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Abstract

Price discovery is an important built-in function of financial markets and the central issue

in the market microstructure research. Market participants need to know whether the price

discovery has been achieved or how much progress has been made in order to trade at an

appropriate price they consider. Since various economic events such as earnings announce-

ment affect the price discovery, the intraday transition of price discovery varies date-by-date.

In this study, we propose a statistical method to see when and how fast the intraday price

discovery progresses using the high frequency price series on a daily basis. The proposed

method consists of estimating three candidate models which gauge the different types of

price discovery progress, i.e. no progress, smooth progress and abrupt progress, and se-

lecting the most appropriate model based on Bayesian approach. We conduct simulation

analysis to assess the performance of our proposed method and confirm that the method

depicts the state of price discovery appropriately. The empirical study using the Japanese

stock market index shows that the proposed method well categorizes the intraday price

discovery progresses on a daily basis.
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1. Introduction

Price discovery is an important built-in function of financial markets and the central issue

in the market microstructure research. More specifically, the price discovery brings prices

of assets traded on markets closer to their fundamental values by reflecting all publicly

available information. Market participants need to know whether the price discovery has

been achieved or how much progress has been made in order to trade at an appropriate price

they consider. In this paper, we propose a statistical method to see when and how fast price

discovery progresses.

Biais et al. (1999) is well known previous research about price discovery during the

preopening period which is the period before the regular market session. They gauge the

state of price discovery at specific time by estimating the slope coefficient of unbiasedness

regression in which they regress the close-to-close return onto the return from the closing

price of previous trading day to the price at the specific time. In their analysis, the slope

coefficients at specific time t is obtained by one unbiasedness regression using the 19 trading

days of French stock market data between October 29 and November 26, 1991. They figure

out the path of slope coefficients for each minute during the period from 9:30 to 12:00 which

includes the opening at 10:00 am in the Paris Bourse. However, not only does their approach

ignore the time series properties of the market data, but they also cannot have sufficient

sample size when our interest focuses on the economic event such as quarterly earnings

announcement since there are only four announcements in a year.

In a different way than Biais et al. (1999), we adopt a partial price adjustment model

which focuses on the difference between the fundamental value and the observed market

price of asset. The partial price adjustment model is often used in the research field of

market microstructure. For example, Amihud and Mendelson (1987) conduct the empirical

comparison of price behavior under the different two trading mechanisms by using the partial

price adjustment model. It is worth noting that the magnitude of adjustment coefficient of
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the model represents the state of price discovery. We extend the partial adjustment model to

models that allow time-varying adjustment coefficient using the mechanisms of the smooth

transition as in Teräsvirta (1994) and the threshold coefficient as in Tong (1978) to capture

how the price discovery progress.

In this paper, we consider the partial price adjustment models whose adjustment coeffi-

cient is constant, smoothly time varying, and switching abruptly. The estimation of unknown

parameters is not easy due to the identification problems inherent in the smooth transition

model and the threshold model. Following the previous study by Gerlach and Chen (2008),

Bayesian approach is used to estimate the proposed models in this paper. For the model

selection, we employ the deviance information criterion of Spiegelhalter et al. (2002) and

the marginal likelihood method of Chib (1995) and Chib and Jeliazkov (2001), and evaluate

these selection methods through the simulation studies as in So and Chan (2014).

The rest of this paper is organized as follows. We describe three types of partial adjust-

ment model with an adjustment coefficient which is constant, smoothly time varying, and

switching abruptly in Section 2. Section 3 provides the estimation method of three candi-

date models and the model selection criteria. After that, we conduct simulation analysis in

Section 4 to assess the performance of our proposed method and give an empirical study

using actual observed financial data in Section 5. We offer concluding remarks in Section 6.

2. Model description of partial adjustment models

We see how price discovery progresses by estimating three candidate models and selecting

most appropriate model among them. In this section, we introduce three candidate models

and describe the identification problems related to them.
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2.1. Constant adjustment model

First, we introduce a partial adjustment model used in Amihud and Mendelson (1987).

They analyze the price behaviors of the stocks on New York Stock Exchange with followings

∆pt = g(mt − pt−1) + ut, (1)

mt = mt−1 + et (2)

where pt is the logarithmic market price of asset at time t and ∆pt ≡ pt − pt−1 stands for

the return. Here, mt is the logarithmic efficient price which is given as the expectation

of the fundamental value of the asset conditional on all publicly available information up

to time t. It is noted that mt is unobservable and the specification of which the efficient

price follows the random walk according to the efficient market hypothesis is conventional in

market microstructure analysis (see Amihud and Mendelson (1987) and Hasbrouck (2007)).

