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1 Introduction

In this paper, we consider the problem of the state finance (including the issuance of fiat money) and

public goods from the general equilibrium perspective (the Lindahl general equilibrium with income

transfers). Although it is usually difficult to present a realistic implication of Lindahl equilibria, with

respect to merit goods like medical cares, it would be available to bring about arguments on an idealistic

fiscal state of government. Here, the government is treated as the supplier of fiat money as well as a

provider of public goods. In such a setting, several important, previously unknown results can be

obtained regarding the government’s fiscal balance, the roles and norms of public and private firms, and

especially the most desirable way to share the costs of public goods.

The general equilibrium argument including public goods begins with Foley (1970) and extended

by Milleron (1972) to the case with multiple firms. These arguments, however, do not allow firms

to have non-convex technologies. Mas-Colell and Silvestre (1989) treats the case with the non-convex

technology though their arguments depend on a special cost-function structure and do not incorporate

multiple firm settings. In our model, we treat public and private multiple firms as well as deficits of

the government because of the non-convexity of the public-firm technology in order to describe an ideal

resource allocation (to establish the first and second welfare results) for public-goods economies.

One of the most important purposes of our model is to describe a situation such that a certain activity

arrangement that is necessary for Pareto optimality can never be realized as an equilibrium until the

government prepares for a budgetary deficit. The problem is related, for one thing, to the saturation of

consumers’ preferences (or to the necessity of savings and capital accumulations in view of dynamics).

The equilibrium concept in this paper is generally called a dividend equilibrium (competitive equilibrium

with slack in Mas-Colell 1992), in which government fiat money often plays an essential role. At the

same time, since the public-firm technology is not necessarily convex, we have to present a criterion

for the public-firm production decision alternative to the profit maximization. Let us first review these

points with the following simple example:

(Example 1) Suppose that there are two commodities, a public good (commodity 1) and

a private good (commodity 2). Here the public good is assumed to have both the non-

excludability and non-rivalness. Consider a public firm and a private firm, and two consumers

(a worker and a capitalist). The worker (iw) has one unit of private good (identified with one

unit of labour) as the initial endowment. The capitalist (ic) owns the private firm (technology

Y1 ⊂ R2) and having no private good. Government possesses the public technology Y0 ⊂
R2. Each consumer has consumption set R2

+ with a utility function such that u(x1, x2) =

max{x2, 8}. (That is, each consumer has a satiated preference and does not obtain positive

utility from the public good.) Furthermore, suppose that Y0 = {(0, 0), (−1, 1)} and Y1 =

{(y1, y2)| y2 =
√
10
10

√
10− y1 − 1, 0 ≦ y1 ≦ 10}. In other words, Y0 is a technology that

transforms one unit of private good into one unit of public good (or does nothing), and Y1

is a well behaved technology that transforms one unit of public good into 10 units of private

good (see Figure 1).
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Figure 1: Y0 = {(0, 0), (−1, 1)} and (−1, 1) + Y1

In the setting of Example 1 above, it is clear that the production of the public good must take place

for Pareto optimality. Furthermore, for the competitive private firm, only p = (p1, p2) = (0, 1) is the

price (with norm 1) to support production behavior that produces 10 units of private good with one

unit of public good input, while satisfying the profit-maximization condition. It follows that if we do not

use any income-transfer policy, the unique competitive (Lindahl) equilibrium, where dividends dw = 0

for worker and dc = 10 for capitalist (the profit of private firm), is the allocation, xw = (1, 1) for

worker and xc = (1, 9) for capitalist.1 The allocation is not Pareto optimal involving a government

budget deficit −1 = p · (−1, 1), even though the result is better than a situation where no production

occurs. If we allow the government to further increase its budget deficit and allow a positive dividend

(fiat money issuance) dw = 1 to worker, we obtain a Pareto optimal (dividend) competitive equilibrium

allocation, xw = (1, 2) and xc = (1, 8), with a government budget deficit −2. For these Lindahl general

equilibrium with dividends, the satiation of preference of capitalist or, from a dynamic perspective,

savings (especially under the overlapping-generations framework) is essential.2 The savings of capitalist

is equal to the government budget deficit for both cases. Such a government deficit can be viewed as the

loan from the private sector, i.e., credit given to the state from the private sector. In fact, the private

sector’s faith in the value of its savings is precisely the same as its faith in the state, money, and the

market system. Can we really say that such a government deficit is a bad thing and must be eliminated?

Moreover, it is only with such a government deficit (unless we assume a lump-sum tax from the private

firm) that a Pareto-optimal allocation of resources can be realized.

