao and Mincheva (2013),

Xi,tXj,t satisfies the exponential tail condition with parameter γ2/3. Thus, by Theorem 1 of Merlevède,

Peligrad and Rio (2011), there exist constants C1, C2, C3, C4, C5 depending only on c, γ and γ1 such that,

for any positive ε and any i, j ≤ d2,

P(| 1
T

T∑
t=1

Xi,tXj,t − Σx,ij | > ε)

≤ T exp
(
− (Tε)γ

C1

)
+ exp

(
− (Tε)2

C2(1 + TC3)

)
+ exp

(
− (Tε)2

C4T
exp

( (Tε)γ(1−γ)

C5(log(Tε))γ
))
,

so that P(‖Ŝ − Σx‖max > ε) = P( max
1≤i,j≤d

|Ŝij − Σx,ij | > ε) ≤ d2 max
1≤i,j≤d

P(|Ŝij − Σx,ij | > ε). We then deduce

P(| 1
T

T∑
t=1

Xi,tXj,t − Σx,ij | > ε)

≤ d2
{
T exp

(
− (Tε)γ

C1

)
+ exp

(
− (Tε)2

C2(1 + TC3)

)
+ exp

(
− (Tε)2

C4T
exp

( (Tε)γ(1−γ)

C5(log(Tε))γ
))}

.
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Let us now fix ε = L
√

log(d2)/T with L > 0 a constant large enough. For the scaling behaviour T ≥

K log(d2)2/γ−1 for a sufficiently large and positive constant K, then

d2T exp
(
− (Tε)γ

C1

)
+ d2 exp

(
− (Tε)2

C4T
exp

( (Tε)γ(1−γ)

C5(log(Tε))γ
))

= exp
(
−
T γLγ(

√
log(d2)/T )γ

C1
+ log(d2) + log(T )

)
+ exp

(
− T 2 log(d2)/T

C4T
exp

(T γ(1−γ)(L
√

log(d2)/T )γ(1−γ)

C5(log(TL
√

log(d2)/T ))γ

))
= o(exp

(
− log(d2)

)
),

and

d2 exp
(
− (Tε)2

C2(1 + TC3)

)
= exp

(
−
T 2(L

√
log(d2)/T )2

C2(1 + TC3)
+ log(d2)

)
= O(exp

(
− log(d2)

)
).

As a consequence, if we fix ε = L
√

log(d2)/T , then ‖Ŝ −Σx‖max ≤ L
√

log(d2)/T with probability at least

1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Proof of Corollary 3.3. We first establish the RSC property. To do so, we derive the first and second order

derivatives of the Stein’s loss criterion LT,η(Θ) defined in (5). Using the differential operator applied with

respect to Θ, we obtain

dLT,η(Θ) = (1− 2η)Θ−1(dΘ) + tr
(
ηŜ(dΘ)− (1− η)Θ−1(dΘ)Θ−1Ŝ−1

)
.

Hence in vector and matrix forms, the derivatives become

∇θLT,η(Θ) = vec
(

(1−2η)Θ−1+ηŜ−(1−η)Θ−1Ŝ−1Θ−1
)
, ∇ΘLT,η(Θ) = (1−2η)Θ−1+ηŜ−(1−η)Θ−1Ŝ−1Θ−1.

Note that alternatively, the vech(.) operator could be applied to treat the redundant terms. Taking the

‖.‖∞ norm, over Θ0, the gradient becomes

‖∇θLT (Θ0)‖∞ = ‖∇ΘLT (Θ0)‖max ≤ ‖(1− 2η)Θ−1 + ηŜ − (1− η)Θ−1Ŝ−1Θ−1‖max.

We now focus on the Hessian matrix. The second order differential is given by

d2LT,η(Θ) = (2η−1)tr
(

Θ−1(dΘ)Θ−1(dΘ)
)

+(1−η)tr
(

Θ−1(dΘ)Θ−1Ŝ−1Θ−1(dΘ)+Θ−1Ŝ−1Θ−1(dΘ)Θ−1(dΘ)
)
.
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We aim at extracting the form tr(L(dΛ)>M(dΛ)) for L (resp. M) any square m×m matrix (resp. p× p).

We have

∇2
θθ>LT,η(Θ) = (2η − 1)

(
Θ−1 ⊗Θ−1

)
+ (1− η)

{
Θ−1 ⊗Θ−1Ŝ−1Θ−1 + Θ−1Ŝ−1Θ−1 ⊗Θ−1

}
.

Now for some Θ1 ∈ Ω and u ∈ [0, 1], let us define Θ = Θ0 + uΓ with Γ = Θ1 −Θ0. Then Θ ∈ Ω and

fT (Θ) := vec(Γ)>∇2
vec(Θ)vec(Θ)>LT,η(Θ)vec(Γ)

≥ vec(Γ)>
[
(2η − 1)

(
Θ−1 ⊗Θ−1

)
+ (1− η)

{
Θ−1 ⊗Θ−1Ŝ−1Θ−1 + Θ−1Ŝ−1Θ−1 ⊗Θ−1

}]
vec(Γ)

≥ ‖Γ‖2F
[
(2η − 1)λmin(Θ−1 ⊗Θ−1) + (1− η)λmin(

{
Θ−1 ⊗Θ−1Ŝ−1Θ−1 + Θ−1Ŝ−1Θ−1 ⊗Θ−1

}
)
]

≥ ‖Γ‖2F
[
(2η − 1)λmin(Θ−1)2 + 2(1− η)λmin(Θ−1)3λmin(Ŝ−1)

]
because the spectrum of A⊗B is the cross product of the spectrums of A and B (see, e.g., Lütkepohl, 1996,

Subsection 5.2.1), and λmin(Θ) = infx x>Θx/‖x‖22. We now focus on λmin(Θ−1)2. We have λmax(Θ) ≤

λmax(Θ0) + λmax(Θ1 −Θ0), which implies λmin(Θ−1)2 ≥ {λmax(Θ0) + 1}−2. Therefore

fT (Θ) ≥ ‖Γ‖2F
[
(2η − 1)

{
λmax(Θ0) + 1

}−2
+ 2(1− η)

{
λmax(Θ0) + 1

}−3
λmin(Ŝ−1)

]
.

The true vector of parameters is θ0 = vec(Θ0) and we have ‖Γ‖2F = ‖Θ−Θ0‖22. As a consequence,

(θ−θ0)>∇2
θθ>LT,1(Θ)(θ−θ0) ≥ ‖θ−θ0‖22

[
(2η−1)

{
λmax(Θ0)+1

}−2
+2(1−η)

{
λmax(Θ0)+1

}−3
λmin(Ŝ−1)

]
,

for any Θ that lies between Θ and Θ0. Thus, at Θ0, the RSC condition is satisfied with coefficients

α1 = (2η − 1)
{
λmax(Θ0) + 1

}−2
+ 2(1− η)

{
λmax(Θ0) + 1

}−3
λmin(Ŝ−1) and α2 = α1, τ1 = τ2 = 0. Should

we take η = 1, then α1 = {λmin(Θ0) + 1
}−2

since the Hessian simplifies as ∇2
θθ>LT,η(Θ) = Θ−1 ⊗Θ−1.

We now evaluate the probability of satisfying (4) when η = 1, a situation most commonly used when

dealing with inverse variance covariance estimation. Then:

‖∇θLT,1(Θ0)‖∞ = ‖∇ΘLT,1(Θ0)‖max = ‖Ŝ − Σx‖max,

which provides (6). By Lemma 3.2, we conclude ‖∇θLT,1(Θ0)‖∞ ≤ K
√

log(d)
T , with probability at least

1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
) for a sample size T ≥ L log(d2)2/γ−1.
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Proof of Corollary 3.4. We first establish the RSC condition for the least squares loss function. Using the

differential operator with respect to Θ, we have dLT (Θ) = 2tr
(

Θ− Ŝ−1
)

(dΘ). Hence

∇θLT (Θ) = 2vec(Θ− Ŝ−1), ∇ΘLT (Θ) = 2
(

Θ− Ŝ−1
)
.

As for the Hessian, by identification, we deduce

∇2
θθ>LT (Θ) = 2

(
Id ⊗ Id

)
.

We thus deduce (θ − θ0)>∇2
θθ>LT (Θ)(θ − θ0) ≥ 2‖θ − θ0‖22, for any Θ that lies between Θ and Θ0. Thus,

at Θ0, the RSC condition is satisfied with coefficients α1 = 2 and α2 = α1, τ1 = τ2 = 0.

We now evaluate the probability of satisfying (4). We have

‖∇θLT (Θ0)‖∞ = ‖∇ΘLT (Θ0)‖max = 2‖Θ0 − Ŝ−1‖max ≤ 2‖Θ0 − Ŝ−1‖s.

Now, with high probability, for a sufficiently large constant K, ‖Ŝ − Σx‖max ≤ K
√

log(d2)
T , and we aim at

bounding ‖Ŝ−1−Σ−1
x ‖max. To do so, we use series expansion for the inverse of matrices. By the Woodbury

matrix identities, we have for two symmetric positive definite matrices A and B:

(A−B)−1 =

∞∑
k=0

(A−1B)kA−1 = A−1 +

∞∑
k=1

(A−1B)kA−1.

Thus

(A+B)−1 = A−1 +

∞∑
k=1

(−1)k(A−1B)kA−1.

Now, taking B = Ŝ − Σx and A = Σx, then we obtain

Ŝ−1 − Σ−1
x =

∞∑
k=1

(−1)k
(

Σ−1
x (Ŝ − Σx)

)k
Σ−1
x .