The market return noise ut and the innovation of efficient price et are i.i.d. random variables

with mean zero, constant variances, and zero covariance. Further we impose the normality

assumption for ut and et for simplicity. Combining (1) and (2) gives the following equation

for the market price pt

pt = (1− g)pt−1 + gmt−1 + ut + get.

The expectation of pt conditional on the information up to time t − 1 implies that the

current market price is determined between the previous market price and the efficient price

on average, i.e. the market price is partially adjusted to the efficient price. The magnitude

of adjustment coefficient g represents the state of price discovery. For the case of g = 1, the

current market price pt is appropriately adjusted to the efficient price on average. g < 1

(> 1) represents the under (over) reaction of traders to new information. In addition, we
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suppose g ∈ (0, 2) to ensure the stationarity of the return process. Hereafter, we call this

model as the constant partial adjustment model.

2.2. Time varying adjustment model

As in Biais et al. (1999), it is interesting to assess the change of state of price discovery

through various economic events, e.g. before and after the opening period and earnings

announcement. In the following, we extend the constant partial adjustment model to the

two types of the time-varying partial adjustment models, which are based on the smooth

transition autoregressive model proposed in Teräsvirta (1994) and the threshold autoregres-

sive model proposed in Tong (1978). The smooth transition partial adjustment model is

introduced to depict the gradual change of state of price discovery as follows

∆pt = st(mt − pt−1) + ut, (3)

mt = mt−1 + et, (4)

st = a1 + a2

{
1 + exp

(
−γ τt − c

στ

)}−1
(5)

where τt = t/T (t = 2, . . . , T ) and στ is the standard deviation of τt which is used to

standardization. Eq. (5) contains the logistic function of τt with the speed parameter γ > 0

and the location parameter 0 < c < 1. The adjustment coefficient st transits smoothly

from a1 to a1 + a2 where the parameter restrictions a1, a1 + a2 ∈ (0, 2) are imposed for

non-explosive condition of ∆pt. As depicted in Figure 1, the adjustment coefficient stays

at a1 + a2/2 when γ = 0, and instantaneously changes from a1 to a1 + a2 at τt = c when

γ =∞. These are the special case of the smooth transition partial adjustment model.

We adopt the Markov chain Monte Carlo (MCMC) method for the estimation of the

smooth transition model because the maximization of the log likelihood without any restric-

tions is difficult, specially with respect to γ. As shown in Ekner and Nejstgaard (2013), the
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Figure 1: Shape of adjustment coefficients st = (1 + exp{−γ(τt− 0.5)/στ})−1 with each speed parameter

(γ = 0, 1, 3, 20) and switching adjustment coefficient with threshold c = 0.5. στ is standard

deviation of τt = t/T .

first partial derivative of the log likelihood function with respect to γ takes 0 at γ = ∞.

This implies that the likelihood becomes at least locally maximum at γ = ∞ even if the

true γ is not ∞. Moreover, Figure 1 shows that the γ in (5) which takes the value over

20 makes the path of adjustment coefficient by the smooth transition model virtually indis-

tinguishable from that by the threshold model which will be given below, see also Gerlach

and Chen (2008). Depending on the purpose of analysis, the accuracy of distinguishing the

difference between the paths from the two different models will differ. For our purpose of

accurately capturing the state of price discovery, it is not necessary to distinguish between

the smooth transition model with γ of 20 or more and the threshold model. Instead of the

smooth transition model with the large value of γ, we provide the following threshold model
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for the case of abruptly changing st as an alternative.

∆pt = st(mt − pt−1) + ut, (6)

mt = mt−1 + et, (7)

st = a1 + a2Iτt≥c, c ∈ {2/T, 3/T, . . . , 1}. (8)

Eq. (8) makes st switching abruptly from a1 to a1+a2 instead of smooth transition with (5).

As described above, for the case of γ =∞, the smooth transition partial adjustment model

collapses to the threshold partial adjustment model. For the threshold partial adjustment

model (6)–(8), the non-explosive condition (a1, a1 + a2 ∈ (0, 2)) is also necessary. Hereafter

we refer (1)–(2), (3)–(5), and (6)–(8) as models C, S, and T for brevity.

2.3. Restrictions for parameters

We have to consider an identification problem for models S and T . It is obvious that the

identification problem for the parameters γ and c is caused by imposing a2 = 0 on model S

for the expression of constant adjustment coefficient and the same problem occurs for the

parameter c in model T . Therefore, we impose the restriction a2 6= 0 for the exclusion of

constant adjustment coefficient case from the scope of models S and T .