This paper deals with the first and second fundamental theorems of welfare economics for (Lindahl)

market equilibrium with public goods, including the distinction between public and private firms, as well

as the government’s ability to issue money (credit). Such a treatment is important in today’s society,

where public goods (as merit goods) such like medical cares, account for a large share of state finances

through public and private institutions. In particular, our model provides a description of an ideal state

of cost-sharing for public goods, while taking into account what the state’s contribution is and what the

alternative norm is for profit maximization in a public firm.3

1 Note that the price of public good is 0 and the preferences are satiated, so u(1, 9) = u(1, 8) maximizes the utility of
capitalist.

2 See Appendix A.
3 As emphasized in the above example, the essential role played by the satiation in a static model can be replaced by
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Denote by R the set of real numbers. For finite set A, ♯A denotes the number of elements of A. We

write RA instead of R♯A to represent the ♯A-dimensional topological vector space. Order relations on RA,

≧ and >, are defined respectively as (xa)a∈A ≧(ya)a∈A iff xa ≧ ya for all a ∈ A, and (xa)a∈A > (ya)a∈A

iff (xa)a∈A ≧(ya)a∈A and (xa)a∈A 6= (ya)a∈A. We also define relation � as (xa)a∈A � (ya)a∈A iff

xa > ya for all a ∈ A. By RA
+ and RA

++, we represent the sets {x ∈ RA | x≧ 0} and {x ∈ RA | x � 0},
respectively.

2 The Model

2.1 Basic Settings

Denote by K ∪ L, the finite set of commodities, where K 6= ∅ is the index set of public goods and

L 6= ∅ is the set of private goods (K ∩ L = ∅). As in Foley (1970), a vector of public and private

goods is written as ((xk)k∈K ; (zℓ)ℓ∈L) = (x; z) ∈ RK∪L. Notation I is used to denote the non-empty

index set of finite agents. Each agent i ∈ I is represented by (≿i, ωi), where ≿i is the preference

relation on consumption set Xi = RK∪L
+ and ωi ∈ RL is the initial endowment. The preferences are

assumed to satisfy reflexivity, transitivity, completeness and continuity. The preferences, therefore, can

be represented by utility functions. Note, however, that the preferences are allowed to be satiated.

An economy, E, is identified with a finite list of consumers, (≿i, ωi)i∈I , a finite list of private firm

(convex) technologies, (Yj)j∈J and a public firm (possibly non-convex) technology Y0. As Milleron

(1972), technologies are identified with subsets of RK
+ ×RK

+ ×RL, where (x−, x+; y) ∈ RK
+ ×RK

+ ×RL

means that x− is an input vector of public goods, x+ is an output vector of public goods, and y is a

net production vector of private goods. (We consider the situation that output and input prices are

different for public goods.) We assume the following:

(1-1) For each j ∈ J , technology Yj is a closed subset of RK
+ ×RK

+ ×RL having 0 as its element.

(1-2) Technology Y0 is a non-empty closed (possibly non-convex) subset of RK
+ ×RK

+ ×RL.

Note that we use the most general framework including multi-firms like Milleron (1972) and positive

profits like Mas-Colell and Silvestre (1989), while not using a special condition for public good inputs

like Foley (1970)’s condition (B.5) “No public good is necessary as a production input”.

By the meaning of public goods, we may view the set of all technically possible production plans in

the economy, Y , as the following set.

Y = {(x; y) | x =
∑

j∈J∪{0}

x+
j , y =

∑
j∈J∪{0}

yj , (x, x
+
j ; yj) ∈ Yj for all j ∈ J ∪ {0}}. (1)

such things as savings under a dynamic overlapping-generations structure (see, Appendix A). In other words, the most
important question is how much savings (the value left by someone) contribute to society, taking into account production
(including the future), and the appropriate government budget deficit should be determined on this basis.
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For firms, we also assume that there is a list of shareholding rates, ((θij)j∈J)i∈I .

Technology Y is used to define a feasible allocation of economy E. A consumption allocation for a list

of agents S ⊂ I is a sequence of elements of consumption sets, ((xi; zi) ∈ RK∪L
+ )i∈S . For an economy

E = ((≿i, ωi)i∈I , Y0, (Yj)j∈J , ((θij)j∈J)i∈I), if consumption allocation ((x; zi) ∈ RK∪L
+ )i∈I satisfies∑

i∈I

zi =
∑
i∈I

ωi + y for some (x; y) ∈ Y , (2)

we say that (x; zi)i∈I is feasible under (x; y) ∈ Y . The list of production actions associated with (x; y),

i.e.,
(
(x, x+

0 ; y0) ∈ Y0, ((x, x
+
j ; yj) ∈ Yj)j∈J

)
, where y = y0 +

∑
j∈J yj , is called a production allocation.

We call the (m+ n+ 1)-tuple ((x; zi)i∈I , (x, x
+
0 ; y0), (x, x

+
j ; yj)j∈J) a state of E.