Hence, using this relationship, we can upper bound the norm of the difference Ŝ−1 − Σ−1
x by the norm of

Ŝ −Σ−1
x for which we have an exponential bound. For any sub-multiplicative matrix norm ‖.‖., we deduce

‖Ŝ−1 − Σ−1
x ‖. ≤ ‖Σ−1

x ‖.
∞∑
k=1

(
‖Σ−1

x ‖.‖Ŝ − Σx‖.
)k

= ‖Σ−1
x ‖2. ‖Ŝ − Σx‖.

∞∑
k=0

(
‖Σ−1

x ‖.‖Ŝ − Σx‖.
)k
.
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For a square symmetric matrix M , under the condition ‖M‖. < 1, then
∞∑
k=0

‖M‖k. = (1 − ‖M‖.)−1. Now,

with high probability, for a sufficiently large sample size, we thus have

‖Ŝ−1 − Σ−1
x ‖. ≤

‖Σ−1
x ‖2. ‖Ŝ − Σx‖.

1− ‖Σ−1
x ‖.‖Ŝ − Σx‖.

,

so that bounding ‖Ŝ − Σx‖. implies bounding ‖Ŝ−1 − Σ−1
x ‖.. Now, we have

‖Σ−1
x − Ŝ−1‖max ≤ ‖Σ−1

x − Ŝ−1‖s ≤
‖Ŝ−1‖2s‖Σx − Ŝ‖s

1− ‖Ŝ−1‖s‖Σx − Ŝ‖s
.

Moreover, since ‖Σx − Ŝ‖s ≤ d‖Σx − Ŝ‖max, we obtain ‖∇ΘLT (Θ0)‖max ≤ Ld
√

log(d2)
T , for L > 0 suffi-

ciently large. Hence, for a sample size T ≥Md2 log(d2) max(R2, k0)∨L log(d2)2/γ−1, then (10) holds with

probability at least 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Proof of Corollary 3.5. First, let us consider the series expansion of the logarithm of a p-square positive

definite matrix A, given as log(A) = −
∞∑
k=1

1
k (Ip − A)k. Obviously, when the spectral radius of Ip − A

is strictly inferior to one, this expansion does exist. Moreover, the inverse of A can be developed as a

Neumann series A−1 =
∞∑
k=0

(Ip −A)k. Let us consider the first order differential of LT,η(Θ):

dLT,η(Θ) = ηtr
(

(dΘ/ν) log(Θ/ν) + (Θ/ν)(d log(Θ/ν))
)

+(2η − 1)tr
(
− (dΘ/ν)

)
− ηtr

(
log(Ŝ−1/ν)(dΘ/ν)

)
− (1− η)tr

(
(d log(Θ/ν))(Ŝ−1/ν)

)
Now, let us treat the trace of (Θ/ν)d log(Θ/ν). Following Abadir and Magnus (2006) (see exercise 13.31),

we have

tr
(

(Θ/ν)(d log(Θ/ν))
)

= tr
( ∞∑
k=1

1
k

{ k∑
l=1

(Ip −Θ/ν)l−1(dΘ/ν)(Ip −Θ/ν)k−l
}

(Θ/ν)
)

=
∞∑
k=1

1
k

k∑
l=1

tr
(

(Ip −Θ/ν)l−1(dΘ/ν)(Ip −Θ/ν)k−l(Θ/ν)
)

=
∞∑
k=1

1
k

k∑
l=1

tr
(

(Ip −Θ/ν)k−l(Θ/ν)(Ip −Θ/ν)l−1(dΘ/ν)
)
.

In the same spirit,

tr
(

(Ŝ−1/ν)(d log(Θ/ν))
)

=

∞∑
k=1

1

k

k∑
l=1

tr
(

(Ip −Θ/ν)k−l(Ŝ−1/ν)(Ip −Θ/ν)l−1(dΘ/ν)
)
.

Now let us consider the cases η = 0, 1 separately.
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(i) η = 1: the differential becomes

dLT,1(Θ) = tr
(

(dΘ/ν) log(Θ/ν) + (Θ/ν)(d log(Θ/ν))− (dΘ/ν)− log(Ŝ−1/ν)(dΘ/ν)
)
.

Thus, the differential becomes

dLT,1(Θ) = tr
([

log(Θ/ν)−log(Ŝ−1/ν)
]
(dΘ/ν)+

∞∑
k=1

1

k

k∑
l=1

(Ip−Θ/ν)k−l(Θ/ν)(Ip−Θ/ν)l−1(dΘ/ν)−(dΘ/ν)
)
.

Hence, by the trace properties and the von Neumann based series expansion of the inverse matrix,

the gradient in vector and matrix forms are, respectively,

∇θLT,1(Θ) = vec(log(Θ/ν)− log(Ŝ−1/ν))/ν, ∇ΘLT,1(Θ) =
1

ν

(
log(Θ/ν)− log(Ŝ−1/ν)

)
.

Let us now focus on the Hessian matrix, where we only need to focus on Starting from tr
(

(dΘ/ν) log(Θ/ν)
)
/ν.

The second order differential becomes

d2LT,1(Θ) = tr
(

(dΘ/ν)(d log(Θ/ν))
)
/ν = tr

(
(dΘ/ν)

[ ∞∑
k=1

1

k

{ k∑
l=1

(Ip−Θ/ν)l−1(dΘ/ν)(Ip−Θ/ν)k−l
}])

.

Using the Hessian identification, we obtain

∇2
θθ>LT,η(Θ) =

∞∑
k=1

1

k

{ k∑
l=1

(Ip −Θ/ν)k−l ⊗ (Ip −Θ/ν)l−1
}
/ν2

By 10.20 (b) of Abadir and Magnus (2006), we have

fT (Θ) = vec(Γ)>∇2
θθ>LT,η(Θ)vec(Γ) = tr

( ∞∑
k=1

1

k

{ k∑
l=1

(Ip −Θ/ν)k−lΓ(Ip −Θ/ν)l−1Γ
})
/ν2.

where Θ = Θ0 + sΓ, Γ = Θ1 −Θ0 with Θ1 ∈ Ωvn. Since Θ0 and Θ1 can be diagonalized in the same

basis, idest Θ0 = PΛ0P
−1 and Θ1 = PΛ1P

−1, with P invertible containing the eigenvectors and Λj =

diag(λ1,j , · · · , λd,j), j = 0, 1, a diagonal matrix containing the eigenvalues of Λj , j = 0, 1. Hence, Θ

can also be diagonalized in the same basis with eigenvalues λ̃k, k = 1, · · · , d, so that we can manipulate

the trace of diagonal matrices. Hence tr
(

(Ip − Θ/ν)k−lΓ(Ip − Θ/ν)l−1Γ
)

= tr
(

(Ip − Θ/ν)k−1Γ2
)

.

As a consequence,

fT (Θ) ≥
∞∑
k=1

1

ν2

p∑
n=1

(1− λ̃n/ν)k−1(λn,1 − λn,0)2

≥
p∑

n=1

(λn,1 − λn,0)2

λ̃nν
≥

p∑
n=1

(λn,1 − λn,0)2

ν(λmax(Θ0) ∨ λmax(Θ1))
≥ ‖Γ‖2F

1

νd
.
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We deduce

(θ − θ0)>∇2
θθ>LT,1(Θ̄)(θ − θ0) ≥ ‖vec(Θ)− vec(Θ0)‖22

1

νd
.

The RSC parameters are thus given by α1 = α2 = 1/(νd), τ1 = τ2 = 0.

(ii) η = 0: the differential becomes

dLT,0(Θ) = tr
(

(dΘ/ν)
)
− tr

(
(d log(Θ/ν))(Ŝ−1/ν)

)
= tr

(
(dΘ/ν)

)
−
∞∑
k=1

1
k

k∑
l=1

tr
(

(Ip −Θ/ν)k−l(Ŝ−1/ν)(Ip −Θ/ν)l−1(dΘ/ν)
)
.

(29)

The gradient in matrix form becomes

∇ΘLT,0(Θ) = tr
(
Ip

)
/ν −

∞∑
k=1

1
k

k∑
l=1

tr
(

(Ip −Θ/ν)k−l(Ŝ−1/ν)(Ip −Θ/ν)l−1
)
/ν

= tr
(
Ip

)
/ν −

∞∑
k=1

tr
(

(Ip −Θ/ν)k−1(Ŝ−1/ν)
)
/ν

= tr
(
Ip

)
/ν − tr

(
(Θ/ν)−1Ŝ−1/ν

)
/ν.

As for the Hessian, we aim at extracting the form tr(L(dΘ)M(dΘ)) for L (resp. M) any square

m×m matrix (resp. n× n). Applying the differential operator on (29), we obtain

d2LT,0(Θ)

=

∞∑
k=1

1

k

k∑
l=1

[
tr
(k−l∑
j=1

(Ip −Θ/ν)j−1(dΘ/ν)(Ip −Θ/ν)k−l−j(Ŝ−1/ν)(Ip −Θ/ν)l−1(dΘ/ν)
)]

+

∞∑
k=1

1

k

k∑
l=1

[
tr
(

(Ip −Θ/ν)k−l(Ŝ−1/ν)

l−1∑
i=1

(Ip −Θ/ν)i−1(dΘ/ν)(Ip −Θ/ν)l−1−i(dΘ/ν)
)]

=

∞∑
k=1

1

k

k∑
l=1

k−l∑
j=1

[
tr
(

(Ip −Θ/ν)j−1(dΘ/ν)(Ip −Θ/ν)k−l−j(Ŝ−1/ν)(Ip −Θ/ν)l−1(dΘ/ν)
)]

+

∞∑
k=1

1

k

k∑
l=1

l−1∑
i=1

[
tr
(

(Ip −Θ/ν)k−l(Ŝ−1/ν)(Ip −Θ/ν)i−1(dΘ/ν)(Ip −Θ/ν)l−1−i(dΘ/ν)
)]
.

