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Abstract

In the existing axiomatic models of inequity aversion, players have linear payoff functions, so
they can predict that a dictator chooses only a completely selfish or completely fair offer in
dictator games. However, experimental literature documents that a significantly amount of
dictators offers 20-30% of the total pie to the passive opponent. This note, in contrast, ax-
iomatizes inequity averse representation with general payoff function, so that we can explain
such interior choices.
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1 Introduction

Experimental literature documents that a significantly amount of subjects offers 20-30% of
the total pie to passive opponents in dictator games (Camerer, 2002). This can be explained
by inequilty aversion (Fehr and Schmidt, 1999) with concave payoff functions. Nevertheless,
existing axiomatic models of inequity aversion limit payoff functions to be linear and cannot
describe the established experimental result.

In general, an inequity averse decision maker (denoted by 1, henceforth) chooses an allo-
cation x ∈ Rn over n individuals, so that she maximizes

UFS(x) = u(x1)−
n∑

i=2

αimax{u(xi)− u(x1), 0} −
n∑

i=2

βi max{u(x1)− u(xi), 0} (1)

where u : R → R denotes each individual’s payoff function, and αi, βi ∈ [0, 1] denote parame-
ters of her envy and guilt for each i, respectively. Observe that the decision maker makes an
interior offer x∗

2 ∈ (0, 1/2) in a dictator game where n = 2 and x1+x2 = 1 only if u is concave.
Rohde (2010) first axiomatizes representation (1) with linear payoff functions (i.e., u(x) = x),
so her model can describe only the extreme cases x∗

2 = 0 or x∗
2 = 1

2
. Motivated by experi-

mental studies of probablistic dictaor games (e.g., Brock et al. 2013), Saito (2013) considers
a preference over risky allocations and axiomatizes a function combining V (p) = UFS(Ep[x])
and V (p) = Ep[UFS(x)]. His model successfully distinguishes equality of opportunity and
equality of outcome. Also in his axiomatic model, however, payoff functions are limited to be
linear, and thus, his model can describe only the extremely selfish or extremely fair offer in
probabilistic dictator games. Moreover, such a model with linear payoff functions is inconsist
with a fact that the decision makers are often risk averse.

This note considers a preference over risky allocations as assumed by Saito (2013), and
axiomatizes representation (1) with a general payoff function u. We call it an Expected
Equality Representation (EER). Our result permits a decision maker to offer an interior
donation between 0% and 50% in dictator games as experimental studies suggest. Moreover,
it is consistent with the fact that the decision maker is risk averse.

Theoretically, in contrast to Rohde and Saito, who employ strong versions of Comonotonic
Independence axiom (Schmeidler, 1989), we employ Certainty-Independent axiom of Gilboa
and Schmeidler (1989, GS). Because the Certainty-Independent is mathematically simpler as
GS claim, it permits us to analyze the general functional form. To characterize the EER,
we apply Anscombe and Aumann’s (1963, AA) framework of which domain is a set of acts
(i.e., functions from objective states to lotteries). Because a domain of our analysis is a set
of risky allocations, a set of players corresponds to that of states in AA. GS weaken AA’s
independence axiom and obtain kinked indifference curves. Because indifference curves of
EER are also kinked in a similar way, we can obtain EER by applying GS’s method.

The rest of the paper is organized as follows. Section 2 sets up the model. Section 3
analyzes it. Section 4 concludes.
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2 Model

Let I = {1, · · · , n} be a set of individuals and Z be a set of prizes. Each x = (x1, · · · , xn) ∈
Zn is an allocation of payoffs among the individuals. A probability distribution pi on Z
with finite supports is called a lottery. The set of all lotteries is denoted by ∆Z, and write
D := (∆Z)n. The primitive of our model is a binary relation ≿ over D that describes a
preference of the decision maker (denoted by 1 ∈ I). As usual, we reduce ≻ and ∼ from
≿, define a probability mixture ⊕ over D, and say that a function f : ∆Z → R is linear if
f(λx⊕ (1− λ)y) = λf(x) + (1− λ)f(y) for each x, y ∈ D and λ ∈ [0, 1].

Definition 1. ≿ has an Expected Equality Representation (EER) if there exist a function
u : Z → R and (αi, βi) ∈ R2 for each i ∈ I\{1} such that

∑n
i=2 βi ≤ 1 and ≿ is represented

by V (p) := UFS(Ep(x)).