2.2 Lindahl Equilibrium with Income Transfers

The list of price vectors, (p∗K , p∗L) ∈ RK∪L, input price vectors for consumers, (pi ∗I ∈ RK)i∈I , pro-

ducers, (pj ∗J ∈ RK)j∈J , and public firm, p0∗ ∈ RK , such that p∗K = p0∗ +
∑

i∈I p
i ∗
I +

∑
j∈J pj ∗J ,

income transfers to consumers, (d∗i )i∈I ∈ RI , and feasible consumption allocation, (x∗; z∗i )i∈I under

(x∗; y∗) ∈ Y with y∗ =
∑

j∈J∪{0} y
∗
j , where (x∗, x∗+

0 ; y∗0) ∈ Y0 and (x∗, x∗+
j ; y∗j ) ∈ Yj for each j ∈ J ,

is called a Lindahl quasi-equilibrium with income transfers, (p∗K , p∗L, (p
i ∗
I )i∈I , (p

j ∗
J )j∈J , p

0∗, (d∗i )i∈I), for

E = ((≿i, ωi)i∈I , Y0, (Yj)j∈J , ((θij)j∈J)i∈I), if the following conditions are satisfied.

(i) Profit maximization for private firms: p∗K · x∗+
j − pj ∗J · x∗ + p∗L · y∗j ≧ p∗K · x+

j − pj ∗J · x−
j + p∗L · yj

for all (x−
j , x

+
j ; yj) ∈ Yj for each j ∈ J . We denote by π∗

j the profit of firm j (the value of the left

hand side of this inequality) for each j ∈ J .

(ii) Profit Maximality for the public firm: p∗K ·x∗+
0 −p0∗ ·x∗+p∗L ·y∗0 ≧ p∗K ·x+

0 −p0∗ ·x−
0 +p∗L ·y0 for

all (x−
0 , x

+
0 ; y0) ∈ Y0 such that (x−

0 , x
+
0 ; y0) is associated with an allocation that is Pareto superior

to the status quo allocation.4 We denote by π∗
0 the profit of the public firm (the value of the left

hand side of this inequality).

(iii) Expenditure minimization for consumers: for each i ∈ I, (x∗; z∗i ) satisfies p
i ∗
I ·x∗+p∗L ·z∗i ≦ p∗L ·

ωi +
∑

j∈J θijπ
∗
j + d∗i and for all (x; zi) such that (x; zi)≿i(x

∗; z∗i ), we have pi ∗I · x+ p∗L · zi ≧ pi ∗I ·
x∗ + p∗L · z∗i .

The expenditure minimization implies the following utility maximization if we can redefine d∗i so as to

satisfy pi ∗I · x∗ + p∗L · z∗i = p∗L · ωi +
∑

j∈J θijπ
∗
j + d∗i and the minimum wealth condition, inf{pi ∗I · x +

p∗L · zi| (x; z) ∈ Xi} < p∗L · ωi +
∑

j∈J θijπ
∗
j + d∗i , is satisfied (Debreu 1959[p.69,(1)]).

(iv) Utility maximization for consumers: for each i ∈ I, (x∗; z∗i ) is the ≿i-greatest element of

{(x; zi) ∈ RK∪L | pi ∗I · x+ p∗L · zi ≦ p∗L · ωi +
∑

j∈J θijπ
∗
j + d∗i }.

4 The condition is automatically satisfied under the ordinary profit maximization condition.
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If conditions (i), (ii), and (iv) instead of (iii) are satisfied, the same list of prices and feasible allocations

for E is called a Lindahl equilibrium with income transfers. It follows that if there exists a Lindahl

quasi-equilibrium, the allocation and the Lindahl price system can also be identified with a Lindahl

equilibrium by redefining each di ∈ R to satisfy the equation,

pi ∗I · x∗ + p∗L · z∗i = p∗L · ωi +
∑
j∈J

θijπ
∗
j + d∗i , (3)

as long as the minimum wealth condition, inf{pi ∗I · x + p∗L · zi| (x; z) ∈ Xi} < p∗L · ωi +
∑

j∈J θijπ
∗
j + d∗i ,

for every i ∈ I is satisfied.

Note that in this paper, we do not use assumptions like local non-satiation that necessarily make

equation (3) hold for each i in conditions (1) or (2). This is because several important examples, as

seen in the Introduction, are provided along with the existence of satiation points of preferences in an

equilibrium state.5

If equation (3) holds for all i ∈ I, by incorporating the feasibility equation (2), we have the next

lemma.