By Hessian identification, we thus deduce

∇2
θθ>LT,0(Θ)

=

∞∑
k=1

1

k

k∑
l=1

k−l∑
j=1

1

2

[{
(Ip −Θ/ν)j−1 ⊗ (Ip −Θ/ν)k−l−j(Ŝ−1/ν)(Ip −Θ/ν)l−1

}
+
{

(Ip −Θ/ν)j−1 ⊗ (Ip −Θ/ν)l−1(Ŝ−1/ν)(Ip −Θ/ν)k−l−j
}]
/ν2

+

∞∑
k=1

1

k

k∑
l=1

l−1∑
i=1

1

2

[{
(Ip −Θ/ν)k−l(Ŝ−1/ν)(Ip −Θ/ν)i−1 ⊗ (Ip −Θ/ν)l−1−i

}
+
{

(Ip −Θ/ν)i−1(Ŝ−1/ν)(Ip −Θ/ν)k−l ⊗ (Ip −Θ/ν)l−1−i
}]
/ν2.
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Consequently:

fT (Θ) = vec(Γ)>∇2
θθ>LT,0(Θ)vec(Γ)

= vec(Γ)>
( ∞∑
k=1

1

k

k∑
l=1

k−l∑
j=1

1

2

[{
(Ip −Θ/ν)j−1 ⊗ (Ip −Θ/ν)k−l−j(Ŝ−1/ν)(Ip −Θ/ν)l−1

}
+
{

(Ip −Θ/ν)j−1 ⊗ (Ip −Θ/ν)l−1(Ŝ−1/ν)(Ip −Θ/ν)k−l−j
}]
/ν2

+

∞∑
k=1

1

k

k∑
l=1

l−1∑
i=1

1

2

[{
(Ip −Θ/ν)k−l(Ŝ−1/ν)(Ip −Θ/ν)i−1 ⊗ (Ip −Θ/ν)l−1−i

}
+
{

(Ip −Θ/ν)i−1(Ŝ−1/ν)(Ip −Θ/ν)k−l ⊗ (Ip −Θ/ν)l−1−i
}]
/ν2
)

vec(Γ).

Using the properties of the minimum eigenvalue of the Kronecker product, of the product of positive

definite matrices and convergence of geometric series, we obtain

fT (Θ)

≥ 1

ν2
‖Γ‖2F

{ ∞∑
k=1

1

k

k∑
l=1

k−l∑
j=1

λmin(Ip −Θ/ν)k−2λmin(Ŝ−1/ν) +

∞∑
k=1

1

k

k∑
l=1

l−1∑
i=1

λmin(Ip −Θ/ν)k−2λmin(Ŝ−1/ν)
}

≥ 1

ν2
‖Γ‖2Fλmin(Ŝ−1/ν)

{ ∞∑
k=1

(k − 1)λmin(Ip −Θ/ν)k−2
}

≥ 1

ν2
‖Γ‖2Fλmin(Ŝ−1/ν)

[
1/(1− λmin(Ip −Θ/ν))2

]
≥ ‖Γ‖2Fλmin(Ŝ−1/ν){λmax(Θ0) + 1}−2,

since 1− λmin(Ip −Θ/ν) ≤ λmax(Θ/ν). We then deduce

(θ − θ0)>∇2
θθ>LT,η(Θ̄)(θ − θ0) ≥ ‖vec(Θ)− vec(Θ0)‖22λmin(Ŝ−1/ν){λmax(Θ0) + 1}−2.

The RSC parameters are α1 = α2 = λmin(Ŝ−1/ν){λmax(Θ0) + 1}−2, and τ1 = τ2 = 0.

Let us evaluate the probability of satisfying (14) for η = 0, where the gradient is given by

∇ΘLT,0(Θ) =
(
Id − (Ŝ−1/ν)(Θ/ν)−1

)
/ν =

(
Id − Ŝ−1Θ−1

)
/ν.

Thus, we have

‖∇ΘLT,0(Θ0)‖max = ‖(Θ0 − Ŝ−1)Θ−1
0 /ν‖max ≤ ‖Θ−1

0 /ν‖s‖Θ0 − Ŝ−1‖s.

49



Using the same steps as in the least squares case, we deduce ‖Θ0− Ŝ−1‖max ≤ Ld
√

log(d2)
T , with high

probability and for L > 0 large enough. Then:

‖∇ΘLT,0(Θ0)‖max ≤ Ld
√

log(d2)

T
‖Θ−1

0 /ν‖s,

with probability at least 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Proof of Corollary 3.6. We first establish the RSC condition. The gradient is defined as

∇θLT (Θ) =
1

2
vec(ΘŜ + ŜΘ− 2Id), ∇ΘLT (Θ) =

1

2

(
ΘŜ + ŜΘ− 2Id

)
.

As for the Hessian, by identification, we have

∇2
θθ>LT (Θ) =

1

2

(
Ŝ ⊗ Id + Id ⊗ Ŝ

)
.

For some Θ1 ∈ Ω and u ∈ [0, 1], let Θ = Θ0 + uΓ with Γ = Θ1 −Θ0. Then

fT (Θ) := vec(Γ)>∇2
θθ>LT (Θ)vec(Γ) ≥ ‖Γ‖2F

1

2

[
λmin(Ŝ ⊗ Id + Id ⊗ Ŝ)

]
≥ ‖Γ‖2Fλmin(Ŝ).

For ‖Γ‖2F = ‖Θ−Θ0‖2F , we thus deduce

(θ − θ0)>∇2
θθ>LT (Θ)(θ − θ0) ≥ λmin(Ŝ)‖θ − θ0‖22,

for any Θ located between Θ and Θ0. The RSC condition is then satisfied with coefficients α1 = λmin(Ŝ)

and α2 = α1, τ1 = τ2 = 0.

We now evaluate the probability of satisfying (17). We have

‖∇ΘLT (Θ0)‖max = ‖1

2
Θ0

(
Ŝ −Θ−1

0

)
+

1

2

(
Ŝ −Θ−1

0

)
Θ0‖max ≤ ‖Θ0‖s‖Ŝ − Σx‖s.

Hence, by Lemma 3.2, we have

‖∇ΘLT (Θ0)‖max ≤ L‖Θ0‖sd
√

log(d2)

T
,

for L > 0 large enough. Hence, for a sample size T ≥M‖Θ0‖2sd2 log(d2) max(R2, k0)∨L log(d2)2/γ−1, then

(18) holds with probability at least 1−O(exp(− log(d2)))− o(exp(− log(d2)))
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To establish the proofs for support recovery in subsection 3.3, the key point is to show that strict

dual feasibility holds. To do so and for each sparse estimator case, following the PDW construction of

Wainwright (2009) or Ravikumar et al. (2011), we construct a theoretical estimator optimized over the

true subset (hence it is not possible to compute it empirically).

Proof of Corollary 3.7. The oracle estimator defined in (19) becomes for the Stein’s loss:

Θ̂g,O := arg min
θ∈R|A|:Θ∈Ω

{
LT,1(Θ)

}
= arg min
θ∈R|A|:Θ∈Ω

{
tr
(
ŜΘ
)
− log(|Θ|)

}
,

Proof of point (i). We highlight that our approach differs from the proof methods of Theorem 1 of

Ravikumar et al. (2011) or Corollary 4 of Loh and Wainwright (2017) dedicated to Gaussian loss based

sparse precision matrix, which are based on the Brouwer’s fixed point Theorem, in that our proof strategy

shares the same spirit as in the proof of Corollaries 2 and 3 respectively dedicated to Linear regression with

corrupted covariates and GLM of Loh and Wainwright (2017) to construct the estimator Θ̂A such that

supp(Θ̂) ⊆ A and Θ̂A is a zero subgradient point of

Θ̂g
A = arg min

Θ:Θ∈Ω,supp(Θ)⊆supp(Θ0)

{
LT,1(Θ) + p(λT , θ)

}
,

where LT,1(.) and Ω are defined as in (5) for η = 1, and µ-amenable penalty functions (hence LASSO, SCAD

and MCP). The latter amenability property is a key point since we require the incoherence condition in

the µ-amenable case. We show that strict dual feasibility holds for such statistical problem. Now by the

zero gradient condition (23) of the PDW step, we obtain

∇θLT,1(Θ̂)−∇θLT,1(Θ0) +∇θLT,1(Θ0)−∇q(λT , vec(Θ̂g)) + λT ẑ = 0.

This implies

K̂vec(Θ̂g −Θ0) +∇θLT,1(Θ0)−∇q(λT , vec(Θ̂g)) + λT ẑ = 0,

with K̂ =
∫ 1

0
∇2
θθ>LT,1(Θ0 + u(Θ̂g −Θ0))du. Equivalently, we have(

K̂AA K̂AAc

K̂AcA K̂AcAc

)(
vec(Θ̂g −Θ0)A

0

)
+

(
∇θLT,1(Θ0)A −∇q(λT , vec(Θ̂g)A)

∇θLT,1(Θ0)Ac −∇q(λT , vec(Θ̂g)Ac)

)
+ λT

(
ẑA
ẑAc

)
= 0.
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Consequently, we obtain

ẑAc = 1
λT

{
∇q(λT , vec(Θ̂g))Ac −∇θLT,1(Θ0)Ac + K̂AcAK̂

−1

AA

[
∇θLT,1(Θ0)A

−∇q(λT , vec(Θ̂g)A) + λT ẑA

]}
.