We impose on ≿ four axioms. The first one is rationality:

Axiom 1. ≿ is weak order, continuious, and monotone in a sense that

∀p,q ∈ D; e(p1) ≿ e(q1) ⇔ (p1,p−1) ≿ (q1,p−1). (2)

Note that an inequity averse individual often prefers (0, 10) ≻ (1, 9) in ultimatum games
with n = 2. This violates Pareto efficiency:

∀p,q ∈ D; [∀i ∈ I; e(pi) ≿ e(qi)] ⇒ p ≿ q. (3)

Therefore we impose (2) weaker than (3).
Although AA impose von Neumann-Morgenstern independence axiom, an other-regarding

individual may prefer randomization such as 1
2
(1, 0)⊕ 1

2
(2, 4) ≻ (1, 0) ∼ (2, 4). This violates

the independence axiom as Diamond (1967) suggests this example in social choice literature.
Hence we weaken it in GS’s fassion as the following Axioms 2 and 3. To do so, let e(p) ∈ D
denote an equal allocation in which each individual receives the same lottery p ∈ ∆Z. Each
e(p) corresponds to a “constant act” in GS.

Axiom 2. ∀p,q ∈ D, ∀r ∈ ∆Z;p ∼ q ⇒ 1
2
p⊕ 1

2
e(r) ∼ 1

2
q⊕ 1

2
e(r).

Axiom 3. ∀p,q ∈ D;p ∼ q ⇒ 1
2
p⊕ 1

2
q ≿ p.

Fehr-Schmidt model compares only between the decision maker and each individual. Ax-
iom 4 implies that no relation between two others affects her ranking over allocations. Hence,
it always holds if n = 2.

Axiom 4. ∀p,q, r, s ∈ D with e(p1) ∼ e(q1), and ∀i ̸= 1, (p−i, ri) ≿ (q−i, ri) if (p−i, si) ≿
(q−i, si).

3 Representation

Under the four axioms, our main result holds as follows:
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Theorem 1. ≿ satisfies Axioms 1-4 iff it has a EER.

Proof. First, we claim that ≿ is represented by some C-independent function I : D → R in
a sense that

I(av + b1) = aI(v) + b. (4)

By Axiom 1, there exists a continuous function v : {e(p) ∈ D | p ∈ ∆Z} → R such that

v(p) ≥ v(q) ⇔ e(p) ≿ e(q). (5)

for each p, q ∈ ∆Z. Moreover, the v can be linear by Axiom 2. By Axioms 5 and (2), there
exists a function f : (v(∆Z))n → R such that

f(v(p1), · · · , v(pn)) ≥ f(v(q1), · · · , v(qn)) ⇔ p ≿ q (6)

for each p,q ∈ D. Given the f , define a function I : Rn → R such that

I(λv(p1), · · · , λv(pn)) = λf(v(q1), · · · , v(qn))

for each λ ∈ R. As shown in (iv) of GS’s Lemma 3.3, our Axioms 2 implies C-independence
of I.

Second, we show that ≿ is represented by

U(p) = min
k∈K

n∑
i=1

kiv(pi) (7)

for some unique, nonempty, closed, convex set K ⊊ Rn. Without loss of generality, we
consider a set given by

U := {v ∈ Rn | f(v) ≥ 0},

which is a closed convex cone whose vartix is 0. Therefore, we can apply supporting hyper-
plane theorem: there exists k ∈ Rn\{0} such that for all u ∈ U ,

k · 0 ≤ k · u. (8)

Let K denote a set of all vectors k satisfying (8). Note that the above result of hyperplane
theorem implies that K ̸= ∅. For k ∈ K, on the one hand, we have k · u ≥ 0. On the other
hand, if mink∈K k · v < 0, then u ̸∈ U , that is, f(u) < 0. Therefore now we have

f(u) = 0 ⇐⇒ min
k∈K

k · u = 0. (9)

Since we can take u′ ∈ U such that f(u′) = 0 and u = u′ + c1 for given u ∈ Rn satisfying
that f(u) = c, we have

f(u) = f(u′) + c (10)

= min
k∈K

k · u′ + c (11)