Lemma 1: A feasible allocation (x∗; z∗i )i∈I under (x∗, y∗) ∈ Y such that equation (3) for all i ∈ I holds

relative to a certain Lindahl price system with income transfers, (p∗K , p∗L, (p
i∗
I )i∈I , (p

j∗
J )j∈J , p

0∗, (d∗i )i∈I),

satisfies
∑

i∈I p
i∗
I · x∗ +

∑
j∈J∪{0} p

∗
L · y∗j =

∑
j∈J π∗

j +
∑

i∈I d
∗
i . (Without equation (3), ≦ holds.)

Proof: Summing up equation (3) of each i ∈ I, we have
∑

i∈I(p
i∗
I · x∗ + p∗L · z∗i ) =

∑
i∈I(p

∗
L · ωi +∑

j∈J θijπ
∗
j + d∗i ). By considering the feasibility equation (2) together with

∑
i∈I θij = 1 for each j ∈ J ,

we obtain the result. ■

In Lemma 1, the left hand side amount,
∑

i∈I p
i∗
I · x∗ +

∑
j∈J∪{0} p

∗
L · y∗j , can be identified with the

sum of all profits of private and public firms.

Lemma 2: For feasible allocation (x∗; z∗i )i∈I under (x∗, y∗) ∈ Y , amount
∑

j∈J∪{0} pL · yj +
∑

i∈I p
i
I ·x

relative to a certain Lindahl price system, (pK , pL, (p
i
I)i∈I , (p

j
J)j∈J , p

0), is equal to the sum of all profits

of private and public firms,
∑

j∈J(pK · x+
j − pjJ · x+ pL · yj) + (pK · x+

0 − p0 · x+ pL · y0).

Proof: We may calculate the sum of profits of private and public firms as follows.∑
j∈J

(pK · x+
j − pjJ · x+ pL · yj) + (pK · x+

0 − p0 · x+ pL · y0)

=
∑
j∈J

(pK · x+
j − pjJ · x+ pL · yj) + (

∑
i∈I

piI +
∑
j∈J

pjJ) · x− pK ·
∑
j∈J

x+
j + pL · y0

=
∑
j∈J

(pL · yj − pjJ · x) + (
∑
i∈I

piI +
∑
j∈J

pjJ) · x+ pL · y0

=
∑

j∈J∪{0}

pL · yj +
∑
i∈I

piI · x

5 Usually, assumptions such as local non-satiation are also used to show that condition (iv) means condition (iii). For
example, (iv) implies (iii) if preferences are convex and point (x∗; z∗i ) is not a satiation point (Debreu 1959 [p.71,(2)]).
We also note that if preferences are strongly convex, every satiation point, if such an exists, is unique, so condition (iii) is
automatically satisfied.

5



In the above, note that the feasibility condition is not necessary. ■

Hence, by Lemma 2, Lemma 1 also means the following.

Lemma 3: A feasible allocation (x∗; z∗i )i∈I under (x∗, y∗) ∈ Y such that equation (3) for all i ∈ I holds

relative to a certain Lindahl price system with income transfers, (p∗K , p∗L, (p
i∗
I )i∈I , (p

j∗
J )j∈J , p

0∗, (d∗i )i∈I),

satisfies π∗
0 =

∑
i∈I d

∗
i . (Without equation (3), ≦ holds.)

Remark 1 (Wealth Transfer): We may identify p∗L ·ωi+
∑

j∈J θijπ
∗
j +di with the amount

that Samuelson (1969) proposed to call a lump-sum redistribution because he seems to assume

that ωi = 0 for all i. Foley (1970) also uses the same amount minus p∗L · ωi as a lump-sum

transfer, which he assumes to be 0 under the situation like Lemma 1 since he treats only

cone-shaped technologies with 0-profits. A positive profit case is treated by Mas-Colell and

Silvestre (1989) under a (possibly) non-convex single (aggregate) technology.

Remark 2 (Dividend Equilibrium): Because of the existence of satiation and income

transfers together with the rigorous feasibility equation (2), we base our equilibrium concept

on a dividend equilibrium that is firstly defined by Aumann and Drèze (1986) for pure

exchange economies and extended by Mas-Colell (1992) to production economies. As Kajii

(1996) discussed, such dividends or non-negative wealth transfers can also be reinterpreted

as money (see Murakami and Urai 2017). Urai et al. (2022) further extended the concept to

the problem of monetary equilibrium in overlapping generations economies.

Remark 3 (Non-convex Second Welfare Theorem): In this paper, we treat second

welfare theorem for economies including public goods, monetary transfers and non-convex

technologies. For second welfare problems in economies with non-convex technologies, see,

e.g., Kamiya (1995).