By restricting parameters in each model and selecting appropriate model from the can-

didates, we can avoid the identification problems and categorize the path of adjustment

coefficient into one of three different types: constant, smoothly time-varying, and switching

abruptly, with respective corresponding models.

3. Bayesian inference

We estimate all three candidate models and carry out a model selection, using Bayesian

approach. The inference based on the posterior distribution through Markov chain Monte

Carlo (MCMC) is convenient to incorporate parameter restrictions described in the previous
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section. Further, the Bayesian approach adopted in this paper does not involve the numerical

optimization unlike the maximum likelihood method which is often associated with some

difficulties in maximizing the log likelihood and obtaining the standard error of estimators

for the inference. In following, we provide the Bayesian estimation and model selection in

detail.

3.1. Prior distributions

We first introduce the prior distributions for the speed parameter γ and the location

parameter c of model S. For the reason mentioned in subsection 2.2, we adopt the truncated

normal prior for log γ, whose mean µγ, variance σ2
γ, and the lower and upper bounds log `γ

and log uγ, that is, log γ ∼ TN(µγ, σ
2
γ)(log `γ ,log uγ) to distinguish between model S and model

T . For the location parameter c in model S, we set c ∼ TN(µc, σ
2
c )(`c,uc) as the prior

distribution. For the case of model T , we use the discrete uniform prior for c with the

same lower and upper bounds `c and uc as used for model S, i.e. `c < uc and `c, uc ∈

{2/T, 3/T, . . . , 1}. In addition, as we mentioned earlier, we need to restrict the range of

adjustment coefficient for the non-explosiveness of return process and identification problems

in models S, T . So we set the following truncated normal prior with the positive lower bound:

a1 ∼ TN(µa1 , σ
2
a1

)(`a1 ,2). a2 needs to satisfy a2 ∈ (−a1, 2−a1) for the non-explosive condition

and a2 6= 0 for the identification problem. Because we focus on how the price discovery

progress, i.e. the non-decreasing adjustment coefficient case in this paper, we assume the

conditional truncated normal prior for a2 as follow a2|a1 ∼ TN(1 − a1, σ2
a2

)(`a2 ,2−a1) where

`a2 > 0. For g which represents the state of price discovery in model C, similar to a1 and

a2, we adopt the same prior as a1. For the noise variance σ2
u, we use the inverse gamma

distribution with shape parameter αu and rate parameter βu, that is IG(αu, βu), as the

conjugate prior in the simulation study and the uniform prior U(`u, uu) in the empirical

study. For the sampling procedure of σ2
m which is the innovation variance of unobservable

efficient price mt, we conduct ancillarity-sufficiency interweaving strategy (ASIS) proposed
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in Yu and Meng (2011). We will give the prior distribution and the sampling procedure

of σ2
m in the following subsection. Overall, we assume that the prior distributions for each

parameter are independent each other except for a1 and a2. The detail of sampling procedure

is described in following.

3.2. Sampling procedure

Firstly, we describe the sampling procedure for model S. Denote Θ the parameter set of

the target model, here Θ = (γ, c, a1, a2, σ
2
m, σ

2
u).

step 0. Determine Θ(0) and set i = 1.

step 1. Draw the state variables m̃
(i)
T = (m

(i)
2 ,m

(i)
3 , · · · ,m

(i)
T ).

step 2. Draw individually each parameter in Θ(i).

step 3. Repeat step1 and step2 for i = 1, . . . , N .

In estimating the other candidate models, we similarly use the same procedure for the other

parameter set in those models.

As for step 1, by combining with the Carter and Kohn (1994) algorithm, Gibbs sampling

is possible to obtain a draw for the unobservable efficient price m̃T .

As for the sampling method of γ and c in model S, we implement the Metropolis-

Hastings (MH) algorithm. In drawing proposals of γ and c, we adopt the random walk MH

algorithm during burn-in period (first M iterations) and the adaptive MH algorithm after

burn-in period (another M∗ iterations). The proposal mean and variance of the adaptive

MH algorithm are chosen to be the sample mean and variance for the last quarter of burn-in

period. As for the random walk MH algorithm, we use the following proposal distribution

for γ

γ|γi−1 ∼ G

(
∆γ

γi−1
,

∆γ

(γi−1)2

)
(`γ ,uγ)

(9)
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where G(α, β)(a,b) denotes a truncated gamma distribution with shape parameter α, rate

parameter β, lower bound a, and upper bound b, and ∆γ is the pre-determined constant

for variance of γ. For c of model S, we conduct following sampling method to restrict the

parameter space of c. Firstly, we draw a random variable x∗ from N(µx, σ
2
x) and perform

the following transformation to generate c∗,

c =
exp(x)

1 + exp(x)
(uc − `c) + `c, c ∈ (`c, uc).