Using the regularity condition (v), ∇q(λT , vec(Θ̂g)Ac) = ∇q(λT ,0Ac) = 0Ac . This implies

ẑAc =
1

λT

{
−∇θLT,1(Θ0)Ac + K̂AcAK̂

−1

AA

[
∇θLT,1(Θ0)A −∇q(λT , vec(Θ̂g)A) + λT ẑA

]}
.

Taking the `∞-norm, we obtain

‖ẑAc‖∞ ≤ 1
λT
‖ − ∇θLT,1(Θ0)Ac + K̂AcAK̂

−1

AA∇θLT,1(Θ0)A‖∞
+ 1

λT
‖K̂AcAK̂

−1

AA
(
λT ẑA −∇θq(λT , θ̂Θ)A

)
‖∞

≤ 1
λT
‖ − ∇θLT,1(Θ0)Ac + K̂AcAK̂

−1

AA∇θLT,1(Θ0)A‖∞ + ‖K̂AcAK̂
−1

AA‖∞,

where we used ‖λT ẑA −∇θq(λT , vec(Θ̂g)A)‖∞ = ‖∇θq(λT , vec(Θ̂g)A)‖∞ ≤ λT from Lemma 8 of Loh and

Wainwright (2017). Furthermore, we have

‖ − ∇θLT,1(Θ0)Ac + K̂AcAK̂
−1

AA∇θLT,1(Θ0)A‖∞ ≤ ‖∇θLT,1(Θ0)Ac‖∞ + ‖K̂AcAK̂
−1

AA∇θLT,1(Θ0)A‖∞.

First, let us consider ‖K̂AcAK̂
−1

AA∇θLT,1(Θ0)A‖∞. To do so, we first control the following quantity:

‖K̂ −∇2
θθ>LT,1(Θ0)‖∞

= ‖
∫ 1

0

(
∇2
θθ>LT (Θ0 + s(Θ̂g −Θ0))−∇2

θθ>LT,1(Θ0)
)
ds‖∞

≤
∫ 1

0

‖
(
∇2
θθ>LT (Θ0 + s(Θ̂g −Θ0))−∇2

θθ>LT,1(Θ0)
)
‖∞ds

=

∫ 1

0

‖
{(

Θ0 + s(Θ̂g −Θ0)
)−1

⊗
(

Θ0 + s(Θ̂g −Θ0)
)−1}

−
{

Θ−1
0 ⊗Θ−1

0

}
‖∞ds.

Now for any s ∈ [0, 1], using the consistency result from Corollary 3.3, we have

‖
(

Θ0 + s(Θ̂g −Θ0)
)
−Θ0‖∞ = s‖Θ̂g −Θ0‖∞ ≤ d‖Θ̂g −Θ0‖max ≤ d‖Θ̂g −Θ0‖F ≤ Ld

√
k0

√
log(d2)

T
,

for L sufficiently large. Hence, by the same reasoning as before on the norm on the inverse matrix difference:

‖
(

Θ0 + s(Θ̂g −Θ0)
)−1

−Θ−1
0 ‖∞ ≤ Ld

√
k0

√
log(d2)

T
.

Thus, using Lemma 13 of Loh and Wainwright (2017) on the upper bound of ‖A⊗A−B⊗B‖∞, we obtain

‖K̂ −∇2
θθ>LT,1(Θ0)‖∞ ≤ Ld

√
k0

√
log(d2)

T
,
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which provides the bound that hold with high probability with L > 0 when restricting to A:

υ1 := ‖K̂AcA−∇2
θθ>LT,1(Θ0)AcA‖∞ ≤ L

√
k2

0

log(d2)

T
, υ2 := ‖K̂

−1

AA−(∇2
θθ>LT,1(Θ0))−1

AA‖∞ ≤ L
√
k2

0

log(d2)

T
,

by union bound and since ‖K̂AA−∇2
θθ>LT,1(Θ0)AA‖∞ ≤ L

√
k2

0
log(d2)
T . Now we bound ‖K̂AcAK̂

−1

AA∇θLT,1(Θ0)A‖∞

to prove the success of the PDW method. To do so, we consider the expansion

‖K̂AcAK̂
−1

AA∇θLT,1(Θ0)A‖∞ ≤M1 +M2, where:

M1 := ‖E[∇2
θθ>LT,1(Θ0)]AcAE[∇2

θθ>LT,1(Θ0)]−1
AA∇θLT,1(Θ0)A‖∞,

M2 := ‖
{
K̂AcAK̂

−1

AA − E[∇2
θθ>LT,1(Θ0)]AcAE[∇2

θθ>LT,1(Θ0)]−1
AA

}
∇θLT,1(Θ0)A‖∞.

First, let us highlight that E[∇2
θθ>LT,1(Θ0)] = ∇2

θθ>LT,1(Θ0) since it involves no empirical estimator such

as the sample variance covariance matrix. Then, we have

M1 ≤ ‖E[∇2
θθ>LT,1(Θ0)]AcAE[∇2

θθ>LT,1(Θ0)]−1
AA‖∞‖∇θLT,1(Θ0)A‖∞ ≤ ωK

√
log(d2)

T
,

with high probability and using the incoherence condition ‖K0,AcAK
−1
0,AA‖ ≤ ω. As for M2, we have

M2 ≤
{
‖
(
K̂AcA − E[∇2

θθ>LT,1(Θ0)]AcA

)(
K̂
−1

AA − E[∇2
θθ>LT,1(Θ0)]−1

AA

)
‖∞

+‖
(
K̂AcA − E[∇2

θθ>LT,1(Θ0)]AcA

)
E[∇2

θθ>LT,1(Θ0)]−1
AA‖∞

+‖E[∇2
θθ>LT,1(Θ0)]AcA

(
K̂
−1

AA − E[∇2
θθ>LT,1(Θ0)]−1

AA

)
‖∞
}
‖∇θLT,1(Θ0)A‖∞

≤
{
υ1υ2 + υ1‖E[∇2

θθ>LT,1(Θ0)]−1
AA‖∞ + υ2‖E[∇2

θθ>LT,1(Θ0)]AcA‖∞
}
‖∇θLT,1(Θ0)A‖∞

≤
{
υ1υ2 + υ1‖E[∇2

θθ>LT,1(Θ0)]−1
AA‖∞ + υ2‖Σx‖2∞

}
‖∇θLT,1(Θ0)A‖∞

≤ K

√
k2

0‖Σx‖4∞
log(d2)

T
‖∇θLT,1(Θ0)A‖∞,

with high probability and K sufficiently large, where we used ‖E[∇2
θθ>LT,1(Θ0)]AcA‖∞ ≤ ‖Σx‖2∞. Then:

‖K̂AcAK̂
−1

AA∇θLT,1(Θ0)A‖∞ ≤ L
√
k2

0‖Σx‖4∞
log(d2)

T

√
log(d2)

T
,

with high probability under the scaling behaviour T > Mk2
0‖Σx‖4∞ log(d2) with M sufficiently large. More-
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over, using the incoherence condition and

‖K̂AcAK̂
−1

AA‖∞

≤ ‖K̂AcAK̂
−1

AA − E[∇2
θθ>LT,1(Θ0)]AcAE[∇2

θθ>LT,1(Θ0)]−1
AA‖∞ + ‖E[∇2

θθ>LT,1(Θ0)]AcAE[∇2
θθ>LT,1(Θ0)]−1

AA‖∞

≤ L

√
k2

0‖Σx‖4∞
log(d2)

T
+ ω.

Thus we have for L > 0 sufficiently large

‖zAc‖∞ ≤
1

λT

(
L1

√
k3

0‖Σx‖4∞
log(d2)

T
+ L2

√
log(d2)

T

)
+ L3

√
k3

0‖Σx‖4∞
log(d2)

T
+ ω,

for L1, L2, L3 > 0. Then strict dual feasibility of Theorem 5.1 is satisfied when 1
1−ωL

√
log(d2)
T ≤ λT , under

the scaling T > Ck2
0‖Σx‖4∞ log(d2).

We now focus on the `∞ bound to apply point (i) of Theorem 5.2. We have

‖K̂
−1

AA∇θLT,1(Θ0)A‖∞

≤ ‖{K̂
−1

AA − E[∇2
θθ>LT,1(Θ0)]−1

AA}∇θLT,1(Θ0)A‖∞ + ‖E[∇2
θθ>LT,1(Θ0)]−1

AA∇θLT,1(Θ0)A‖∞

≤ ‖K̂
−1

AA − E[∇2
θθ>LT,1(Θ0)]−1

AA‖∞‖∇θLT,1(Θ0)A‖∞ + ‖E[∇2
θθ>LT,1(Θ0)]−1

AA∇θLT,1(Θ0)A‖∞

≤ C1

√
k3

0

log(d2)

T

√
log(d2)

T
+ C2

√
‖Σx‖4∞

log(d2)

T
,

with C1, C2 > 0 and using our previous upper bounds. We proved

‖K̂
−1

AA − (E[∇2
θθ>LT,1(Θ0)]AA)−1‖∞ ≤

√
k0‖K̂

−1

AA − (E[∇2
θθ>LT,1(Θ0)]AA)−1‖s

≤ L
√
k2

0
log(d2)
T ≤ β∞.