Discussion 1 (Lindahl Equilibrium with Transfers and Production Core)

Example 1 in the Introduction also provides an important setting for a production core problem for

economies including public goods. In the example, the government’s cost of producing the public good

is 1. Let such a cost be shared equally (half and half) between the worker and the capitalist. The

method is simple: d0 = −0.5 and d1 = 10−0.5 = 9.5. Furthermore, suppose that there is no satiation in

the consumers’ utility. Although the Lindahl equilibrium (worker consumes 0.5 and capitalist consumes

9.5 of the private good) is Pareto optimal, it is not in the core (obviously, blocked by the worker even

in the weakest condition that production technologies cannot be used for any deviation). However, it

“apparently” satisfies Mas-Colell and Silvestre’s sufficient condition for core allocations, that is, “the

cost-burden of each agent is non-negative.” Here, we need to rethink “each agent’s cost-burden” in

light of the difference between the settings in Mas-Colell and Silvestre (1989) and ours. In our settings,

public and private firms are distinguished, and the public good produced by the public firm only makes

6



sense as an input for the private firm. The profit of the private firm, 10, is calculated, therefore, without

deducting the cost necessary for producing the public good. It can be said that the “true” profit that

the capitalist should have received is 9, so the fact that he receives a dividend of 9.5 means that “the

cost-burden is (essentially) negative for the capitalist.” It follows that under an income transfer policy

(tax system) that attributes the burden of public-good production to the wrong place, the Lindahl

equilibrium is no longer a core allocation.

Discussion 2 (Optimal Tax Policy)

Example 1 and the discussion in Remark 4 shows that in the general situation, where multiple firms

exist and public goods are used in production, the “true” cost burden of public-goods production is

difficult to determine because of the existence of private profits that free-ride on the action of the public

firm. This also means that as long as such free-riding exists through corporate profits, the goal of

balanced budgets alone will lead to a non-core Lindahl income transfer equilibrium through a wrong

income distribution (wrong tax system and cost-bearing requirements). Conversely, however, we can

consider what the optimal tax system (cost-sharing for public goods) is by asking about the income

transfer conditions for the Lindahl equilibrium to be a core allocation. Of course, in this case, the

optimality of the tax system would depend on the definition of the production core, taking into account

a certain “fairness”. For example, if all production technologies can be used at the time of deviation,

then a fair tax system would be based on the idea that “the knowledge of production technology itself

can be used by everyone. If, on the other hand, a portion of the production technology can be used

at the time of deviation in proportion to the shareholding ratio, then the fairness of the tax system

will take into account the meaning of “intellectual property and shareholding” in the private ownership

economy as much as possible. Furthermore, if we add the requirement to “fix the behavior of the public

firm” at the time of deviation, then the fair tax system is to be considered with the greatest emphasis

on “without free-riding on the current behavior of the public firm.” It follows that the problem of

optimal taxation is possible to be generalized as a question like the existence of a Lindahl equilibrium

with income transfers leading to a core allocation.

3 Fundamental Welfare Theorems for Lindahl Equilibria

Now we provide the first fundamental theorem of welfare economics for Linhahl equilibria. (Condition

(iii) must be added here in addition to condition (iv). See footnote 5.)

Theorem 1 (The First Fundamental Theorem): A Lindahl equilibrium allocation, (x∗; z∗i )i∈I , under a

system of equilibrium Lindahl price vectors and income transfers, (p∗K , p∗L, (p
i ∗
I )i∈I , (p

j ∗
J )j∈J , p

0∗, (d∗i )i∈I),

is Pareto optimal if condition (iii) is satisfied.

Proof: Assume the contrary. Then we have a feasible allocation, (x′; z′i)i∈I , under (x′; y′) ∈ Y such

that (x′; z′i) �i (x
∗; z∗i ) at least one i ∈ I and (x′; z′i)≿i(x

∗; z∗i ) for all i ∈ I. By considering the utility
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maximization condition (iv) and the expenditure minimization condition (iii), we have the following

inequality. ∑
i∈I

(pi ∗I · x′ + p∗L · z′i) >
∑
i∈I

(pi ∗I · x∗ + p∗L · z∗i ). (4)

Feasibility condition (2) means that the left hand side is equal to
∑

i∈I p
i ∗
I ·x′+p∗L ·

∑
i∈I z

′
i =

∑
i∈I p

i ∗
I ·

x′ + p∗L · (y′ +
∑

i∈I ωi). On the other hand, by the same equation, the right hand side is equal to∑
i∈I p

i ∗
I · x∗ + p∗L ·

∑
i∈I z

∗
i =

∑
i∈I p

i ∗
I · x∗ + p∗L · (y∗ +

∑
i∈I ωi). It follows that we have,∑

i∈I

pi ∗I · x′ + p∗L · y′ + p∗L ·
∑
i∈I

ωi >
∑
i∈I

pi ∗I · x∗ + p∗L · y∗ + p∗L ·
∑
i∈I

ωi, (5)

and ∑
i∈I

pi ∗I · x′ + p∗L · y′ >
∑
i∈I

pi ∗I · x∗ + p∗L · y∗. (6)

By Lemma 2, the both sides of the above inequality are equal to the sum of all profits of private and

public firms, which contradicts to the profit maximization and maximality conditions (i) and (ii) of

Lindahl equilibria. ■

Next we show the second welfare theorem for Lindahl equilibria. The second theorem is given in the

form of quasi-equilibrium as in Debreu (1959; p.95,6.4). As stated before, a quasi-equilibrium is an

equilibrium as long as the minimum wealth condition is satisfied.