After the burn-in period, random samples of γ and x are obtained from the updated proposal

distribution.

As for the sampling of the other parameters (c in model T , g, a1, a2, σ
2
m, and σ2

u), Gibbs

sampling is adopted. Using the conjugate prior distribution described in the previous section,

we can easily obtain samples of the parameters a1, a2, g, and σ2
u by Gibbs sampling. The full

conditional posterior distributions of a1, a2, and g are the truncated normal distribution and

that of σ2
u is the inverse gamma distribution. Note that the posterior distribution of σ2

u is the

truncated inverse gamma distribution when we adopt the uniform prior as σ2
u ∼ U(`u, uu).

As for c in model T , we employ the method to generate a change point as in Carlin et al.

(1992).

For the estimation of σ2
m in all candidate models, we conduct ASIS to improve the

sampling efficiency. By setting mt = m∗tσm and et = e∗tσm, we can reparameterize models

C, S, and T . For example, models S and T can be rewritten as

∆pt = st(m
∗
tσm − pt−1) + ut, (10)

m∗t = m∗t−1 + e∗t (11)

where σm is shifted from the state equation to the observation equation. The model C
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in another parameterization is obtained by setting st = g in (10). The full conditional

posterior distribution of σm is a truncated normal by setting the prior density as σm ∼

TN(µ0, σ
2
0)(0,∞). In the parameterization utilized in the previous section, the full conditional

posterior distribution of σ2
m is an inverse gamma distribution when we use an inverse gamma

distribution as the prior whereas a truncated inverse gamma distribution using a uniform

prior. The ASIS we adopt for σ2
m is the following

Step 1. Calculate m̃∗T = m̃T/σm. Here we consider Θ contains σm instead of σ2
m. Draw σm

from

σm|p̃T , m̃∗T ,Θ−σm ∼ TN(µ1, σ
2
1)(0,∞), (Ancillary)

µ1 =

∑T
t=2(stm

∗
t )(∆pt + stpt−1)σ

2
0 + µ0σ

2
u∑T

t=2(stm
∗
t )

2σ2
0 + σ2

u

, σ2
1 =

σ2
0σ

2
u∑T

t=2(stm
∗
t )

2σ2
0 + σ2

u

where p̃T = (p1, . . . , pT ), st is given by (5) for model S, (8) for model T and g for

model C, and µ0, σ
2
0 are the hyper-parameters of the prior distribution TN(µ0, σ

2
0)(0,∞)

for σm.

Step 2. Calculate m̃T = m̃∗Tσm and draw σ2
m from

σ2
m|p̃T , m̃T ,Θ−σ2

m
∼ IG(α1, β1), (Sufficient)

α1 =
T − 1

2
+ αm, β1 = βm +

1

2

T∑
t=3

(mt −mt−1)
2

where αm, βm are the hyper-parameters of the prior distribution IG(αm, βm) for

σ2
m. When we set the prior density as σ2

m ∼ U(`m, um), draw from the truncated

inverse gamma posterior with shape parameter α1 and rate parameter β1 where

αm = −1, βm = 0.

For detail of ASIS, see Yu and Meng (2011) and Kastner and Frühwirth-Schnatter (2014).

In order to select the appropriate path type of adjustment coefficient, we conduct the
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Bayesian model selection. The model selection criteria we adopt are Deviance Information

Criterion (DIC) of Spiegelhalter et al. (2002) and the marginal likelihood method of Chib

(1995) and Chib and Jeliazkov (2001). We will evaluate these selection criteria in the

following simulation analysis.

4. Simulation analysis

We are interested in whether the selection criteria provide an appropriate model with

respect to the transition type of adjustment coefficient and the signal to noise ratio for the

observed data. In this section, we conduct a simulation analysis to see how our proposed

estimation method and model selection criteria work.

4.1. Settings for estimation and simulation

For the estimation of three candidate models, we apply the sampling scheme described

in the previous section. We employ M = 10000 iterations as burn-in and another M∗ =

15000 iterations for posterior sampling of parameters and calculating DIC. Chib’s marginal

likelihood requires another 5500 iterations where we discard the first 500 iterations as burn-

in. In the calculation of Chib’s marginal likelihood of the model S, we conduct the same

adaptive sampling method as in the estimation of the model S.