Hence

‖K̂
−1

AA‖∞ ≤ ‖K̂
−1

AA − (E[∇2
θθ>LT,1(Θ0)]AA)−1‖∞ + ‖(E[∇2

θθ>LT,1(Θ0)]AA)−1‖∞ ≤ 2β∞.

Consequently, by part (i) of Theorem 5.2, we obtain for L̃ > 0

‖Θ̂g −Θ0‖max ≤ L̃
√

log(d2)

T
+ λTβ∞.

Proof of point (ii). The same approach as in the proof of (i) can be applied. Since the regularizer

is assumed to be (µ, ζ)-amenable, we have by Lemma 5 of Loh and Wainwright (2017) that λT ẑA −
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∇θq(λT , vec(Θ̂)A) = 0. Hence we have

‖ẑAc‖∞ ≤
1

λT
‖ − ∇θLT,1(Θ0)Ac + K̂AcAK̂

−1

AA∇θLT,1(Θ0)A‖∞.

Following the same steps as in the proof of part (i), by upper bounding ‖∇θLT,1(Θ0)Ac‖∞ and ‖K̂AcAK̂
−1

AA∇θLT,1(Θ0)A‖∞,

we establish strict dual feasibility by Proposition 5.3. Then the remainder follows from part (ii) of Theorem

5.2. Point (ii) highlights the gain of non-convex penalties: the incoherence condition can be relaxed.

Proof of Corollary 3.8. We remind that the oracle estimator is defined as

Θ̂ls,O = arg min
θ∈R|A|:Θ∈Ω

{
LT (Θ)

}
= arg min
θ∈R|A|:Θ∈Ω

{
‖Θ− Ŝ−1‖2F

}
.

We first establish strict dual feasibility for

Θ̂ls
A = arg min

Θ:Θ∈Ω,supp(Σ)⊆supp(Θ0)

{
LT (Θ) + p(λT , θ)

}
,

where LT (.) and Ω are defined as in (8). We only focus on (µ, ζ)-amenable penalty functions: indeed,

should we consider µ-amenable penalty functions, the incoherence condition is not satisfied. We have

ẑAc =
1

λT

{
−∇θLT (Θ0)Ac + K̂AcAK̂

−1

AA

[
∇θLT (Θ0)A −∇q(λT , vec(Θ̂ls)A) + λT ẑA

]}
.

Taking the `∞-norm, we obtain

‖ẑAc‖∞ ≤ 1
λT
‖ − ∇θLT (Θ0)Ac + K̂AcAK̂

−1

AA∇θLT (Θ0)A‖∞
+ 1

λT
‖K̂AcAK̂

−1

AA
(
λT ẑA −∇θq(λT , vec(Θ̂ls)A)

)
‖∞

≤ 1
λT
‖ − ∇θLT (Θ0)Ac + K̂AcAK̂

−1

AA∇θLT (Θ0)A‖∞,

where we used λT ẑA −∇θq(λT , vech(Θ̂)A) = 0 from Lemma 8 of Loh and Wainwright (2017). Then:

‖ẑAc‖∞ ≤
1

λT
‖2vec(Ŝ−1 −Θ0)Ac + K̂AcAK̂

−1

AA2vec(Θ0 − Ŝ−1)A‖∞.

Since K̂ = Id, we have with probability at least 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
) that

‖ẑAc‖∞ ≤
2

λT

(
‖vec(Ŝ−1 −Θ0)Ac‖∞ + ‖vec(Θ0 − Ŝ−1)A‖∞

)
≤ L

λT

(√
(d2 − k0)

log(d2)

T
+

√
k0

log(d2)

T

)
,

using the arguments in the proof of Corollary 3.4 on the upper bound of the gradient. Provided λT >

L
√
{(d2 − k0) ∨ k0} log(d2)

T , strict dual feasibility holds and support recovery is satisfied by Theorem 5.1 of

Loh and Wainwright.
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As for the `∞-bound, using ‖K̂
−1

AA‖∞ = 1, we have

‖K̂
−1

AA∇θLT (Θ)A‖∞ = ‖K̂
−1

AA2vec(Θ0 − Ŝ−1)A‖∞ ≤ L
√
k0

log(d2)

T
,

for L > 0 large enough, with probability 1−O(exp
(
− log(d2)

)
)− o(exp

(
− log(d2)

)
).

Proof of Corollary 3.9. The oracle estimator for the von Neumann divergence is defined as

Θ̂vn,O = arg min
θ∈R|A|:Θ∈Ωvn

{
LT,0(Θ)

}
= arg min
θ∈R|A|:Θ∈Ωvn

{
tr
(

Θ− log(Θ/ν)Ŝ−1
)
/ν
}
, with Ωvn as in (11).

Proof of point (i). The PDW construction is based on the estimator

Θ̂vn
A = arg min

Θ:Θ∈Ωvn,supp(Σ)⊆supp(Θ0)

{
LT,0(Θ) + p(λT , θ)

}
,

where LT,0(.) and Ωvn are defined as in (11). The proof relies on the same steps as in the proof of Corollary

3.7: we need to show that strict dual feasibility holds for the previous criterion satisfied in the presence of

µ-amenable penalty functions. Now based on the same steps as in point (i) of the proof of Corollary 3.7:

‖ẑAc‖∞ ≤ 1
λT
‖ − ∇θLT,0(Θ0)Ac + K̂AcAK̂

−1

AA∇θLT,0(Θ0)A‖∞
+ 1
λT
‖K̂AcAK̂

−1

AA
(
λT ẑA −∇θq(λT , vec(Θ̂vn)A)

)
‖∞

≤ 1
λT
‖ − ∇θLT,0(Θ0)Ac + K̂AcAK̂

−1

AA∇θLT,0(Θ0)A‖∞ + ‖K̂AcAK̂
−1

AA‖∞.

Moreover, we have

‖ − ∇θLT,0(Θ0)Ac + K̂AcAK̂
−1

AA∇θLT,0(Θ0)A‖∞ ≤ ‖∇θLT,0(Θ0)Ac‖∞ + ‖K̂AcAK̂
−1

AA∇θLT,0(Θ0)A‖∞.

First, let us consider ‖K̂AcAK̂
−1

AA∇θLT,1(Θ0)A‖∞. To do so, we first control the following quantity:

K̂ −∇2
θθ>LT,0(Θ0)

=

∫ 1

0

(
∇2
θθ>LT (Θ0 + s(Θ̂vn −Θ0))−∇2

θθ>LT,0(Θ0)
)
ds

=

∫ 1

0

s∇θ
(
∇2
θθ>LT,0(Θs)

)
vec
(
Θ̂vn −Θ0

)
ds,

where we used the mean value theorem with Θs lying between Θ0 and s(Θ̂ − Θ0). Such expansion is

necessary due to the high non-linearity with respect to the parameters of the Hessian function. Let w = d2,
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for any (u,v) ∈ Rw × Rw, we have

|u>{K̂ −∇2
θθ>LT,0(Θ0)}v|

= |
∫ 1

0

{s
w∑

a,b,c=1

(
∇3
abcLT,0(Θs)vec(Θ̂vn −Θ0)cuavb

)
}ds|

≤
∫ 1

0

s|{
w∑

a,b,c=1

(
∇3
abcLT,0(Θs)vec(Θ̂vn −Θ0)cuavb

)
}|ds,

where∇3
abc refers to the third order derivative with respect to θ. Let us now derive the third order derivative

of LT,0(.). Element by element, for any a, b, c = 1, · · · , w, we have

∂3
abcLT,0(Θ)

= −
∞∑

k=1

1

k

k∑
l=1

k−l∑
j=1

tr
(j−1∑
x=1

(Id − Θ/ν)x−1(∂cΘ/ν)(Id − Θ/ν)j−1−x(∂bΘ/ν)(Id − Θ/ν)k−l−j(Ŝ−1/ν)(Id − Θ/ν)l−1(∂aΘ/ν)

+(Id − Θ/ν)j−1(∂bΘ/ν)

k−l−j∑
y=1

(Id − Θ/ν)y−1(∂cΘ/ν)(Id − Θ/ν)k−l−j−y(Ŝ−1/ν)(Id − Θ/ν)l−1(∂aΘ/ν)

+(Id − Θ/ν)j−1(∂bΘ/ν)(Id − Θ/ν)k−l−j(Ŝ−1/ν)

l−1∑
z=1

(Id − Θ/ν)z−1(∂cΘ/ν)(Id − Θ/ν)l−1−z(∂aΘ/ν)
)

−
∞∑

k=1

1

k

k∑
l=1

l−1∑
i=1

tr
(k−l∑
x=1

(Id − Θ/ν)x−1(∂cΘ/ν)(Id − Θ/ν)k−l−x(Ŝ−1/ν)(Id − Θ/ν)i−1(∂bΘ/ν)(Id − Θ/ν)l−1−i(∂aΘ/ν)

+(Id − Θ/ν)k−l(Ŝ−1/ν)

i−1∑
y=1

(Id − Θ/ν)y−1(∂cΘ/ν)(Id − Θ/ν)i−1−y(∂bΘ/ν)(Id − Θ/ν)l−1−i(∂aΘ/ν)

+(Id − Θ/ν)k−l(Ŝ−1/ν)(Id − Θ/ν)i−1(∂bΘ/ν)

l−1−i∑
z=1

(Id − Θ/ν)z−1(∂cΘ/ν)(Id − Θ/ν)l−1−i−1(∂aΘ/ν)
)

:=

6∑
r=1

∆r,abc.