Theorem 2 (The Second Fundamental Theorem): Every Pareto optimal allocation, (x∗; z∗i )i∈I , feasible

under (x∗; y∗) ∈ Y with y∗ = y∗0 +
∑

j∈J y∗j for E =
(
(≿i, ωi)i∈I , Y0, (Yj)j∈J , ((θij)j∈J)i∈I

)
, where each

Yj, j ∈ J , is convex and there exists at least one i′ such that (x∗; zi′) is not satiated, is a Lindahl

quasi-equilibirum under price vectors and income transfers, (p∗K , p∗L, (p
i ∗
I )i∈I , (p

j ∗
J )j∈J , p

0∗, (d∗i )i∈I).

Proof: As Milleron (1972), we identify in this proof the subspace, RK , of commodity space RK∪L with

(♯I + ♯J + 1)-times replication of RK in order to describe input vectors of public goods for consumers

i ∈ I, private firms (Yj)j∈J , and public firm Y0. The identification enables us to treat public goods

as if they were ordinary private goods at least from the viewpoint of all decision makers. Let (Ki)i∈I ,

(Kj)j∈J , and K0 be disjoint family of (♯I + ♯J + 1)-times replication of index set K for public goods,

and consider the following extended commodity space E of RK∪L.

E =
∏
i∈I

RKi ×
∏
j∈J

RKj ×RK0 ×RL. (7)

Let us identify Y0 with subset Ŷ0 of E through the next canonical identification mapping:

h0 : Y0 3 (x−
0 , x

+
0 , y0) 7→ (x+

0 , ..., x
+
0 , x

+
0 − x−

0 ; y0) ∈ Ŷ0 ⊂
∏
i∈I

RKi ×
∏
j∈J

RKj ×RK0 ×RL. (8)

In the same way, identify Yj for each j ∈ J with Ŷj by

hj : Yj 3 (x−
j , x

+
j , yj) 7→ (x+

j , ..., x
+
j , x

+
j −x−

j , x
+
j , ..., x

+
j ; y0) ∈ Ŷj ⊂

∏
i∈I

RKi ×
∏
j∈J

RKj ×RK0 ×RL, (9)
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where the entry for x+
j − x−

j is the coordinate corresponding to RKj . Note that for each j ∈ J , the

convexity of Yj clearly implies the convexity of Ŷj . Moreover, identify Xi for each i ∈ I with its image

through the next mapping,

hi : Xi 3 (xi; zi) 7→ (0, ..., 0, xi, 0, ..., 0; zi) ∈ hi(Xi) ⊂ E+ =
∏
i∈I

RKi
+ ×

∏
j∈J

R
Kj

+ ×RK0
+ ×RL

+, (10)

where the entry for xi is the coordinate corresponding to RKi
+ . We define X̂i as the following canonical

extension of the range, hi(Xi), to the open subset of E+, such that

X̂i = hi(Xi) +RK
+ × · · · ×RK

+ × {0} ×RK
+ × · · · ×RK

+ ×RK
+ × {0}, (11)

where the two entries of {0} are representing for those of RKi
+ and RL

+. Each preference, ≿i, can naturally

be extended to ≿̂i on X̂i by defining it as the relation depending only on the range of hi. Then, the

upper contour set at hi(xi; zi) for ≿̂i, X̂
hi(xi;zi)
i = {w ∈ X̂i | w≿̂ihi(xi; zi)}, is nothing but the above

canonical extension of image hi(X
(xi;zi)
i ) of the upper contour set at (xi; zi) for ≿i.