The simulation data is generated from the data generating process (3) and (4) in various

settings for the transition speed γ and the signal to noise ratio ν ≡ σ2
m/σ

2
u. The speed

parameter is set as γ = 0 (st is constant), γ = 5, 15 (st is smoothly time varying), and

γ = 150,∞ (st switches abruptly). Because model S collapses to model T when γ = ∞,

we generate the simulated data using model T in the case of γ = ∞. The signal to noise

ratio is set as ν = 5, 10 (efficient case, which is the case where the information for efficient

price predominates at the observed price) and ν = 1 (noisy case). We provide the simulated

data with 15 settings with γ = 0, 5, 15, 150,∞ and ν = 1, 5, 10. We set other parameters as
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Table 1: Model selection result using Bayes Factor and DIC

ν = 1 ν = 5 ν = 10
model type setting of γ BF DIC BF DIC BF DIC

C 0 98 49 99 37 99 44
S 5 80 75 100 100 100 100
S 15 30 52 89 93 97 99
T 150 96 93 98 96 98 97
T ∞ 97 92 100 100 100 100

Figures in table are the proportion (in %) of correct selection. 100 replications are
conducted for each setting. BF in this table represents Bayes Factor calculated by
Chib’s method.

c = 0.5, a1 = 0.1, a2 = 0.9, σ2
u = 0.001, and initial value of log price p1 = log 5000 and log

efficient price m1 = log 5050. The sample size of simulated data is set to 1800, assuming 30

minutes observations in seconds and the log price series multiplied by 100 is used to display

the return in percent. We generate 100 replications for all settings of γ and ν.

For the settings of boundary, we set `γ = 1, uγ = 20, `c = 0.1, uc = 0.9, `g =

`a1 = 0.01, `a2 = 0.05. For the prior distributions, we set log γ ∼ TN(10, 32)(0,log 20),

c ∼ TN(0.45, 0.52)(0.1,0.9) (for the model S), g ∼ TN(0.4, 52)(0.01,2), a1 ∼ TN(0.4, 52)(0.01,2),

a2|a1 ∼ TN(1 − a1, 5
2)(0.05,2−a1), σ

2
u, σ

2
m ∼ IG(10−3, 10−3), σm ∼ TN(0, 32)(0,∞). For the

hyper-parameters of the proposal distributions, we set ∆γ = 2.52, σ2
x = 0.032. In the follow-

ing, we present the results of model selection and estimation for each setting of simulation.

4.2. Model selection result

First of all, we define the correct model selection in this simulation study as follows: the

selection is correct when the model T is selected in the case of γ = 150,∞, the model S is

selected in the case of γ = 5, 15, and the model C is selected in the case of γ = 0. In the

following, we will compare the model selection criteria in terms of the correct selection ratio.

To assess the statistical inference proposed in this paper, we conduct the estimation and

model selection iteratively 100 times with the simulated data for each parameter setting.

Table 1 shows the ratio of correct selection out of 100 replications. In the efficient case

(ν = 5, 10), Chib’s method performs well for all settings of γ while DIC does not for the case
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of γ = 0 (the model C is correct). In the noisy case (ν = 1), Chib’s method is less accurate

for the case of γ = 5, 15 (the model S is correct) while DIC is also less accurate for the case

of γ = 0, 5, 15. We will see the case of (γ, ν) = (15, 1) in detail below.

For convenience sake, we denote Bayes factor in favor of model M0 and against model

M1 as BF(M0/M1). We select the model M0 when log BF(M0/M1) > 0. The first and

second rows of Figure 2 depict boxplots of log BF(correct model/incorrect model). Boxplots

of log BF(C/S) and log BF(C/T ) are omitted except for the case of γ = 0 because none of

two criteria select the model C when γ > 0. The boxplot of log BF(S/T ) for γ = 15 indicates

that model T tends to be incorrectly selected instead of model S. In general, model S and

model T become indistinguishable as the observed price data become noisy.

The third and fourth rows of Figure 2 provide the boxplots of difference of DICs for

the correct model and the incorrect model, that is DICcorrect−DICincorrect. We select model

M0 against model M1 when DICM0 − DICM1 < 0. The boxplots for DIC show the same

tendency as the selection using the Bayes factor for the case of less informative observed

price data. Moreover, selection using DIC differences does not clearly distinguish between

model C and other model types when the model C is correct whereas the selection based on

Bayes factor does.