Now by the Cauchy-Schwartz inequality, we have

|∇θ
{
u>∇2

θθ>LT,0(Θs)v
}

vec(Θ̂−Θ0)|2 ≤
{ w∑
a,b,c=1

∂3
abcLT,0(Θs)

2u2
av

2
b

}
‖Θ̂vn −Θ0‖2F .

Regarding the third order derivative, taking the supremum on unit vectors u,v ∈ Rcard(A), using the

Frobenius norm, we have the upper bound:

w∑
a,b,c=1

∂3
abcLT,0(Θs)

2u2
av

2
b ≤ k0

{√
k0

1

ν3
‖Ŝ−1/ν‖F

∞∑
k=1

‖Id −Θs/ν‖k−3
s (k2 − 3k + 2)

}2

,

where we used ‖(Id−Θs/ν)l‖F ≤
√
k0‖(Id−Θs/ν)l‖s ≤

√
k0‖Id−Θs/ν‖ls since we restrict to the A block.
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Now rewriting this series as a combination of geometric series, we deduce

w∑
a,b,c=1

∂3
abcLT,0(Θs)

2u2
av

2
b

≤ k0

{ 1

ν3

√
k0‖Ŝ−1/ν‖F

[
‖Id −Θs/ν‖−1

s

∞∑
k=2

k(k − 1)‖Id −Θs/ν‖k−2
s − 2‖Id −Θs/ν‖−2

s

∞∑
k=1

k‖Id −Θs/ν‖k−1
s

+2‖Id −Θs/ν‖−2
s

∞∑
k=0

‖Id −Θs/ν‖ks
]}2

≤ k0

{ 1

ν3

√
k0‖Ŝ−1/ν‖F

[
‖Id −Θs/ν‖−1

s

2

(1− ‖Id −Θs/ν‖s)3
− 2‖Id −Θs/ν‖−2

s

1

(1− ‖Id −Θs/ν‖s)2

+2
1

1− ‖Id −Θs/ν‖s

]}2

= 2k0

{ 1

ν3

√
k0

‖Ŝ−1/ν‖F
1− ‖Id −Θs/ν‖s

[
‖Id −Θs/ν‖−1

s

1

(1− ‖Id −Θs/ν‖s)2

−‖Id −Θs/ν‖−2
s

2

(1− ‖Id −Θs/ν‖s)
+ 1
]}2

:= k0

{ 1

ν3

√
k0‖Ŝ−1/ν‖Fφ(Θs, ν)

}2

.

Now let us bound 1− ‖Id −Θs/ν‖s. For ν large enough ensuring that the spectral norm of Θ/ν is smaller

than 1, we have ‖Id−Θs/ν‖s = 1−λmin(Θs/ν). The inequality 1
1−‖Id−Θs/ν‖s ≤ λmin(Θs/ν)−1 then holds.

Moreover,

λmin(Θs/ν) ≥ λmin(Θ0/ν) + sλmin((Θ̂vn −Θ0)/ν) ≥ λmin(Θ0/ν)− s

ν
‖Θ̂vn −Θ0‖F .

Thus using the upper bound with respect to ‖Θ̂vn −Θ0‖F from Corollary 3.5, we obtain

λmin(Θs/ν) ≥ λmin(Θ0/ν)− s

ν
L

√
k0

log(d2)

T
,

for L > 0 large enough. We deduce λmin(Θs/ν) ≥ λmin(Θ0/ν)− εT,d > 0, with εT,d → 0 as T, d→∞ for a

suitable scaling behaviour (T, d, k0). Consequently, we deduce (1−‖Id−Θs/ν‖s)−1 ≤ (λmin(Θ0/ν)−εT,d)−1.

Now let us treat ‖Id −Θs/ν‖−1
s . We have

‖Id−Θs/ν‖s = 1−λmin(Θs/ν) ≥ 1−λmax(Θs/ν) ≥ 1−λmax(Θ0/ν)− 1

ν
‖Θ̂vn−Θ0‖F ≥ 1−λmax(Θ0/ν)−εT,d,

with εT,d → 0 as T, d→∞ for a suitable scaling behaviour (T, d, k0). As a consequence, we obtain

‖Id −Θs/ν‖−1
s ≤

(
1− λmax(Θ0/ν)− εT,d

)−1

.
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As for ‖Ŝ−1‖F , we have ‖Ŝ−1‖F ≤ ‖Ŝ−1−Σ−1
x ‖F + ‖Σ−1

x ‖F . Using the same arguments as in the proof of

Corollary 3.4 for bounding ‖Ŝ−1 − Σ−1
x ‖F , we have ‖Ŝ−1 − Σ−1

x ‖F ≤
√
k0‖Ŝ−1 − Σ−1

x ‖s ≤ K
√
k2

0
log(d2)
T ,

with high probability and for K > 0 large enough. Putting all the pieces together, we deduce

{ w∑
a,b,c=1

∂3
abcLT,0(Θs)

2u2
av

2
b

}
‖Θ̂vn −Θ0‖2F

≤ Lk0

[ 1

ν4

√
k0

(
K

√
k2

0

log(d2)

T
+ ‖Θ0‖F

)(
λmin(Θ0/ν)− εT,d

)−1

×
{(

1− λmax(Θ0/ν)− εT,d
)−1(

λmin(Θ0/ν)− εT,d
)−2

−
(

1− λmax(Θ0/ν)− εT,d
)−2

(
λmin(Θ0/ν)− εT,d

)−1

+ 1
}]2

k0
log(d2)

T

≤ Lk0

[ 1

ν4

√
k0

(
K

√
k2

0

log(d2)

T
+ ‖Θ0‖F

)(
λmin(Θ0/ν)− εT,d

)−2(
1− λmax(Θ0/ν)− εT,d

)−1

×
{(
λmin(Θ0/ν)− εT,d

)−1

−
(

1− λmax(Θ0/ν)− εT,d
)−1

+
(
λmin(Θ0/ν)− εT,d

)(
1− λmax(Θ0/ν)− εT,d

)}]2
k0

log(d2)

T
.

with high probability for L > 0 large enough. Now, let us treat εT,d → 0 under a suitable scaling (T, d).

Using λmin(Θ0/ν)−1 = ν‖Σx‖s, for L̃ > 0 large enough, with high probability, the upper bound becomes

{ w∑
a,b,c=1

∂3
abcLT,0(Θs)

2u2
av

2
b

}
‖Θ̂vn −Θ0‖2F

≤ L̃k0

[ 1

ν4

√
k0

(
K

√
k2

0

log(d2)

T
+ ‖Θ0‖F

)
ν3‖Σx‖2s

(
1− ‖Θ0/ν‖s

)−1]2
k0

log(d2)

T
.

Thus, taking the supremum with respect to unit vector u,v ∈ RA, since ‖Θ0‖F is of order k0, we obtain

‖K̂AA −∇2
θθ>LT,0(Θ0)AA‖s ≤ C

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

. (30)

for C > 0 sufficiently large. Furthermore, we have

‖K̂AA − E[∇2
θθ>LT,0(Θ0)]AA‖s

≤ ‖K̂AA −∇2
θθ>LT,0(Θ0)AA‖s + ‖∇2

θθ>LT,0(Θ0)AA − E[∇2
θθ>LT,0(Θ0)]AA‖s.

Let us control for ∇2
θθ>LT,0(Θ0)AA − E[∇2

θθ>LT,0(Θ0)]AA. First, using the formula we obtained for

59



∇2
θθ>LT,0(Θ) in the proof of Corollary 3.5, the population level Hessian E[∇2

θθ>LT,0(Θ0)] is

E[∇2
θθ>LT,0(Θ0)]

=

∞∑
k=1

1

k

k∑
l=1

k−l∑
j=1

1

2

[{
(Ip −Θ0/ν)j−1 ⊗ (Ip −Θ0/ν)k−l−j(

{
E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)l−1

}
+
{

(Ip −Θ0/ν)j−1 ⊗ (Ip −Θ0/ν)l−1(
{
E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)k−l−j

}]
/ν2

+

∞∑
k=1

1

k

k∑
l=1

l−1∑
i=1

1

2

[{
(Ip −Θ0/ν)k−l(

{
Ŝ−1 − E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)i−1 ⊗ (Ip −Θ0/ν)l−1−i

}
+
{

(Ip −Θ0/ν)i−1(
{
E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)k−l ⊗ (Ip −Θ0/ν)l−1−i

}]
/ν2. (31)

Now by the properties on the Kronecker product, we obtain

∇2
θθ>LT,0(Θ0)AA − E[∇2

θθ>LT,0(Θ0)]AA

=

∞∑
k=1

1

k

k∑
l=1

k−l∑
j=1

1

2

[{
(Ip −Θ0/ν)j−1 ⊗ (Ip −Θ0/ν)k−l−j(

{
Ŝ−1 − E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)l−1

}
+
{

(Ip −Θ0/ν)j−1 ⊗ (Ip −Θ0/ν)l−1(
{
Ŝ−1 − E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)k−l−j

}]
/ν2

+

∞∑
k=1

1

k

k∑
l=1

l−1∑
i=1

1

2

[{
(Ip −Θ0/ν)k−l(

{
Ŝ−1 − E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)i−1 ⊗ (Ip −Θ0/ν)l−1−i

}
+
{

(Ip −Θ0/ν)i−1(
{
Ŝ−1 − E[Ŝ−1]

}
/ν)(Ip −Θ0/ν)k−l ⊗ (Ip −Θ0/ν)l−1−i

}]
/ν2.

First we consider E[Ŝ−1]. By a Taylor expansion, Ŝ−1 = Θ0 + Σ−1
x

(
Σx − Ŝ

)
Σ−1
x + uT , where uT = op(1).