Note that for each point (x∗; y∗) ∈ Y such that x∗ =
∑

j∈J∪{0} x
∗+
j and y∗ =

∑
j∈J∪{0} y

∗
j , where

(x∗, x∗+
j ; y∗j ) ∈ Yj for each j ∈ J ∪{0}, if we identify Y ⊂ RK∪L with its image in E under the mapping,

h : Y 3 (x∗; y∗) 7→ (x∗, ..., x∗, 0, ..., 0; y∗) ∈ h(Y ) ⊂
∏
i∈I

RKi ×
∏
j∈J

RKj ×RK0 ×RL, (12)

where the entries for x∗ are coordinates corresponding to
∏

i∈I R
Ki , the point in h(Y ) can be represented

as the sum of the canonically identified points of Ŷj , j ∈ J ∪ {0}, like

(x∗, ..., x∗, 0, ..., 0; y∗) =
∑

j∈J∪{0}

(x∗+
j , ..., x∗+

j , x∗+
j − x∗−

j , x∗+
j , ..., x∗+

j ; y∗j ), (13)

where the entry for x∗+
j − x∗−

j for each j ∈ J ∪ {0} is the coordinate corresponding to RKj . Then, by

defining Ŷ as Ŷ =
∑

j∈J∪{0} Ŷj , we may identify Y with a subset of Ŷ canonically through h as

h(Y ) 3 h(x∗; y∗) =
∑

j∈J∪{0}

hj(x
∗−
j , x∗+

j , y∗j ) ∈
∑

j∈J∪{0}

Ŷj = Ŷ . (14)

Moreover, note that a list of Lindahl prices, ((pi ∗I )i∈I , (p
j ∗
J )j∈J , p

0∗, p∗L), can be identified with a

price system over E. For each j ∈ J ∪ {0}, the value of action (x−
j , x

+
j , yj) ∈ Yj of firm j under the

Lindahl price system, p∗K · x+
j − pj∗J · x−

j + p∗L · yj , can be represented as

((pi∗I )i∈I , (p
j∗
J )j∈J , p

0∗, p∗L) · hj(x
−
j , x

+
j , yj), for hj(x

−
j , x

+
j , yj) ∈ Ŷj , (15)

because Lindahl price system always satisfies p∗K =
∑

i∈I p
i∗
I +

∑
j∈J pj∗J + p0∗. For each i ∈ I, the value

of action (x; zi) ∈ Xi, p
i∗
I · x− p∗L · zi, can also be represented as

((pi∗I )i∈I , (p
j∗
J )j∈J , p

0∗, p∗L) · hi(x, zi) for hi(x, zi) ∈ X̂i. (16)

Hence, conditions (i),(ii) and (iii) of Lindahl equilibrium can be assured through the extended actions

in Ŷj and X̂i for each j ∈ J ∪{0} and i ∈ I with the price ((pi∗I )i∈I , (p
j∗
J )j∈J , p

0∗, p∗L) over the extended

commodity space, E.
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Now we can prove the second fundamental theorem. With respect to the allocation, (x∗; z∗i )i∈I ,

feasible under (x∗; y∗) ∈ Y with y∗ = y∗0 +
∑

j∈J y∗j for E =
(
(≿i, ωi)i∈I , Y0, (Yj)j∈J , ((θij)j∈J)i∈I

)
, we

suppose, at first, that the action of public firm, (x∗−
0 , x∗+

0 ; y∗0), is the only element of Y0 and transform

economy E on RK∪L into economy Ê
∗
on E. Define Y ∗

0 as Y ∗
0 = {(x∗−

0 , x∗+
0 ; y∗0)} and Y ∗

j as Yj for each

j ∈ J , and consider economy E∗ =
(
(≿i, ωi)i∈I , Y

∗
0 , (Y

∗
j )j∈J , ((θij)j∈J)i∈I

)
and its transformation, Ê

∗

=
(
(≿̂i, hi(ωi))i∈I , Ŷ

∗
0 , (Ŷ

∗
j )j∈J , ((θij)j∈J)i∈I

)
. Even though Y ∗

0 is convex, it is not unclear that the

set,

Y ∗ = {(x; y) | x =
∑

j∈J∪{0}

x+
j , y =

∑
j∈J∪{0}

yj , (x, x
+
j ; yj) ∈ Y ∗

j for all j ∈ J ∪ {0}}, (17)

is convex. However, set Ŷ ∗ =
∑

j∈J∪{0} Ŷ
∗
j ⊃ h(Y ∗) is obviously convex as the sum of convex sets in E.

Hence, as in Debreu (1959)[Ch.6, 6.4], by considering the class of upper contour sets, X̂
hi(x

∗;z∗
i )

i , i ∈ I,

by incorporating feasibility equation (2), we obtain a supporting price, ((pi∗I )i∈I , (p
j∗
J )j∈J , p

0∗, p∗L), at

0 of the convex set, −Ŷ ∗ −
∑

i∈I hi(ωi) +
∑

i∈I X̂
hi(x

∗;z∗
i )

i in E.