Regarding DIC vs Chib’s marginal likelihood approach, the performances of both criteria

are almost the same or Chib’s marginal likelihood approach is superior to DIC except for

the case of (γ, ν) = (15, 1). Although neither method makes a clear distinction between

model S and model T when we use the noisy data, Chib’s method can distinguish between

model C and other model types more accurately than DIC does. From those results, Chib’s

method is suitable for our purpose. We will use Chib’s method to select appropriate model

for empirical study in the next section.
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Figure 2: Boxplots of log of the Bayes factor calculated by Chib’s method and the difference of DIC for

each setting of γ and ν. The lower whisker is at the lowest data above Q1 − 1.5(Q3 −Q1) and

the higher whisker is at the highest data below Q3+1.5(Q3−Q1) where Qi is i-th quartile. The

points which are outside the whiskers are defined as outliers and they are plotted as individual

points.

4.3. Estimation result of the adjustment coefficient and parameters

We also report the estimation result of st and all parameters. For brevity, ŝt denotes the

estimate of the adjustment coefficient, that is, ŝt = â1 + â2(1 + exp{−γ̂(τt − ĉ)/στ})−1 in

14



0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0
DGP: γ= ∞, model: 

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0
DGP: γ= 150, model: 

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0
DGP: γ= 15, model: 

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0
DGP: γ= 15, model: 

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0
DGP: γ= 5, model: 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0 DGP: γ= 0, model: 

Figure 3: st = 0.1+0.9(1+exp{−γ(τt−0.5)/στ})−1 for the simulation data with γ = 0, 5, 15, 150,∞ when

ν = 1 (noisiest case). For each figure, true st is plotted by solid line and 5 and 95 percentiles

of ŝt in 100 replications are plotted by the upper and lower dotted lines.

model S , ŝt = â1+ â2Iτt≥ĉ in model T , and ŝt = ĝ in model C (θ̂ represents a posterior mean

estimate of θ). We have similar estimation results of st in all cases of ν. So we report only for

the noisiest case (ν = 1). Figure 3 represents the result of ŝt for each setting of γ. For each

setting, we plot true st and 5 and 95 percentiles of ŝt obtained by 100 replications. In Figure

3, the most selected model in 100 replications is denoted as “selected model”. Only for the

case of γ = 15, the selected model differs from the model that provides the simulated data.

Overall, the interval between 5 and 95 percentiles of ŝt by the selected model is moderately

narrow and contains true st including the case of γ = 15.

Finally, we provide the summary statistics of posterior mean of parameters for 100 repli-

cations in Table 2. Similar to ŝt, we report the estimation results of models S and T only for

the case of (γ, ν) = (15, 1). For the remaining easily distinguishable cases (γ = 0, 5, 150,∞),

we report only the results of the model selected by Chib’s method, which is a correct model.

The selected model name is below the setting of γ in Table 2.
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Table 2: Mean and standard deviation of the posterior mean for each parameter in 100 replications

ν = 1
γ = 0 γ = 5 γ = 15 γ = 15 γ = 150 γ =∞

model: C model: S model: S model: T model: T model: T
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

γ 7.7064 3.0786 14.0650 2.3390
c 0.5041 0.0241 0.5003 0.0118 0.5036 0.0172 0.5007 0.0046 0.5001 0.0044
a1 0.1106 0.0304 0.1120 0.0261 0.1148 0.0266 0.1145 0.0349 0.1066 0.0262
a2 0.8848 0.0629 0.8991 0.0490 0.8673 0.0462 0.8908 0.0426 0.8943 0.0461
g 0.5503 0.0428
σ2
u 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001

σ2
m 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001
ν 1.0259 0.1595 1.0131 0.1537 1.0444 0.1188 1.0074 0.1206 1.0150 0.1295 1.0323 0.1198

ν = 5
γ = 0 γ = 5 γ = 15 γ = 150 γ =∞

model: C model: S model: S model: T model: T
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

γ 5.5829 1.1481 14.9304 2.1573
c 0.5019 0.0135 0.5007 0.0063 0.5000 0.0024 0.4999 0.0013
a1 0.1055 0.0273 0.1022 0.0222 0.1054 0.0202 0.1015 0.0222
a2 0.8965 0.0417 0.9036 0.0346 0.8982 0.0323 0.8974 0.0333
g 0.5360 0.0588
σ2
u 0.0011 0.0002 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001

σ2
m 0.0050 0.0004 0.0050 0.0004 0.0050 0.0004 0.0050 0.0004 0.0051 0.0004
ν 5.2214 1.2223 5.0947 0.6374 5.0716 0.4996 5.0104 0.4995 5.1290 0.4883