Thus, assuming E[Ŝ−1] < ∞, then E[Ŝ−1] − Θ0 = o(1) for a sufficiently large T . Using the properties of

the multiplicative norm of the Kronecker product, we obtain for T large enough

‖∇2
θθ>LT,0(Θ0)AA − E[∇2

θθ>LT,0(Θ0)]AA‖s

≤ 1

ν3

∞∑
k=1

1

k

k∑
l=1

k−l∑
j=1

‖Ip −Θ0/ν‖k−2
s ‖Ŝ−1 − Σ−1

x ‖s +
1

ν3

∞∑
k=1

1

k

k∑
l=1

l−1∑
i=1

‖Ip −Θ0/ν‖k−2
s ‖Ŝ−1 − Σ−1

x ‖s

≤ 1

ν3
‖Ŝ−1 − Σ−1

x ‖s
∞∑
k=1

(k − 1)‖Id −Θ0/ν‖k−2
s .

With high probability, we established ‖Ŝ−1 − Σ−1
x ‖s ≤ K

√
k0

log(d2)
T when restricted to the A block. As a

consequence,

‖∇2
θθ>LT,0(Θ0)AA − E[∇2

θθ>LT,0(Θ0)]AA‖s ≤ 1
ν3K

√
k0

log(d2)
T

(
1− ‖Id −Θ0/ν‖s

)−2

≤ 1
ν3K

√
k0

log(d2)
T λmin(Θ0/ν)−2

≤ K
√

1
ν2 ‖Σx‖4sk0

log(d2)
T .
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for L > 0 sufficiently large since ‖Id −Θ0/ν‖s < 1. Thus, putting the pieces together, we deduce

‖K̂AA − E[∇2
θθ>LT,0(Θ0)]AA‖s

≤ C

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

+K

√
1

ν2
‖Σx‖4sk0

log(d2)

T
.

Thus we obtain

‖K̂AA − E[∇2
θθ>LT,0(Θ0)]AA‖s ≤ L

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

,

for L a sufficiently large constant. Now, using the same trick as in the proof of Corollary 3.4 for controlling

for ‖Θ−1
0 − Ŝ‖s, we obtain

‖K̂
−1

AA − E[∇2
θθ>LT,0(Θ0)]−1

AA‖s ≤ L
√

1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

. (32)

Based on the same arguments for deriving (30), by union bound, we have

max
i∈Ac
‖e>i

(
K̂AcA −∇2

θθ>LT,0(Θ0)AcA
)
‖2 ≤ C

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

,

which implies

max
i∈Ac
‖e>i

(
K̂AcA − E[∇2

θθ>LT,0(Θ0)]AcA
)
‖2 ≤ C

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

. (33)

Now we are in a position to control the quantity:

‖K̂AcAK̂
−1

AA∇θLT,0(Θ0)A‖∞ ≤M1 +M2, with

M1 := ‖E[∇2
θθ>LT,0(Θ0)]AcAE[∇2

θθ>LT,0(Θ0)]−1
AcA∇θLT,0(Θ0)A‖∞,

M2 := ‖
{
K̂AcAK̂

−1

AA − E[∇2
θθ>LT,0(Θ0)]AcAE[∇2

θθ>LT,0(Θ0)]−1
AA

}
∇θLT,0(Θ0)A‖∞.

By assumption, the population level Hessian is bounded. As for the gradient, using Corollary 3.5, we obtain

with high probability that M1 ≤ C
√
k0

log(d2)
T ‖Θ−1

0 /ν‖s. Regarding M2, we have

M2 ≤ max
i∈Ac
‖e>i {K̂AcAK̂

−1

AA − E[∇2
θθ>LT,0(Θ0)]AcAE[∇2

θθ>LT,0(Θ0)]−1
AA}‖2‖∇θLT,0(Θ0)A‖2. (34)

Restricting to the true support, the following holds:

‖∇θLT,0(Θ0)A‖2 = ‖∇ΘLT,0(Θ0)A‖F

≤
√
k0‖∇ΘLT,0(Θ0)A‖s ≤ L̃

√
k0

√
k0

log(d2)

T
‖Θ−1

0 /ν‖s = L̃
√
k0

√
1

ν2
‖Σx‖2sk0

log(d2)

T
, (35)
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for L̃ a sufficiently large constant with high probability. Moreover

‖e>i {K̂AcAK̂
−1

AA − E[∇2
θθ>LT,0(Θ0)]AcAE[∇2

θθ>LT,0(Θ0)]−1
AA}‖2

≤ ‖e>i E[∇2
θθ>LT,0(Θ0)]AcAΥ1‖2 + ‖e>i Υ2E[∇2

θθ>LT,0(Θ0)]−1
AA‖2 + ‖e>i Υ2Υ1‖2, (36)

with Υ1 := K̂
−1

AA − E[∇2
θθ>LT,0(Θ0)]−1

AA, Υ2 := K̂AcA − E[∇2
θθ>LT,0(Θ0)]AcA. By inequalities (32) and

(33), we obtain

‖Υ1‖s ≤ C
√

1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

, max
i∈Ac
‖e>i Υ2‖2 ≤ C

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

.

Hence, using inequalities (34), (35) and (36), we obtain for a sufficiently large constant C̃ that

‖
{
K̂AcAK̂

−1

AcA − E[∇2
θθ>LT,0(Θ0)]AcAE[∇2

θθ>LT,0(Θ0)]−1
AA

}
∇θLT,0(Θ0)A‖∞

≤ C̃
√
k0

√
1

ν2
k0

log(d2)

T
‖Σx‖2s

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

.

Using the incoherence condition ‖K0,AcAK
−1
0,AA‖∞ < ω < 1, we then obtain with high probability

‖K̂AcAK̂
−1

AA∇θLT,0(Θ0)A‖∞

≤ ωK1

√
1

ν2
‖Σx‖2sk2

0

log(d2)

T
+K2

√
1

ν4
k9

0

log(d2)

T
‖Σx‖6s

(
1− ‖Θ0/ν‖s

)−2

,

wit K1,K2 > 0 large enough. Moreover, using the incoherence condition and

‖K̂AcAK̂
−1

AA‖∞

≤
√
k0‖K̂AcAK̂

−1

AA − E[∇2
θθ>LT,0(Θ0)]AcAE[∇2

θθ>LT,0(Θ0)]−1
AA‖∞ + ‖E[∇2

θθ>LT,0(Θ0)]AcAE[∇2
θθ>LT,0(Θ0)]−1

AA‖∞

≤ C̃

√
1

ν4
k9

0

log(d2)

T
‖Σx‖6s

(
1− ‖Θ0/ν‖s

)−2

+ ω.

Thus, putting the pieces together, we have for L1, L2, L3 > 0 sufficiently large

‖zAc‖∞

≤ 1

λT

(
L1

√
1

ν4
k9

0

log(d2)

T
‖Σx‖6s

(
1− ‖Θ0/ν‖s

)−2

+ L2

√
1

ν2
(d2 − k0)‖Σx‖2s

log(d2)

T

)
+L3

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

+ ω.
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Hence, strict dual feasibility of Theorem 5.1 is satisfied when

1

1− ω
L

√
log(d2)

T
≤ λT ,

under the scaling T > C 1
ν2

[
(d2 − k0) ∨ k90

ν2 ‖Σx‖4s
(

1− ‖Θ0/ν‖s
)−2]

‖Σx‖2s log(d2).

We now focus on the `∞ bound. We have

‖K̂
−1

AA∇θLT,0(Θ0)A‖∞

≤ ‖{K̂
−1

AA − E[∇2
θθ>LT,0(Θ0)]−1

AA}∇θLT,0(Θ0)A‖∞ + ‖E[∇2
θθ>LT,0(Θ0)]−1

AA∇θLT,0(Θ0)A‖∞

≤
√
k0‖K̂

−1

AA − E[∇2
θθ>LT,0(Θ0)]−1

AA‖s‖∇θLT,0(Θ0)A‖∞ + ‖E[∇2
θθ>L(Θ0)]−1

AA∇θLT,0(Θ0)A‖∞

≤ C1

√
k0

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2
√

1

ν2
‖Σx‖2sk0

log(d2)

T

+C2

√
1

ν2
‖Σx‖2sk0

log(d2)

T
,

with C1, C2 > 0 using inequality (32). We proved

‖K̂
−1

AA − (E[∇2
θθ>LT,0(Θ0)]AA)−1‖∞

≤
√
k0‖K̂

−1

AA − (E[∇2
θθ>LT,0(Θ0)]AA)−1‖s ≤

√
1

ν2
k7

0

log(d2)

T
‖Σx‖4s

(
1− ‖Θ0/ν‖s

)−2

≤ β∞.

Hence

‖K̂
−1

AA‖∞ ≤ ‖K̂
−1

AA − (E[∇2
θθ>LT,0(Θ0)]AA)−1‖∞ + ‖(E[∇2

θθ>LT,0(Θ0)]AA)−1‖∞ ≤ 2β∞.

Consequently, by part (i) of Theorem 5.2, we obtain for L̃ > 0

‖Θ̂vn −Θ0‖max ≤ L̃
√

log(d2)

T
+ λTβ∞.

Proof of point (ii). We follow the same proof as in point (ii) of Corollary 3.7. Hence we have

‖ẑAc‖∞ ≤
1

λT
‖ − ∇θLT,0(Θ0)Ac + K̂AcAK̂

−1

AA∇θLT,0(Θ0)A‖∞.