= min
k∈K

k · u, (12)
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where (10) is due to (4), and (11) is derived by (9). Combining (5) and (12) yields (7).
Similarly to GS, K is unique, nonempty, closed and convex. For each k ∈ K, we assume∑n

i=1 ki = 1 without loss of generality.
Third, we show that (7) is rewritten by EER. Let v,v′ ∈ Rn satisfy that

(v1 − vi)(v
′
1 − v′i) > 0 (13)

for each i ∈ I. Then, there exists k ∈ K minimizing k · v and k · v′ both by Axiom 4 and
the properties of K. Therefore,

U(p) =

(
1−

n∑
i=2

k∗
i

)
v(p1) +

n∑
i=2

k∗
i v(pi), (14)

where k∗ ∈ argminki∈K
∑n

i=1 kiv(pi). Next we show that each k∗
i in k∗ depends only on

(p1, pi), and

k∗
i (p1, pi) =

{
ki if v(p1) ≥ v(pi)
ki if v(p1) ≤ v(pi)

, (15)

where ki ≤ ki ≤ ki for each k ∈ K and each i ∈ I\{1}. Let v,v′ ∈ Rn satisfy (13) and
vj = v′j for each j ∈ I\{1, i}. For any k,k′ ∈ K, we have k · v > k′ · v ⇔ (1− ki)v1 + kivi >
(1− k′

i)v1 + k′
ivi ⇔ (k′

i − ki)(v1 − vi) > 0 ⇔ (k′
i − ki)(v

′
1 − v′i) > 0 ⇒ k ·v′ > k′ ·v′, where the

third arrow holds by (13). Therefore, k∗
i (p1, pi) depends only on p1−pi. Moreover, by Axiom

4 and properties of K, it takes either ki or ki, so we have (15). Asigning
(
ki, ki

)
= (−αi, βi)

to (14) and (15) yields EER. Condition (2) implies that
∑n

i=2 βi ≤ 1. ■
The proof mainly follows GS, whose maxmin expected utility (MEU) is characterized by

Axioms 1-3 and 5:

Axiom 5. ∀x,y ∈ D; [∀i ∈ I; e(xi) ≥ e(yi)] ⇒ x ≿ y.

Axiom 5 is interpreted as Pareto efficiency in our setting. We have weakened Axiom
5 to (2) and impose Axiom 4 instead of it because an inequality averse individual reveals
(0, 0) ≻ (0, 1) inefficiently in an ultimatum game, for example. When n = 2, Figures 1 and 2
depict indifference curves of MEU and EER, respectively. They differ in signs of their slopes
above 45-degree line, and the difference is caused by Axioms 4 and 6.

O
Ep1 [u(x1)]

Ep2 [u(x2)]
45◦

Figure 1. Indifference curves of MEU

O
Ep1 [u(x1)]

Ep2 [u(x2)]
45◦

Figure 2. Indifference curves of EER
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3.1 Parameter characterization

The representation (1) is said to exhibit inequity aversion if αi, βi > 0. To characterize the
parameters, here consider the following two axioms for each i ∈ I\{1}.

Axiom 6. ∃x, y, z ∈ ∆Z; e(y) ≻ (xi, e−i(y)), e(y) ≻ (zi, e−i(y)) and e(y) ∼ 1
2
e(x)⊕ 1

2
e(z).

Axiom 7. ∃x, y, z ∈ ∆Z; e(y) ≻ (xi, e−i(y)) ≻ (zi, e−i(y)) and e(y) ∼ 1
2
e(x)⊕ 1

2
e(z).

As a colollary of Theorem 1, we can characterize it as follows:

Proposition 2. Let ≿ satisfy Axioms 1-4. Then, (αi, βi) ∈ R2
++ in EER iff Axiom 6 holds.

Furthermore, αi > βi iff Axiom 7 holds.

We can also characterize utilitarian (i.e., αi < 0 < βi) and competitive (i.e., βi < 0 < αi) in
similar ways.

4 Conclusion

We axiomatize Fehr-Schmidt type utility representation under risk. Contrast to existing
papers, our axiomatic model permits the decision maker to have a concave utility or be
risk averse. Our analysis suggests that inequity aversion and uncertainty aversion have a
similar behavioral foundation (i.e., the same way of violation of independence axiom). This
is consistent with Kameda et al (2016) finding that individual attitudes toward distributional
and uncertain tasks draw on common cognitiveneural processes.
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