ν = 10
γ = 0 γ = 5 γ = 15 γ = 150 γ =∞

model: C model: S model: S model: T model: T
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

γ 5.2748 0.8084 15.1396 2.0692
c 0.5014 0.0110 0.5006 0.0050 0.4993 0.0020 0.5000 0.0010
a1 0.1022 0.0212 0.1003 0.0155 0.1032 0.0156 0.1009 0.0159
a2 0.9005 0.0371 0.9040 0.0314 0.8990 0.0305 0.8972 0.0294
g 0.5327 0.0464
σ2
u 0.0011 0.0003 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001

σ2
m 0.0102 0.0008 0.0101 0.0009 0.0100 0.0009 0.0100 0.0008 0.0102 0.0007
ν 10.5577 2.8886 10.1786 1.2412 10.1080 0.9981 10.0019 0.9654 10.2641 0.9746

ν = σ2
m/σ

2
u and the true values of parameters are a1 = 0.1, a2 = 0.9, c = 0.5, g = 0.55, σ2

u = 0.001.

16



For all settings of γ, true values of all parameters are included within two standard

deviations of their means. The posterior mean of γ tends to deviate slightly from the true

value. However, for our purpose, what is important is that the path of estimated ŝt is close

to the true st, not whether the estimate of γ is highly accurate.

In fact, we have selected the incorrect model T instead of the correct model S for the

case of (γ, ν) = (15, 1). But the implication from the estimated path of st is almost the

same as that from the true path of st for the following reasons. In this case, the true start

and end points of change in the adjustment coefficient are very close, the estimated change

point ĉ by the incorrectly selected model T is in between and the parameters a1 and a2 are

correctly estimated.

5. Empirical analysis

We apply our proposed method to the financial time series data observed in Tokyo Stock

Exchange (TSE) to examine how the intraday price adjustment during the preopening period

varies on a daily basis. The data for this study is TOPIX Core30 which is a market index

composed of the 30 issues with the highest market capitalization and liquidity in the first

section of TSE. The sampling frequency of the data we use is one second and the sample

period is 15 minutes before and after the opening auction at 9:00 am, i.e. from 8:45 to 9:15,

on the five trading days of the second week of June, 2018.

The same prior distributions are adopted as in subsection 4.1 except for σ2
u and σ2

m. We

use a uniform prior U(0, 1) for σ2
m and σ2

u. The settings of iterations for the MCMC sampling

and obtaining the marginal likelihood for each model are also the same as in subsection 4.1.

Our proposed method clearly categorized the intraday price discovery progresses on a

daily basis as shown in Table 3. Table 4 summarizes the posterior samples of parameters

for the selected model on each day. All the absolute values of CD are smaller than 2 except

a1 for June 4 and the inefficient factor ranges from 1.245 to 71.989, suggesting that the
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Table 3: Result of model selection for TOPIX Core30

Model Log of marginal likelihood S.E.
June 4, 2018 S 5961.97 0.1535
T is selected T 6114.26 0.0344

C 5981.95 0.1901

June 5, 2018 S 7135.72 0.0558
T is selected T 7153.39 0.0440

C 6989.66 0.1336

June 6, 2018 S 6694.01 0.1773
T is selected T 6992.50 0.0305

C 6597.38 0.1610

June 7, 2018 S 6913.05 0.0451
S is selected T 6741.30 0.0718

C 6712.25 0.1295

June 8, 2018 S 2662.85 0.0838
C is selected T 2683.93 0.0933

C 2705.77 0.0945

sampling algorithm adopted in this study works well. As a point to note, CD and Inef for

June 4, 5 and 6 for the change point c of model T were not available because the posterior

sample distributions were degenerated. At these change points, the observed data clearly

changed their distributions as depicted in Figure 4. As the model T , i.e. eqs. (6)–(8),

suggests a high adjustment coefficient a1 + a2 contributes to increase the observed return

variance relative to the return variance when the adjustment coefficient is a1.