Following the same steps as in the proof of part (i), by upper bounding ‖∇θLT,0(Θ0)Ac‖∞ and ‖K̂AcAK̂
−1

AA∇θLT,0(Θ0)A‖∞,

we establish strict dual feasibility by Proposition 5.3. Then the remainder follows from part (ii) of Theorem

5.2.
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Proof of Corollary 3.10. The oracle estimator is defined as

Θ̂dt,O = arg min
θ∈R|A|:Θ∈Ω

{
LT (Θ)

}
= arg min
θ∈R|A|:Θ∈Ω

{1

2
tr
(

Θ2Ŝ −Θ
)}
.

Proof of point (i). Strict dual feasibility is checked for

Θ̂dt = arg min
Θ:Θ∈Ω, supp(Θ)⊆supp(Θ0)

{
LT (Θ) + p(λT , θ)

}
,

where LT (.) and Ω are defined in (16). Following the same steps as in the Stein’s case in point (i), we aim

at bounding

‖ẑAc‖∞ ≤
1

λT
‖ − ∇θLT (Θ0)Ac + K̂AcAK̂

−1

AA∇θLT (Θ0)A‖∞ + ‖K̂AcAK̂
−1

AA‖∞,

with K̂ =
∫ 1

0
∇2
θθ>LT (Θ0 + u(Θ̂dt −Θ0))du. Now we have

‖ − ∇θLT (Θ0)Ac + K̂AcAK̂
−1

AA∇θLT (Θ0)A‖∞ ≤ ‖∇θLT (Θ0)Ac‖∞ + ‖K̂AcAK̂
−1

AA∇θLT (Θ0)A‖∞.

Let us highlight that the Hessian matrix does not depend on the parameter Θ. Proceeding as in the proof

of point (i) of Corollary 3.7, we obtain

‖K̂AcAK̂
−1

AA∇θLT (Θ0)A‖∞ ≤M1 +M2, where

M1 = ‖E[∇2
θθ>LT (Θ0)]AcAE[∇2

θθ>LT (Θ0)]−1
AA∇θLT (Θ0)A‖∞,

M2 = ‖
{
K̂AcAK̂

−1

AA − E[∇2
θθ>LT (Θ0)]AcAE[∇2

θθ>LT (Θ0)]−1
AA

}
∇θLT (Θ0)A‖∞.

Note that E[∇2
θθ>LT (Θ0)] = 1

2

(
Σx ⊗ Id + Id ⊗ Σx

)
. Then, we have

M1 ≤ ‖E[∇2
θθ>LT (Θ0)]AcAE[∇2

θθ>LT (Θ0)]−1
AA‖∞‖∇θLT (Θ0)A‖∞ ≤ ωK

√
‖Θ0‖2sk0

log(d2)

T
,

with high probability and using the incoherence condition, a condition identical to Zhang and Zou (2014),

Theorem 2. As for M2, we first consider:

‖K̂−E[∇2
θθ>LT (Θ0)]‖∞ =

1

2
‖
(
Ŝ−Σx⊗Id

)
+
(
Id⊗Ŝ−Σx

)
‖∞ ≤ ‖Ŝ−Σx‖∞ ≤ d‖Ŝ−Σx‖max ≤ L

√
d2

log(d2)

T
,
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with high probability for L > 0 large enough. Then let us consider the probability:

∀ε > 0, P(‖K̂AcA − E[∇2
θθ>LT (Θ0)]AcA‖∞ > ε)

≤ P(max
j∈Ac

k0∑
l=1

|K̂jl − E[∇2
θθ>LT (Θ0)]jl| > ε) = P(max

j∈Ac

k0∑
l=1

|Ŝjl − Σx,jl| > ε) ≤ (d2 − k0)

k0∑
l=1

P(|Ŝjl − Σx,jl| > ε/k0).

Then we deduce for L > 0 large enough and with a suitable sample size that

υ1 = ‖K̂AcA − E[∇2
θθ>LT (Θ0)]AcA‖∞, υ2 = ‖K̂

−1

AA − E[∇2
θθ>LT (Θ0)]−1

AA‖∞,

are bounded by L
√
k0

log(d2)
T with high probability. Then

M2 ≤
{
‖
(
K̂AcA − E[∇2

θθ>LT (Θ0)]AcA

)(
K̂
−1

AA − E[∇2
θθ>LT (Θ0)]−1

AA

)
‖∞

+‖
(
K̂AcA − E[∇2

θθ>LT (Θ0)]AcA

)
E[∇2

θθ>LT (Θ0)]−1
AA‖∞

+‖E[∇2
θθ>LT (Θ0)]AcA

(
K̂
−1

AA − E[∇2
θθ>LT (Θ0)]−1

AA

)
‖∞
}
‖∇ΘLT (Θ0)A‖max

≤
{
υ1υ2 + υ1‖E[∇2

θθ>LT (Θ0)]−1
AA‖∞ + υ2‖E[∇2

θθ>LT (Θ0)]AcA‖∞
}
‖∇ΘLT (Θ0)A‖max

≤
{
υ1υ2 + υ1‖E[∇2

θθ>LT (Θ0)]−1
AA‖∞ + υ2‖Σx‖∞

}
‖∇ΘLT (Θ0)A‖max

≤ K

√
k0‖Σx‖2∞

log(d2)

T
‖∇ΘLT (Θ0)A‖max,

with high probability and for K sufficiently large, where we used ‖E[∇2
θθ>LT (Θ0)]AcA‖∞ ≤ ‖Σx‖∞. Since

‖∇ΘLT (Θ0)A‖max ≤ K
√
k0‖Θ0‖2s

log(d2)
T with high probability, we conclude that

‖K̂AcAK̂
−1

AA∇θLT (Θ0)A‖∞ ≤ L
√
k0‖Σx‖2∞

log(d2)

T

√
‖Θ0‖2s

k0 log(d2)

T
.

with high probability under the scaling T > Mk2
0

{
‖Σx‖2∞ ∨ ‖Θ0‖2s

}
log(d2). Furthermore, by the incoher-

ence condition

‖K̂AcAK̂
−1

AA‖∞

≤ ‖K̂AcAK̂
−1

AA − E[∇2
θθ>LT (Θ0)]AcAE[∇2

θθ>LT (Θ0)]−1
AA‖∞ + ‖E[∇2

θθ>LT (Θ0)]AcAE[∇2
θθ>LT (Θ0)]−1

AA‖∞

≤ L

√
k0‖Σx‖2∞

log(d2)

T
+ ω.

Thus we have for L > 0 sufficiently large

‖zAc‖∞ ≤
1

λT

(
L1

√
k2

0

{
‖Σx‖2∞ ∨ ‖Θ0‖2s

} log(d2)

T
+L2

√
(d2 − k0)‖Θ0‖2s

log(d2)

T

)
+L3

√
k0‖Σx‖2∞

log(d2)

T
+ω,
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for L1, L2, L3 > 0. Hence, then strict dual feasibility of Theorem 5.1 is satisfied when

1

1− ω
L

√
log(d2)

T
≤ λT ,

under the scaling T > C max
{
k2

0

[
‖Σx‖2∞ ∨ ‖Θ0‖2s

]
, (d2 − k0)‖Θ0‖2s

}
log(d2).

Let us consider the `∞ bound to apply point (i) of Theorem 5.2. We have

‖K̂
−1

AA∇θLT (Θ0)A‖∞

≤ ‖{K̂
−1

AA − E[∇2
θθ>LT (Θ0)]−1

AA}∇θLT (Θ0)A‖∞ + ‖E[∇2
θθ>LT (Θ0)]−1

AA∇θLT (Θ0)A‖∞

≤ ‖K̂
−1

AA − E[∇2
θθ>LT (Θ0)]−1

AA‖∞‖∇θLT (Θ0)A‖∞ + ‖E[∇2
θθ>LT (Θ0)]−1

AA∇θLT (Θ0)A‖∞

≤ C1

√
k0

log(d2)

T

√
k0‖Θ0‖2s

log(d2)

T
+ C2

√
k0‖Θ0‖2∞

log(d2)

T
,

with C1, C2 > 0 and using our previous upper bounds. We proved

‖K̂
−1

AA − (E[∇2
θθ>LT (Θ0)]AA)−1‖∞ ≤ L

√
k0

log(d2)

T
≤ β∞.

Hence

‖K̂
−1

AA‖∞ ≤ ‖K̂
−1

AA − (E[∇2
θθ>LT (Θ0)]AA)−1‖∞ + ‖(E[∇2

θθ>LT (Θ0)]AA)−1‖∞ ≤ 2β∞.

Consequently, by part (i) of Theorem 5.2, we obtain

‖Θ̂g −Θ0‖max ≤ L̃
√

log(d2)

T
+ λTβ∞,

for L̃ > 0.

Proof of point (ii). The same approach as in the proof of (i) can be applied. Since the regularizer

is assumed to be (µ, ζ)-amenable, we have by Lemma 5 of Loh and Wainwright (2017) that λT ẑA −

∇θq(λT , vec(Θ̂)A) = 0. Hence we have

‖ẑAc‖∞ ≤
1

λT
‖ − ∇θLT (Θ0)Ac + K̂AcAK̂

−1

AA∇θLT,1(Θ0)A‖∞.

Following the same steps as in the proof of part (i), by upper bounding ‖∇θLT (Θ0)Ac‖∞ and ‖K̂AcAK̂
−1

AA∇θLT (Θ0)A‖∞,

we establish strict dual feasibility by Proposition 5.3. Then the remainder follows from part (ii) of Theorem

5.2.
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