It is clear under price represented by (pj∗j )j∈J and p∗L, condition (i) If Lindahl equilibrium is satisfied

for all j ∈ J since every Ŷ ∗
j is convex. For condition (ii), note that the status quo allocation is Pareto

optimal, so there is no allocation that is Pareto superior to it, hence the condition is automatically

satisfied. For condition (iii), take d∗i ∈ R appropriately so as to satisfy pi∗I · x∗ + p∗L · z∗i = p∗L · ωi +∑
j∈J θijπ

∗
j + d∗i for every i ∈ I. ■

4 Conclusion

In this paper, fundamental theorems of welfare economics for economies with public goods are given,

including cases in which a Pareto-optimal Lindahl equilibrium allocation is possible only through an

inevitable government budget deficit. In particular, (1) medical cares as merit goods give concrete

significance to the fact that the fundamental theorems of welfare economics may be asserted on the

basis of Lindahl equilibrium. (2) The possibility of deficit financing is a general equilibrium theoretical

confirmation that the private sector does not necessarily share all the costs of public goods, and thus

what is unnecessary tax collection. (3) With regard to tax collection, our results show the necessity of

financing that cannot be realized by the private price in Lindahl equilibria (the undistributed profits

means the necessity of lump-sum taxes for private firms). Furthermore, (4) in addition, the activity

criteria of the public firm is given as a kind of maximality of profit, i.e., further Pareto improvement

actions inevitably lead to lower profits. (5) Compared to the cost-sharing equilibrium in Mas-Colell

and Silvestre (1989), here the question of “what is true cost?” is re-examined through the separation

of public and private firms. Savings in the private sector are the purchase of tomorrow ’s fiat money,

and it is appropriate from the standpoint of general equilibrium theory to treat the amount of such

savings as value creation by the state. Thus, in an economy with the concept of saturation or savings

(i.e., capital accumulation), this amount must be subtracted from the cost of public good production as

long as we follow the spirit of the Second Fundamental Theorem of Welfare Economics.

10



REFERENCES
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Appendix A

Toward what we described in Example 1 in a static framework, relying for simplicity on ‘preference

saturation’, we would like to add here a supplementary discussion on some dynamic considerations.

As mentioned in the explanation of the basic example, the budgetary surplus of a preference-saturated

agent in a static dividend equilibrium can be considered as savings, i.e., a loan to the government, but

at the same time it must be the final or eternal savings (undistributed profit) under Walras’ law. It is

the purpose of this appendix to show that such savings can exist even without the preference saturation.

If we allow for ‘undistributed profits’, directly to the firms, it is not difficult to consider such eter-

nal savings (linked to government budget deficits) in a dynamic framework (think, for example, firms’

eternally undistributed internal deposits).6 In Example 2, we present a dynamic framework in which

6 Here, we note that the coexistence of undistributed profits with optimality is an interesting feature of the problem con-
cerned when contrasted with the transversality condition in optimal programming theorems for production with discount
factors.
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similar matters arise without having to consider things like ’undistributed profits’. Under the overlap-

ping generations (consumption loan) framework, the problem can be represented by the seigniorage in

Samuelson-type savings economies. In the following, we will restate it as a model including production,

closer to the basic example in the introduction.

(Example 2): Let us consider a two-period overlapping generations economy such that for

each period t = 1, 2, ..., there are two commodities (a public good and a private good) and

an agent t who lives in periods t and t + 1 and has a well-behaved technology Yt that can

produce 2 units of private good from one unit of public good in period t under supporting

price (1, 0) at action (private, public) = (2,−1). Suppose that public-firm technology Y0 is

such that by using one unit of private good in period 1, it can provide one unit of public

good for each period t = 1, 2, . . . (or does nothing). Moreover, suppose that each agent t has

no initial endowment and has a utility function depending only on the amounts of private

goods in R2
+ as u(xy, xo) = xy + xo, where superscripts denote young = y or old = o period

for private goods.

0−1

(−1, 1) + Yt

Public Good

Private Good1

u(−1, 1)

u

Figure 2: Y0 = {(0, 0), (−1, 1)} and (−1, 1) + Yt

In this case, we also have a trivial (unique) public firm action that is Pareto optimal, “using one unit

of private good in period 1 and provide 1 unit of public good for every periods.” If otherwise, we have

(0, 0), (0, 0), ..., as the only feasible allocation. As long as the public firm chooses the action, we have

a (unique) Pareto optimal (Lindahl) general equilibrium allocation, (1, 1), (1, 1), ..., under price system,

(0, 0, ...) for public goods and (1, 1, ...) for private goods with dividend dt = 2 for each t = 1, 2, ... that

is equal to the profit for technology Yt under price (private, public) = (1, 0). For this Lindahl general

equilibrium, the profit of public firm is −1 = (−1) · 1 + 1 · 0 + 1 · 0 + · · ·, so that the unique Pareto

optimal allocation can only be achieved with an inevitable government budget deficits.
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