The estimated paths of adjustment coefficient in Figure 5 show that how the price dis-

covery works is also various for each day. We find that the improvements in the price

informational efficiency were observed on June 4, 5, 6, and 7, and the progresses of the first

three were sharp and the last one was gradual. The adjustments started to change just be-

fore the market opening period of June 5, 6, and 7. In contrast, the information efficiency for

June 8, 2018 was low and constant even before the market opened, and remained constant

after the market opened. It is worth noting that all of the estimated price adjustments were
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Table 4: Summaries of posterior sample

Date Mean Std. CI95 lower Median CI95 upper CD Inef.
June 4, 2018 c 0.108 0.000 0.108 0.108 0.108 NA NA

model T a1 0.012 0.002 0.010 0.011 0.016 2.908 2.146
a2 0.581 0.028 0.527 0.581 0.636 0.247 16.360
σ2
u 2.753E-05 1.757E-06 2.428E-05 2.747E-05 3.112E-05 -0.053 10.068

σ2
m 7.082E-05 5.905E-06 6.016E-05 7.052E-05 8.319E-05 -0.169 11.636
ν 2.583 0.276 2.087 2.566 3.170 -0.208 8.188

June 5, 2018 c 0.480 0.000 0.480 0.480 0.480 NA NA
model T a1 0.016 0.006 0.010 0.015 0.030 0.533 10.222

a2 0.511 0.033 0.446 0.511 0.577 -0.479 21.803
σ2
u 1.052E-05 5.519E-07 9.490E-06 1.051E-05 1.165E-05 -0.448 6.736

σ2
m 5.838E-05 6.448E-06 4.708E-05 5.795E-05 7.232E-05 0.159 24.432
ν 5.561 0.673 4.379 5.508 7.032 0.288 18.627

June 6, 2018 c 0.434 0.000 0.434 0.434 0.434 NA NA
model T a1 0.011 0.001 0.010 0.011 0.013 0.882 1.245

a2 0.710 0.027 0.658 0.710 0.762 -0.305 10.514
σ2
u 1.360E-05 5.649E-07 1.253E-05 1.358E-05 1.475E-05 1.019 2.697

σ2
m 2.572E-05 2.162E-06 2.192E-05 2.560E-05 3.030E-05 0.138 13.069
ν 1.895 0.174 1.583 1.887 2.262 -0.106 10.098

June 7, 2018 γ 19.521 0.383 18.547 19.604 19.981 -0.346 4.716
model S c 0.395 0.003 0.388 0.395 0.401 -1.414 5.009

a1 0.013 0.003 0.010 0.012 0.021 0.084 3.151
a2 0.632 0.032 0.571 0.632 0.695 -1.254 26.244
σ2
u 9.544E-06 5.322E-07 8.576E-06 9.524E-06 1.066E-05 1.989 7.170

σ2
m 7.360E-05 6.985E-06 6.118E-05 7.314E-05 8.832E-05 0.733 24.932
ν 7.733 0.831 6.240 7.688 9.513 -0.019 15.930

June 8, 2018 g 0.297 0.042 0.223 0.296 0.387 1.397 71.989
model C σ2

u 1.278E-03 1.488E-04 9.780E-04 1.281E-03 1.560E-03 -1.355 56.898
σ2
m 9.917E-03 1.446E-03 7.533E-03 9.733E-03 1.315E-02 -1.544 56.839
ν 7.793 0.984 6.048 7.736 9.859 -0.926 16.567

In this table, the mean, standard deviation (Std.), 95% credible interval (CI95 lower and upper),
median, z-value of convergence diagnostic test (CD) by Geweke (1992), and inefficiency factor (Inef.)
by Chib (2001) for each sample and parameter are given.

below unity, which implies the adjustments were the under reaction to new information,

especially that of June 8 was remarkably low.

6. Conclusion

This paper proposes a Bayesian approach to evaluate the intraday price discovery on a

daily basis. Based on Amihud and Mendelson (1987), we introduce three candidate partial

adjustment models: the models S, T , and C whose adjustment coefficient is smoothly time-

varying, switching abruptly, and being constant, respectively.
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Figure 4: Price (top), return (middle) and the estimated path of adjustment coefficient (bottom) for June

4, 5 and 6, 2018, when the model T is selected.
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Figure 5: The estimation example of ŝt for the real data from TOPIX Core 30 index

A simulation study shows that the proposed method aptly categorizes the type of price

discovery. Though the model selection between model S and model T tends to be difficult

for the case of less informative observed price data, the adjustment coefficient, that is the
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most important target, is correctly estimated even in such a case. The empirical study

illustrates our methods using intraday high frequency time series of TOPIX Core30 of Tokyo

Stock Exchange. We confirm that the proposed method gauge the price adjustment progress

properly and find that the adjustment already starts before market opening via the indicative

price information during preopening period.

We have considered the single transition scheme for the price adjustment in this paper.

For the analysis of price discovery during the preopening period, the single transition is

appropriate because the information that flows into the market is accumulated and reflected

in the price as time passed whereas the analysis for the intraday period from open to close

requires more flexible transition scheme. Future work could consider a model with a general

path of progress of price discovery by considering three or more states.
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